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A canonical transformation method originally proposed by Munn and Silbey is used to partially 
diagonalize a model Hamiltonian which incorporates both local and nonlocal exciton-phonon 
coupling. At the heart of the method is a secular elimination principle which poses a difficult 
self-consistency problem. A limited form of this self-consistency problem was solved in an 
approximate fashion by primarily analytical methods in the original work of Munn and Silbey: 
We take a numerical approach, solving the general self-consistency problem to desired accuracy. 
Among the differences between our findings and those of the original work are polaron binding 
energies much larger and Debye-Waller factors much smaller than originally anticipated. 

I. INTRODUCTION 

In this paper we are concerned with that part of po
laron theory focused on the problem of· "nonlocal" 
exciton-phonon (or electron-phonon) interactions; local 
coupling being defined as a nontrivial dependence of diag
onal Hamiltonian matrix elements (n IHI n) upon phonon 
states, and nonlocal coupling as a nontrivial dependence of 
nondiagonal Hamiltonian matrix elements (m I HI n) upon 
phonon states, where I m) and I n) are the rigid-lattice 
Wannier states of the exciton. The body of polaron theory 
identified with local coupling is quite large, including the 
"optical" polaron of Frohlich,l-4 small and large polaron 
of Holstein,5,6 and the many-electron problem of tradi
tional BCS theory,7 to name only a few examples. The 
body of polaron theory identified with nonlocalcoupling is 
smaller, but includes the generic contribution of nonlocal 
coupling to the phonon-assisted transport of excitons and 
charge carriers,8-15 the many-electron problem of Su
Schrieffer-Heeger type models,I6-18 and applications more 
chemical in nature, such as the problem of excimer forma
tion. 19-24 

We should emphasize at the outset that the common 
appellation "phonon assisted" embraces a larger suite of 
behaviors than is addressed by nonl()cal coupling alone. 
For example, even in the absence of nonlocal coupling the 
nearest-neighbor transfer of small polarons can be assisted 
by the transient modulation of the effective energy differ
ence between the self-trapped level and neighboring bare 
levels. This effect is present in ordered materials, but is of 
even greater importance in disordered materials where po
larons preferentially occupy states in the band tail, relative 
to which most neighboring bare levels are found at higher 
energies.25-35 . 

Canonical transformations, of great importance in po
laron theory, further blur the distinctions between local 
and nonlocal coupling. The displaced oscillator transfor
mation, when applied to a local coupling Hamiltonian, im
poses a phonon modulation upon the transfer term that 

could be characterized as a pseudononlocal component. 
This pseudononiocal character represents one and the 
same phenomenon a~ the phonon-assisted transport noted 
above; the ','phonon-diagonal" part of this term represents 
tunneling between self-trapped levels, while the "phonon
nondiagonal" part represents more complex phonon
assisted transfers. 

In this paper, we examine the influence of simulta
neous local and nonlocal exciton-phonon coupling on the 
correlations which define polaron structure. We do not 
address transport, but we do employ canonical transforma
tions. Thus, while we do not address the competition or 
cooperation of local and nonlocal coupling in phonon
assisted transport, we do face the blurring of local and 
nonlocal effects in the polaron basis. 

The central problem of polaron theory is the determi
nation of the best possible polaron state, which, depending 
on one's particular approach, may involve identifying col
lective coordinates, minimizing the size of a remainder 
tew in perturbation theory, optimizing some trial state by 
variational methods, etc.4-,-6,36-44 In this paper we address a 
method introduced by Munn and Silbey which is essen
tially a perturbation method, but which contains an ele
ment of optimization. Munn and Silbey generalized the 
displaced oscillator transformation common in local
coupling polarotf theory36 to the case of combined local 
and ncinlocal coupling, observing that one peiturbative 
term in particular had the potential to grow arbitrarily 
large with increasing temp~r~ture.Such a secular growth 
would be incQnsistent with a convergent pertllrbation the
ory, and so they chose their transformation coeffiCients to 
eliminate this secular growth with the temperature. 

This. secular elimination principle produced a set of 
self-consistency equations that could be solved only ap
proximately. Here, we follow Munn and Silbey and pose 
the same general self-consistency problem; however, we 
solve this problem numerically and examine the solutioh 
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with a generality and quantitative accuracy previously un
available. 

We note in advance a shortcoming of this approach. 
The self-consistency equations which result from this sec
ular elimination scheme are independent of the rigid-lattice 
tunneling matrix elements "J" which determine the rigid-: 
lattice band structure, including such essential quantities as 
the rigid-lattice effective mass and density of states. This 
implies that the validity of this approach is limited to the 
narrow (rigid) band regime where traditional small po
laron theory is understood to hold. Wide (rigid) band sce
narios are generally beyond the scope of these methods. 

We begin with the general Hamiltonian, describing so
called linear local and nonlocal exciton-phonon couplinK_ 
in a translationally invariant system 

H= LEa;ian+ L;:n~;;;an+ L {~+~Mw2{fn} 
n mn n . . 

(1) 

where a;i creates an exciton in the rigid-lattice Wannier 
state n, and Qn and Pn are the coordlnate and momentum 
describing the Einstein oscillator identified with the site n. 
Owing to the hermiticity of the Hamiltonian and transla
tional invariance, the coefficients satisfy the symmetries 

(2) 

(3) 

We choose the coefficients to be real. For definiteness, in 
specific computations we choose . 

Ymn=/'oc5mPnl+~( ~ +~) (c5mPnl-: t +c5nP;;;I-"l) 

1 
+2:( ~ -~)(c5nPml+ 1 +c5mPnl+1)' 

(4) 

(6) 

In writing the Hamiltonian in this way,.we are includ
ing only the simplest exciton tunneling geometry and the 
most minimal possibilities for both local and nonlocal cou
pling to Einstein phonons. The.two nonlocal coupling con
stants account for the two symmetries which may be in
volved. In this paper we follow closely the development 
and results presented by Munn and Silb~y; thus, the ma
jority of our specific results are presented for the antisyni
metric casC? studied by them (rl:::: 0, 11 = /'1)' At the close 
of this paper we present illustrative results for the symmet-
ric coupling case. ." . . . . 

It wili 'prove advantageous toimplemeni our analysis 
itt_ k space, for which we adopt the transformation conven
tions 

(6) 

(7) 

In order to define a momentum space form for the force 
triadic Ymn' we make use of translational invariance to de
fine coordinates relative t6 the site associated with the ex
citori creation operator [cf. Eq. (1)]; thus, with f.L=n-m 
and v=l-m, 

rk= L e-iq'leikJL/'~JL" (8) 
1''1 

This implies that the triple Fourier transform .i~volved in 
going from Eq'- (1) to Eq. (12) below yields 

X' e-iqleik'me-ikn.J = l\T~ AA 
£.. Ymn-lYUk'k+qr -k' 
lmn 

For the coupling geometry considered in this paper, 

rk=/'o+~[cos(k) +cos(k-q)] 

-i~[sin(k) ":-'siIi(k';"'q)]. 

(9) 

(10) 

We further define dimensionless coupling constants fh 
etc., such that any f is related to the corresponding /' 
through the relation 

1 
f .)2Mm}/'· (11) 

With these conventions; the momentum-space form of the 
Hamiltonian is 

H= L (E+Jk>a,tak+ L wq(b:bq+ 112) 
k q 

(12) 

, , "-

Transfo,rmation of the Hamiltonian is carried out as 

(13) 

with 

L=N,,-f12 X' Aq (b+ -b )a+· . .a . 4t -k -q q k+q--k, kq .-
(14) 

where the transformation coefficients A~ have the symme
try property 

(15) 

This dressing transformation yields polaron and. dressed 
phonon operators 

an=eLane- L= L 8nmam, 
m 

bq=eLbqe-L=bq_N-l12 L A;;;%a;;;an~ 
mn 

(16) 

(17) 

(The general definition of 8nm is given below.) When re
strictedto the small-polaron regime of local-coupling the
ory, A~-+ J% and the "thunder operators" 8nm take the 
form 

8nm=c5mne'V-I12 L.t!n(b: -b_q). 
q 

(18) 

In the presence of nonlocal coupling, however, 8nm is !lQn-
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diagonal, implying that the polaron created by a;; repre
sents a superposition of bare exciton states which, though 
centered on the site n, is at least somewhat delocalized. 

H--Ho+AN, 

After the transformation, the Hamiltonian H can be 
separated into a zeroth-order band Hamiltonian iio and a 
,scattering interaction AN: 

(19) 

iio= L (€-+Jk-N-l12 LIAkI2Iimq)atak+ L limi b: bq+i!2), 
k q q 

(20) 

M= L { L JpT p,,",pk,-,.2N-1 L Iimq.l!-~=k,Tp_q,k;p,k'+q+N-1I2 L Iimqr-p[Tp+q,,,",p,~,'(bq+b~q) 
kk' p pq pq 

- <Tp+q,k-,p,k,(bq+b~q»] }atak,+N-1I2 t Iimq[A~k-f,~k,<e:'+q'k+ih'k) 1 (bq+b~q)at+,f1k> (21) 

where 

ekk,= [exp( -S) hk', 

et.,= [exp(S) h'k, 

S N -ll2"k-k'(b+ b ) kk'= fJ._k' k'-k-' k-k' , 

(22) 

(23) . .< 

, (24) 
;-;~ 

(25) 

(26) 

where < ... ) denotes the thermal average in the free- " 
phonon basis at the temperature T. 

This separation has t!!e appea,l that the thermal ave~ 
age of the perturbation I:lll vanishes, and every term of aH 
containing a T operator remains bounded in a mean-sql:la~- -
sense. The one formal difficulty is the last term of AN 
which contains phonon displacement operators uncompen
sated by a T operator. This last term has the potential to 
grow with increasing temperature, motivating Munn and 
Silbey's choice of Ak to eliminate this potential secular' 
growth 

-

A'!..k= f, ~k,<e:'+q,k+ik'k)' (27) 

The problem of optimizing the zeroth-order Hamil
tonian is now reduced to determining, the transformation 
coefficients Ak for given exciton-phonon coupling param
eters Jk. Using Eqs. (23)-(27), one may show that the 
transformation coefficients must satisfy the self-consistency 
equations~ 

r.Q N- 1(2 '+l)(Ak- k')*Ak- k' .nkk,= , nk-k' k'-q k , (28) 

<ek)=exp [ -~ f, ~k']' (29) 

A'k= <ek_q)(ek) L f1,[exp(EI) lkk" 
, k',' -

(30) 

in which nq is the Bose distribution (since we compute only 
for the Einstein phonon model, 2nq+ 1 =coth i81im }-and 

the triadic Ekkf is an auxiliary intermediate quantity intro
duced for convenience. We emphasize that these self
consistency equations are the exact consequence of the 
Munn-Silbey secular elimination scheme. We note that the 
temperature enters explicitly only in Eq. (28), the exciton
phonon coupling constants enter explicitly only in Eq. 
( 30)! ,and the tunneling matrix element does not enter at 
all. All the computations to follow were performed for the 
nominally moderate temperature k BT.=Iim. 

II. METHOD OF SOLUTION 

In the small polaron limit of local coupling polaron 
the-ory, the optimal transformation coefficients are given by 
A1= fl. Muim and Silbey assumed a similar form for Ai in 
which the local and nonlocal coupling constants were 
scaled by variational Par~meters 5 and rt 

Ak=ios..o:.ifl7}[sin(k) -sin(k-q)]. (31) 

One can show, however, thatA~=fo exactly, implying that 
5 = 1. This leaves rt as the single parameter to be varied, 
and leads to a single nonlinear equation to be solved. 

Our aim is to solve Eqs. (28)-(30) numerically, avoid
ing any restriction on the form of the transformation coef
ficients. As a practical matter, however, computation is 

, facilitated by generalizing Munn and Silbey's, variational 
parameters 5 and rt to real matrices such that 

Ak=f05k-iflrtUsin(~) -sin(k-q)]. (32) 

The reader may observe that this form is not completely 
general since the explicit sin functions force the imaginary 
part to vanish along the lines q=O, 2k±11". The q=O line 
constitutes no restriction, however, since the symmetry re
lation (15) requires A~ to be real. Similarly, although it is 
not clear from the known symmetries that the q=2k±11" 
lines do not constitute a restriction, sample calculations 
using completely general Ai's consistently show that Ai is 
real along these lines. In our calculations we treat the q=O 
and q = 2k ± 11" lines as lines of removable singUlarities and 
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FIG: 1.< Momentum-space components of A~ [cf. Eq; (32)]. Nonlocal coupling is the antisymmetrictype. 5t TJ~ for YO=Yl=1.0. 

choose the values ofr/£ along the.se lhies to be continuous 
with neighboring value!!; this convention has no effect on 
the value of A'fc. 

The sand 11 matrices introduced in this way inherit the 
symmetry properties of the transformation coefficients 
such that· 

(33) 

At the start of each iterative process, some initial guess 
for sand 11. is made, often a uniform matrix of order unity 
(consistent with Munn and Silbey's approximation), or the 
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FIG. 2. Momentum-space components of Ai [cf. Eq. (32)]. Nonlocal coupling is the antisymmetric type. st 'Y/% for Yo=0.03, Yf= 1.0. , 

output from a previous run. The output of one iteration is 
fed back into the self-consistency equations in a controlled 
way to generate the next S and "I. Computation ends when 
the output set is within precision requirements' of the last 
input set. 

Iteration is stable when exciton-phonon coupling is 

not too large. In this situation iteration converges upon 
unique solutions rapidly and to machine precision for any 
initial guess for S and "I. As 10 and/or 11 are increased 
beyond unity, computation' becomes increasingly sensitive 
to the details of the iteration, though convergence to 
unique solutions remains possible. When exciton-phonon 
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FIG. 3. Upper panel: Logarithm of the Debye-WalJer factor, based on 
Eq. (35). Center panel: Wave vector dependent binding energy, based on 
Eq. (36). Lower panel: Total polaron energy band, based on Eq. (34), 
using a rigid-lattice bandwidth J= I and «:=0. Chain-dotted (. -' ), Yo 
= 1.0, rl =0.3. Solid (-), Yo= 1.0, rl = 1.0. For comparison, also plotted 
are corresponding quantities from Ref. 14 Dashed (---), Yo= 1.0, Yl =0.3. 
Dotted C",), Yo=1.0, rl=1.0. 

coupling is large, however, convergence tends to fail either 
by failing to minimize errors to desired precision, or by 
converging to multiple solutions sensitive to the initializa
tion set. It is possible that convergence fails in the strong
coupling regime for purely numerical reasons. For exam
ple, certain intermediate results involve exponentiated 

matrices having large positive and negative eigenvalues 
which must be resolved to obtain final results of order 
unity;45 this problem increases greatly with increasing 
exciton-phonon coupling and could generate purely nu
merical instabilities. On the other hand, there is precedent 
for the existence of multiple solutions in strong-coupling 
polaron theory (e.g., in the context of the self-trapping 
transition); however, we were unable to refine our study 
sufficiently to make reliable statements on this possibility. 
rhus, for definiteness, we limit our discussion to weak and 
moderate coupling \vhere our solutions are reliable by all 
available criteria. 

III. NUMERICAL RESULTS 

Our results share a few common characteristics. 
-(1) When nonlocal coupling is weak relative to local 

coupling, the wave vector dependences of Sk and 7J~ are 
also weak; e.g., when 10= 1 and 11 =0.03, the maximum 
relative wave vector variation is less than approximately 
0.15%, and when 10= 1 and 11 =0.3 (a case studied by 
Munn and Silbey) the maximum relative wave vector vari
ation is less than approximately 15%. When these circum
stances hold, our numerical values for the average 5 and 71 
are in reasonable agreement with the approximate results 
of Munn and Silbey, though there exist systematic devia
tions. 

(2) Significant wave vector dependence emerges in Sk 
and 7J~ when both local and nonlocal coupling are order 
unity or greater (cf. Fig. 1), and wave vector dependence 
is· strong when nonlocal coupling is significantly greater 
than local coupling (cf. Fig. 2). 

(3) When wave vector dependence is significant, the 
maximum relative wave vector variation appears to scale 
roughly with the ratio 11/10; e.g., when 10= 1.0 and 11 
=0.03, the maximum relative wave vector variation is ap
proximately 0.15%; however, when 10=0.03 and 11 = 1.0, 
the maximum relative wave vector variation is approxi
mately 3000%. 

(4) Sk is weakly structured in the neighborhood q=O, 
regardless of coupling strength, and 59c= 1 for all parame
ter values. 7Jk generally has a more significant wave vector 
dependence in the small q regime; however, the impact of. 
this variability on the value of Ak is muted by the structure 
factors which accompany 7Jk-

(5) Regardless of coupling strength, the wave vector 
dependence of 51 and 7J~ has a characteristic "manta ray" 
shape. The detail of this shape can be understood through 
an examination of the real-space structure of the exciton
phonon coupling, which is deferred to Sec. V. 

This handful of characteristics helps to sort out the 
piecemeal agreement between our results and those of our 
predecessors. While the explanation is clearly bound up in 
the nonuniform wave vector dependence of Sk and 71'10 it is 
significant that the averagE( 5 and 71 which follow from our 
calculations differ systematically from the 5 and 71 of Munn 
and Silbey. We have found that the 71 of Munn and Silbey 
is more representative of an approximate lower bound to 
7J~ than its average; our average 71 is consistently of order 
unity, while that of Munn and Silbey is consistently 
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smaller, and tends to zero with increasing local coupling. 
We have also found that thes= 1 assumption of Munn and 
Silbey represents a lower bound for S't: rather than an av
erage; our average 5 is typically significantly greater than 
unity, andscales roughly with the ratio 111/0. These sys
tematic deviations explain the basic trends in the magni
tudes of other quantities as well. 

The consistency test Munn and Silbey performed was 
limited to comparing the computed A~ with the known 
value 10. Our results show that the q'ZO region of Re{Ak} 
is nearly structureless even when overall wave vector vari
ation is strong, so that a posteriori this test does not provide 
good information on the momentum-space variability of 
the transformation coefficients. 

IV. POLARON ENERGY BAND 

Polaron bands are computed using Ho only [cf. Eq. 
(20)] . ' 

(34) 

in which we have written Jk as J ~-ak so as to make the 
Debye-Waller factor explicit. In addition to the usual wave 
vector dependence due to the rigid lattice energy band Jk , 

this energy band derives itsstructrire from the wave vector 
dependence of the Debye-Waller factor and the binding 
energy 

(35) 

Etc=N- l L IAk1 21W>q. (36) 
q 

These two quantities are closely related. Indeed, in the 
Munn-Silbey approximate results, the binding energy and 
the logarithm of the Debye-Waller factor are proportional 
by factors independent of the exciton-phonon coupling 
constants 

e-ak=exp( - (2n+ 1) {/5+~2/i[1+2 Sin2(k)]}), 

(37)., 

(38) 

The k dependence of 'these quantities takes the form of a 
modulation which peaks iri the iiitermediate' zone at k= 
±1T12. Correspondence between ou~numerical results and 
this approximate' analytical form is limited. While we al~ 
ways find a bimodal variation of' fTk and Etc· symmetric 
about k = 0, 1T, and ± 1T 12, the amplitude' of this wave vec
tor variation is strongly suppressed relative to Eqs. (37) 
and (38); on the other hand, the average binding energy· is 
significantly larger and the average Debye-Waller factor 
significantly smaller than predicted by Eqs. (37) and (38). 

One of the more interesting results t6 emerge from this 
and prior analyses of nonlocal coupling is the possibility 
that· polaron energy bands may become sufficiently dis
torted, to allow new energy minima to emerge which would 
introduce new peaks in densities of states and correspond-
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FIG. 5. Exciton-phonon correlation functions for antisymmetric nonlo
cal coupling. Upper panel; Site-centered exciton-phonon correlation func
tion C1 [see Eq. (39)] for Yo=0.03, YI=1.0. The polaron is taken to be 
fully localized at the origin; C1 reflects the organization of the lattice in the 
neighborhood of ~he I>olaron. center panel: Bond-centered exciton-;
phonon correlation functionCI [see Eq.(4O)] for Yo=0.03, YI= 1.0. The 
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exciton-phonon correlation function C1 [see Eq. (40)] for Yo=O.03, YI 
= 1.0. The polaron is taken to occupy sites 0 and 1 equally, in a coherent 
antisymmetric superposition of probabilitY amplitudes. 

ing optical spectra. In order for this bimodal variation to 
be resolved, the amplitUde of the variation in the binding 
energy must be comparable to the average renormalized 
energy band width. For a typical cosine band, Eqs. (37) 
and (38) suggests this should be possible in the nominally 
moderate regimeJ=/o=/l=l (cf. Fig. 3). However, ow"' 
ing to the strong suppression of structure in the Debye-c 
Waller factor and the binding energy which we find rela-

tive to Eqs. (37) and (38), it would appear that such band 
distortions should be significantly more difficult to observe 
in practice. For example, of the two energy bands in Fig. 3 
that we computed by our methods, the result for stronger 
nonlocal coupling (11 = 10= 1.0) actually does contain a 
coupling-induced minimum; however, the modulation is 
too small to be resolved in the figure. 

It is somewhat counterintuitive to see that the greater 
momentum-space variability we find for the transformation 
coefficients At should translate into weaker distortions of 
the energy band. The explanation can be found, however, 
in .the interplay of the real and imaginary parts of At in 
producing physical quantities such as the binding energy. 
The binding energy is proportional to the average of 1 At 12 
over the phonon quasimomenta q; this is, in tum, the sum 
of the mean square values of the real and imaginary parts 
of Ai, 

IAk 12= 1~(Sk)2+ li( 77k>2{ [sin(k) -sin{k-q) ]}2. 
(39) 

It is clear from Figs. 1 and 2 that separately the mean 
square values of SIc and 77t exhibit strong variations as 
functions of the ,exciton quasimomentum k; however, when 
combined as in Eq. (39) using the required structure fac
tors, these variations are found to be nearly complemen
tary, such that the aggregate quantity has only a weak 
dependence on k 

v. SITE-SPACE INTERPRETATION 

Using translational invariance and defining A~n=Ao". 
as in Eq. (8), we may invert the double Fourier transfor
mation of A'k as in Eq. (8) to examine the real-space struc
ture of the transformation coefficients. This is a natural 
way to compare the transformation coefficients, which di
rectly determine the structure of the polaron state, with the 
(nearest-neighbor) coupling coefficients which appear in 
the Hamiltonian. 

First let us note that the ansatz (31) on which the 
p:.:evious analysis was based implies that the transforma.:: 
tion,coefficients A connect exactly the same lattice sites as 
do the c~upling coefficients I [cf. Eq. (10)]. This assump
tion is reasonable when nonlocal coupling is weak relative 
to local coupling; however, it breaks down as nonlocal 
coupling gains prominence because nonlocal coupling is 
itself a transport mechanism capable of spreading the ef
fects of exciton-phonon correlations in space. 

Figure 4 displays the result for the stro~g non
local coupling case 10=0.03, 11=1.0. Apart from a 
modest renormalization of their magnitudes (e.g., 
/&;""=bS--AAozo.36) , the· four dominant positive/ 
negative peaks correspond to the nonlocal coupling com
ponents of the exciton-phonon interaction. Similarly, 
apart . from a more substantial renornialization 
(floo=0.03-.A80zo.18), the positive central positive peak 
corresponds to the local coupling component. The balance 
of the structure visible in this figure out to fifth neighbors 
and beyond must be attributed to an extended exciton 
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FIG. 6. Momentum·space representation of the transformation coefficients for Yo=0.03, rl = 1.0. Nonlocal coupling is the symmetric type; thus, A1 is 
real. Note that the graphic has been rotated relative to Figs. 1 and 2 in'6rder to optimally display the squaring off of the wave vector dependence which 
grows in with strong nonloca1 coupling, as in Fig. 2. 

structure supported by nonlocal exciton-phonon coupling. 
The width of this broad component is controlled by the 
ratio of nonlocal to local coupling. 

It is the spreading of exciton-phonon correlations in 
space which is responsible for the characteristic manta ray 
shape of the momentum-space structure noted above. The 
symmetries are such· that the even-f.L components of AOJL 
contribute to 5'k and that the odd-f.L components contribute 
to r/k' If AOJL is· truncated to include only the f.L =0, ± 1 
components, the resulting 5'k and TJk are independent of 
wave vector. If this truncation is expanded to include f.L =0, 
± 1, ± 2, ± 3, the dominant bimodal structure seen in Fig. 1 
is recovered. Including higher space components of Aop 
does not alter the fundamental modulation frequency, but 
refines the shape of the fundamental. When nonlocal cou
pling is weak or moderate relative to local coupling' (as in 
Fig. 1), Aop is fairly compact so that including components 
up to f.L= ±·3 is sufficient to recover the basic shape of5'k 
and TJk. The modulation in this regime is smooth and 
nearly sinusoidal. When nonlocal coupling is large relative 
to local coupling (as in Figs. 2, 4, and 6), Aop is more . 
broad so that components well beyond f.L = ± 3 make sig
nificantcontributions. The modulation of 5'k and TJk in this 
regime is quite anharmonic. 

Exciton-phonon correlation functions ate useful 
means for analyzing the structure of polaron states. We 
define a site-centered correlation function Cz . 

(40) 

. and a bond-centered correlation function Cz 

in which the state use.d to compute the expectation value is 
a polaron _state containing no excited dressed phonons 

I ¢)= I;;jma;;'1 q). (42) 
m 

These correlatIon functions are similar to diagnostics com
puted by Wang et a1. 46

,47 for local coupling only, and by 
Song39 and Umehara42 for combined local and nonlocal 
coupling . 

. Cz is sensitive to exciton density, while C1 probes.spa
tial coherence due to quantum tunneling. The natural po
laron state to use in computing Cz is a site-localized state 
in which ¢m=Smo' Tile natural polaron state to use in 
computing C{ is a bond-localized state in which tPm 
= (lIv'1)(l)niO±l)ml)' Computation of the site-centered 
correlation function was made using the formula 
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FIG. 7. Exciton-phonon correlation functions for symmetric nonlocal 
coupling. Upper panel: Site-centered exciton-phonon correlation function 
C/ [see Eq. (39)] for ro=0.03, rl = 1.0. The polaron is taken to be fully 
localized at the origin; C/ reflects the organization of the lattice in the 
neighborhood of the polaron. Center panel: Bond-centered exciton
phonon correlation function <5/ [see Eq. (40)] for ro=0.03, rl=1.0. The 
polaron is taken to occupy sites 0 and 1 equally, in a coherent symmetric 
superposition of probability amplitudes. Lower panel: Bond-centered 
exciton-phonon correlation function <5/ [see Eq. (40)] for ro=0.03, rl 
= 1.0. The polaron is taken to occupy sites 0 and 1 equally, in a coherent 
antisymmetric superposition -of probability amplitudes. 

Computation of the bond-centered correlation function 
was made using the same formula; however, modified such 
that the structure factor 

Skk'= [ l±COS( k' +~q }cos( k' -~q) ] [e-ik+ei(k+q
)] 

(44) 

_ is included in the 'Summation, with the + ( -) sign being 
chosen to correspond to the symmetric (antisymmetric) 
superposition implicit in ;Pm. Results for the strong nonlo
cal coupling case are displayed in Fig. 5. Appropriately, 
the strongest exciton-phonon correlations are found for 
the states most compatible with the type of the exciton
phonon coupling present. 

VI. SYMMETRIC COUPLING 

All numerical results presented so far have been for the 
case of antisymmetric exciton-phonon coupling. We now 
present a few illustrative results for the case of symmetric 
coupling. The central formulas of this paper are valid for 
either case; however, since the coupling function is real in 
the symmetric coupling case, it follows from Eqs. (28)
(30) that it is sufficient to restrict computation to real Ai. 

Numerical results for the strong coupling case 
10=-0.03, fi = 1.0 are displayed in Figs. 6 and 7. The ma
trix of transformation coefficients A~ shown in Fig. 6 
should be compared with Fig. 2. The primary difference 
between the results for symmetric and antisymmetric cou
pling is the change in the fundamental symmetry of the A 
matrix. The absence of a prominent bimodal modulation 
leads to energy band structures lacking the intermediate
zone minima which can emerge with strong antisymmetric 
nonlocal coupling. This qualitative distinction is com
pounded by differences in less prominent features. of the 
transformation coefficients. 

VII. CONCLUSION 

We have followed the approach of Munn and Silbey 
for determining appropriate zeroth-order polaron states in 
the presence of simultaneous local and nonlocal exciton
p:honon coupling. Rather than deriving approximate ana
lytical expressions for the quantities of interest, we have 
solved the self-consistency equations numerically. Owing 
to practical limitations on our computation, we have been 
limited to values of local and nonlocal coupling coefficients 
which are not large by absolute measures; however, in the 
regime of small and moderate coupling coefficients we ex
perience no limitation on the relative magnitUdes of local 
and nonlocal coupling, and have exploited this freedom to 
examine the full range of possible relative magnitudes. 

The transformation coefficients which define the struc
ture of polaron states and energy band structure in this 
approach respond to increasing nonlocal exciton-phonon 
coupling by developing dramatic momentum-space modu
'lations. These distortions can be related to a spreading of 
exciton-phonon correlations in real space, suggesting a po
laron state based on an extended exciton structure sup
ported by coherent phonon-assisted exciton transfers. The 
width of this extended structure is in rough empirical pro
portion to the ratio of the nonlocal to local exciton-phonon 
coupling constants (f1/ fo); as. a trend in the ratio· of a 
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tunneling parameter to a local coupling parameter, this 
resembles behavior found in the nonlinear theory of large 
polarons where the width of the self-consistent localized 
state is related to similar ratios.48-s2 

Debye-Waller factors and polaron binding energies fa
miliar from local-coupling pQlaron theory acquire weak 
wave vector dependences whiCh display a characteristic 
modulation centered around I k I =11'/2. These modulations 
have the potential to distort the polaron energy band, and 
for resonance integrals J small enough, introduce new ex
trema in the energy band, and new peaks into the density 
of states. The main consequences of nonlocal coupling, 
however, are found to be a strong enhancement of band 
narrowing and of the binding energy. 
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