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CONVERGENCE RATE ANALYSIS
OF AN ASYNCHRONOUS SPACE DECOMPOSITION METHOD

FOR CONVEX MINIMIZATION

XUE-CHENG TAI AND PAUL TSENG

Abstract. We analyze the convergence rate of an asynchronous space decom-
position method for constrained convex minimization in a reflexive Banach
space. This method includes as special cases parallel domain decomposition
methods and multigrid methods for solving elliptic partial differential equa-
tions. In particular, the method generalizes the additive Schwarz domain de-
composition methods to allow for asynchronous updates. It also generalizes
the BPX multigrid method to allow for use as solvers instead of as precon-
ditioners, possibly with asynchronous updates, and is applicable to nonlinear
problems. Applications to an overlapping domain decomposition for obstacle
problems are also studied. The method of this work is also closely related to
relaxation methods for nonlinear network flow. Accordingly, we specialize our
convergence rate results to the above methods. The asynchronous method is
implementable in a multiprocessor system, allowing for communication and
computation delays among the processors.

1. Introduction

With the advent of multiprocessor computing systems, there has been much
work in the design and analysis of iterative methods that can take advantage of
the parallelism to solve large linear and nonlinear algebraic problems. In these
methods, the computation per iteration is distributed over the processors and each
processor communicates the result of its computation to the other processors. In
some systems, the activities of the processors are highly synchronized (possibly via
a central processor), while in other systems (typically those with many processors),
the processors may experience communication or computation delays. The latter
lack of synchronization makes the analysis of the methods much more difficult. To
aid in this analysis, Chazan and Miranker [16] proposed a model of asynchronous
computation that allows for communication and computation delays among pro-
cessors, and they showed that the Jacobi method for solving a diagonally dominant
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system of linear equations converges under this model of asynchronous computa-
tion. Subsequently, there has been extensive study of asynchronous methods based
on such a model (see [5, 6] and references therein). For these methods, convergence
typically requires the algorithmic mapping to be either isotone or nonexpansive
with respect to the L∞-norm or gradient-like. However, aside from the easy case
where the algorithmic mapping is a contraction with respect to the L∞-norm, there
have been few studies of the convergence rate of these methods. One such study
was done in [55] for an asynchronous gradient-projection method.

In this paper, we study the convergence rate of asynchronous Jacobi and Gauss-
Seidel type methods for finite- or infinite-dimensional convex minimization of the
form

min
vi∈Ki,i=1,... ,m

F

(
m∑
i=1

vi

)
,(1)

where each Ki is a nonempty closed convex set in a real reflexive Banach space
V and F is a real-valued lower semicontinuous Gâteau-differentiable function that
is strongly convex on

∑m
i=1Ki. Our interest in these methods stems from their

close connection to relaxation methods for nonlinear network flow (see [4, 5, 56]
and references therein) and to domain decomposition (DD) and multigrid (MG)
methods for solving elliptic partial differential equations (see [7, 8, 9, 14, 18, 19,
33, 40, 45, 52, 53, 57] and references therein). For example, the additive and the
multiplicative Schwarz methods may be viewed as Jacobi and Gauss-Seidel type
methods applied to linear elliptic partial differential equations reformulated as (1)
[9, 57]. DD and MG methods are also useful as preconditioners and it can be
shown that such preconditioning improves the condition number of the discrete
approximation [7, 8, 10, 9, 14, 33, 40, 45, 57]. In addition, DD and MG meth-
ods are well suited for parallel implementation, for which both synchronous and
asynchronous versions have been proposed. Of the work on asynchronous methods
[21, 22, 27, 38, 37, 39, 46], we especially mention the numerical tests by From-
mer et al. [22] which showed that, through improved load balancing, asynchronous
methods can be advantageous in solving even simple linear equations. Although
these tests did not use the coarse mesh in its implementation of the DD method,
it is plausible that the asynchronous method would still be advantageous when the
coarse mesh is used. However, the convergence rate analysis of the above asynchro-
nous methods seems still missing from the literature. In the case where the equation
is linear (corresponding to F being quadratic and K1, . . . ,Km being suitable sub-
spaces of V ) or almost linear, this issue has been much studied for synchronous
methods (see see [7, 8, 9, 14, 18, 19, 33, 40, 45, 52, 53, 57] and references therein)
but little studied for asynchronous methods. In the case where the equation is
generally nonlinear (corresponding to K1, . . . ,Km being suitable subspaces of V ),
there are some convergence studies for synchronous methods [15, 18, 44, 52, 53],
and none for asynchronous methods. In the case where K1, . . . ,Km are not all
subspaces, there are various convergence studies for synchronous methods (see
[1, 12, 23, 25, 28, 29, 30, 31, 34, 35, 36, 47, 50] and references therein) but, again,
none for asynchronous methods.

The contributions of the present work are two-fold.

• We consider an asynchronous version of Jacobi and Gauss-Seidel methods
for solving (1), and we show that, under a Lipschitzian assumption on the
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Gâteau derivative F ′ and a norm equivalence assumption on the product
of K1, . . . ,Km and their sum (see (5) and (6)), this asynchronous method
attains a global linear rate of convergence with a convergence factor that can
be explicitly estimated (see Theorem 1). This provides a unified convergence
and convergence rate analysis for such asynchronous methods.
• We apply the above convergence result to (finite-dimensional) linearly con-

strained convex programs and, in particular, nonlinear network flow prob-
lems. This yields convergence rate results for some asynchronous network
relaxation methods (see Section 6). Previous work studied the convergence
of these methods, but no rate of convergence result was obtained. We also
apply the above convergence result to certain nonlinear elliptic partial differ-
ential equations. This yields convergence rate results for some asynchronous
parallel DD and MG methods for solving these equations and, in particular,
the convergence factor is shown not to depend on the mesh parameters (see
Section 7). When implementing multigrid methods on parallel processors, the
nodal basis is often organized into different groups. The computation within
each group can be sequential while the computation in different groups could
be done in parallel. The asynchronous convergence rate analysis provides a
convergence rate estimate when computation in different groups is not fully
synchronized. Lastly, application to an overlapping DD method for obstacle
problems is studied. We show that the method attains a linear rate of conver-
gence with a convergence factor depending on the overlapping size, but not
on the mesh size or the number of subdomains.

We note that alternative approaches such as Newton-type methods have also
been applied to develop synchronous DD and MG methods for nonlinear partial
differential equations without constraints [2, 3, 11, 26, 41, 58, 59]. However, these
methods use the traditional DD and MG approach or use a special two-grid treat-
ment. Our approach is different even for nonlinear partial differential equations
without constraints.

2. Problem description and space decomposition

Let V be a real reflexive Banach space with norm ‖ · ‖ and let V ′ be its dual
space, i.e., the space of all real-valued linear continuous functionals on V . The
value of f ∈ V ′ at v ∈ V will be denoted by 〈f, v〉, i.e., 〈·, ·〉 is the duality pairing
of V and V ′. We wish to solve the minimization problem

min
v∈K

F (v) ,(2)

where K is a nonempty closed (in the strong topology) convex set in V and
F : V 7→ < is a lower semicontinuous convex Gâteau-differentiable function.
We assume F is strongly convex on K or, equivalently, its Gâteau derivative
limt→0(F (v+ tw)−F (v))/t, which is a well-defined linear continuous functional of
w denoted by F ′(v) (so F ′ : V 7→ V ′), is strongly monotone on K, i.e.,

〈F ′(u)− F ′(v), u− v〉 ≥ σ‖u− v‖2, ∀u, v ∈ K,(3)

where σ > 0. It is known that, under the above assumptions, (2) has a unique
solution ū [24, p. 23].
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We assume that the constraint set K can be decomposed as the Minkowski sum

K =
m∑
i=1

Ki(4)

for some nonempty closed convex sets Ki in V , i = 1, . . . ,m. This means that, for
any v ∈ K, we can find vi ∈ Ki, not necessarily unique, satisfying

∑m
i=1 vi = v and,

conversely, for any vi ∈ Ki, i = 1 . . . ,m, we have
∑m

i=1 vi ∈ K. Following Xu [57],
we call (4) a space decomposition of K, with the term “space” used loosely here.
Then we may reformulate (2) as the minimization problem (1), with (ū1, . . . , ūm)
being a solution (not necessarily unique) of (1) if and only if ūi ∈ Ki for i = 1, . . . ,m
and

∑m
i=1 ūi = ū. As was noted earlier, the reformulated problem (1) is of interest

because methods such as DD and MG methods may be viewed as Jacobi and Gauss-
Seidel methods for its solution. The method we study will be an asynchronous
version of these methods. The above reformulation was proposed in [9, 57] (for
the case where F is quadratic and K = V ) to give a unified analysis of DD and
MG methods for linear elliptic partial differential equations. The general case was
treated in [47, 50] (also see [48, 52] for the case of K = V ).

For the above space decomposition, we will assume that there is a constant
C1 > 0 such that for any vi ∈ Ki, i = 1, . . . ,m, there exists ūi ∈ Ki satisfying

ū =
m∑
i=1

ūi and
( m∑
i=1

‖ūi − vi‖2
) 1

2

≤ C1

∥∥∥∥ū− m∑
i=1

vi

∥∥∥∥(5)

(see [14, p. 95], [50, 52], [57, Lemma 7.1] for similar assumptions). We will also
assume F ′ has a weak Lipschitzian property in the sense that there is a constant
C2 > 0 such that

m∑
i=1

m∑
j=1

〈F ′(wij + uij)− F ′(wij), vi〉 ≤ C2

( m∑
j=1

max
i=1,... ,m

‖uij‖2
) 1

2
( m∑
i=1

‖vi‖2
) 1

2

,

∀wij ∈ K,uij ∈ K	j , vi ∈ K	i , i, j = 1, . . . ,m,

(6)

where we define the set difference K	i = {u − v : u, v ∈ Ki} ⊂ V . The above
assumption generalizes those in [50, 52, 53] for the case of Ki being a subspace, for
which K	i = Ki.

Furthermore, we will paint each of the sets K1, . . . ,Km one of c colors, with the
colors numbered from 1 up to c, such that sets painted the same color k ∈ {1, . . . , c}
are orthogonal in the sense that∥∥∥∥ ∑

i∈I(k)

vi

∥∥∥∥2

=
∑
i∈I(k)

‖vi‖2, ∀vi ∈ K	i , i ∈ I(k),(7)

〈
F ′
(
u+

∑
i∈I(k)

vi

)
,
∑
i∈I(k)

vi

〉
≤

∑
i∈I(k)

〈F ′(u+ vi), vi〉,(8)

∀u ∈ K, vi ∈ K	i , i ∈ I(k),

where I(k) = {i ∈ {1, . . . ,m} : Ki is painted color k} (see [14, §4.1], [53] for similar
orthogonal decompositions in the case Ki is a subspace). Thus I(1), . . . , I(c) are
disjoint subsets of {1, . . . ,m} whose union is {1, . . . ,m} and I(k) comprises the
indexes of the sets painted the color k. Although c = m is always a valid choice, in
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some of the applications that we will consider, it is essential that c be independent
of m. In the context of a network flow problem, each set Ki may correspond to
a node of the network and sets are painted different colors if their corresponding
nodes are joined by an arc. In the context of a partial differential equation defined
on a domain Ω ⊂ <d, each set Ki may correspond to a subdomain of Ω and sets are
painted different colors if their corresponding subdomains intersect (see Sections 6
and 7 for details).

Remark 1. It can be seen that condition (6) is implied by the following strengthened
Cauchy-Schwarz inequality (also see [45, p. 155], [57] for the case of quadratic F
and subspace Ki):

〈F ′(wij + uij)− F ′(wij), vi〉 ≤ εij‖uij‖‖vi‖, ∀wij ∈ K,uij ∈ K	j , vi ∈ K	i ,

with C2 being the spectral radius of the matrix E = [εij ]mi,j=1, assumed to be
symmetric.

Remark 2. For locally strongly convex problems, the constants σ, C1, C2 may
depend on u, v, vi, wij , uij . In this case, the subsequent analysis should be viewed as
being local in nature, i.e., it is valid when the iterated solutions lie in a neighborhood
of the true solution (see Section 7).

3. An asynchronous space decomposition method

Since F is lower semicontinuous and strongly convex, for each (u1, . . . , um) ∈
K1 × · · · ×Km and each i ∈ {1, . . . ,m}, there exists a unique wi ∈ Ki satisfying

F

(∑
j 6=i

uj + wi

)
≤ F

(∑
j 6=i

uj + vi

)
, ∀vi ∈ Ki(9)

(see [24, p. 23]). Let πi(u1, . . . , um) denote this wi. Then (π1, . . . , πm) may
be viewed as the algorithmic mapping associated with the block Jacobi method
for solving (1). Consider an asynchronous version of the block Jacobi method,
parameterized by a stepsize γ ∈ (0, 1], which for simplicity we assume to be
fixed, that generates a sequence of iterates (u1(t), . . . , um(t)), t = 0, 1, . . . , with
(u1(0), . . . , um(0)) ∈ K1 × · · · ×Km given, according to the updating formula,

ui(t+ 1) = ui(t) + γsi(t), i = 1, . . . ,m,(10)

where we define

si(t) =
{
wi(t)− ui(t) if t ∈ T i
0 otherwise,(11)

wi(t) = πi
(
u1(τ i1(t)), . . . , um(τ im(t))

)
,(12)

and T i is some subset of {0, 1, . . .} and each τ ij(t) is some nonnegative integer not
exceeding t. Since each Ki is convex and γ ∈ (0, 1], an induction argument shows
that (u1(t), . . . , um(t)) ∈ K1 × · · · ×Km for all t = 0, 1, . . . .

We will assume that the iterates are updated in a partially asynchronous manner
[5, Chap. 7], i.e., there exists an integer B ≥ 1 such that

{t, t+ 1, . . . , t+B − 1} ∩ T i 6= ∅, t = 0, 1, . . . , ∀i,(13)

0 ≤ t− τ ij(t) ≤ B − 1 and τ ii (t) = t, ∀t ∈ T i, ∀i, j.(14)
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We say that a color k ∈ {1, . . . , c} is active at time t if there exists an i ∈ I(k) such
that t ∈ T i. Recall that I(k) indexes those sets painted the color k. Denoting by
ct the total number of colors that are active at time t, we will also assume that

γ < min
{

σ

2C2B
,

1
ct

}
, t = 0, 1, . . . .(15)

Notice that γ does not depend on m nor on C1. Although (15) may give a very
conservative value of γ, this can be remedied by starting with a larger γ and de-
creasing γ whenever “sufficient progress” (defined in any reasonable way) is not
made and (15) is not satisfied.

Remark 3. The above asynchronous method models a situation in which compu-
tation is distributed over m processors with the ith processor being responsible for
updating ui and communicating the updated value to the other processors. T i is
the set of “times” at which ui is updated by processor i (by applying πi to its
current copy of (u1, . . . , um)); ui(t) is the value of ui known to processor i at time
t; and τ ij (t) is the time at which the value of uj used by processor i at time t is
generated by processor j, so t− τ ij(t) is the communication delay from processor j
to processor i at time t. Thus, the processors need not wait for each other when
updating (ui)mi=1, and the values used in the computation may be out-of-date.

Remark 4. The assumption that τ ii (t) = t can perhaps be removed through a more
careful analysis, though this seems to be a reasonable assumption in practice. In-
tuitively, (13) says that each component ui is updated at least once every B time
units, and (14) says that the information used by processor i from processor j
should not be out-of-date by more than B time units. This assumption of bounded
communication and computation delay is needed for a convergence rate analysis.

4. Convergence rate of the asynchronous method

In this section we prove that the iterates (u1(t), . . . , um(t)), t = 0, 1, . . . , gener-
ated by the asynchronous method (10)–(15) attain linear rate of convergence, with
a factor that depends on σ,C1, C2, c and B, γ only (see Theorem 1). While parts
of our proof use ideas from the analysis of asynchronous gradient-like methods [5,
§7.5], [55], a number of new proof ideas are introduced to account for different prob-
lem assumptions and different natures of the Jacobi and Gauss-Seidel algorithmic
mappings. To simplify the notation in our analysis, define

u(t) =
m∑
j=1

uj(t), zi(t) =
m∑
j=1

uj(τ ij (t)),(16)

for all i and t. If t ∈ T i, then the definition (12) of wi(t) and the fact that τ ii (t) = t
and F is Gâteau-differentiable imply wi(t) satisfy the optimality condition

〈F ′ (zi(t) + wi(t)− ui(t)) , vi − wi(t)〉 ≥ 0, ∀vi ∈ Ki.(17)

Our analysis will be based on estimates given in the following two key lemmas.

Lemma 1 (Descent estimate). Let A1 and A2 be defined by

A2 =
C2

2B
2

σ
, A1 =

σ

4
− γ2A2.(18)
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For t = 0, 1, . . . , we have

F (u(t+B)) ≤ F (u(t))− γA1

m∑
j=1

t+B−1∑
τ=t

||sj(τ)||2 + γ3A2

m∑
j=1

t−1∑
τ=t−B+1

‖sj(τ)‖2.

Proof. Fix any time t ∈ {0, 1, . . .}. Recall that ct is the total number of colors
active at time t and, without loss of generality, we assume that the first ct colors
are active. Then si(t) = 0 for all i ∈ I(k) and k > ct, so by defining

ek(t) =
∑
i∈I(k)

si(t)

and using (16), (10) and the convexity of F , we have

F (u(t+ 1)) = F

(
u(t) + γ

m∑
i=1

si(t)
)

= F

(
u(t) + γ

ct∑
k=1

∑
i∈I(k)

si(t)
)

= F

(
(1 − ctγ)u(t) +

ct∑
k=1

γ(u(t) + ek(t))
)

≤ (1 − ctγ)F (u(t)) + γ

ct∑
k=1

F (u(t) + ek(t))

= F (u(t)) + γ

ct∑
k=1

(
F (u(t) + ek(t))− F (u(t))

)
.(19)

Since u(t) ∈ K and u(t) + ek(t) ∈ K, the strong monotonicity of F ′ on K given in
(3) implies

F (u(t)) ≥ F (u(t) + ek(t)) − 〈F ′ (u(t) + ek(t)) , ek(t)〉 +
σ

2
‖ek(t)‖2.(20)

Define

φij(t) =
j∑

k=1

uk(τ ik(t)) +
m∑

k=j+1

uk(t), j = 0, 1, . . . ,m.

Then φi0(t) = u(t) and φim(t) = zi(t) and

φij(t)− φij−1(t) = uj(τ ij(t)) − uj(t) ∈ K	j , j = 1, . . . ,m.

If t ∈ T i, then setting vi = ui(t) in (17) and noting that si(t) = wi(t) − ui(t) (see
(11)), we obtain that

0 ≤ −〈F ′ (zi(t) + si(t)) , si(t)〉
= −〈F ′(zi(t) + si(t)) − F ′(u(t) + si(t)), si(t)〉 − 〈F ′(u(t) + si(t)), si(t)〉

= −
m∑
j=1

〈F ′(φij(t) + si(t)) − F ′
(
φij−1(t) + si(t)

)
, si(t)〉

−〈F ′(u(t) + si(t)), si(t)〉.
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If t 6∈ T i, then si(t) = 0 and the above inequality holds trivially. Combining the
above inequality with (7) and (9) and (20), we obtain that

ct∑
k=1

(
F (u(t) + ek(t))− F (u(t))

)(21)

≤
ct∑
k=1

∑
i∈I(k)

〈F ′(u(t)) + si(t)), si(t)〉 −
σ

2

ct∑
k=1

∑
i∈I(k)

‖si(t)‖2

=
m∑
i=1

〈F ′(u(t)) + si(t)), si(t)〉 −
σ

2

m∑
i=1

‖si(t)‖2

≤ −
m∑
i=1

m∑
j=1

〈F ′(φij(t) + si(t))− F ′
(
φij−1(t) + si(t)

)
, si(t)〉 −

σ

2

m∑
i=1

‖si(t)‖2.

Substituting (21) into (19) and using (6) yields
F (u(t+ 1)) ≤ F (u(t))

+ γC2

( m∑
j=1

max
i=1,... ,m

‖uj(τ ij (t))− uj(t)‖2
) 1

2
( m∑
i=1

‖si(t)‖2
) 1

2

− γ σ
2

m∑
i=1

‖si(t)‖2.

(22)

Since t−B + 1 ≤ τ ij(t) ≤ t for all i and j, we also have from (10) and the triangle
inequality that

‖uj(τ ij (t))− uj(t)‖2 ≤ γ2

(
t−1∑

τ=t−B+1

‖sj(τ)‖
)2

≤ γ2B
t−1∑

τ=t−B+1

‖sj(τ)‖2.(23)

Combining (22) and (23) yields
F (u(t+ 1)) ≤ F (u(t))

+ γ2C2

√
B

( m∑
j=1

t−1∑
τ=t−B+1

‖sj(τ)‖2
) 1

2
( m∑
i=1

‖si(t)‖2
) 1

2

− γ σ
2

m∑
i=1

‖si(t)‖2

≤ F (u(t)) + γ3C
2
2B

σ

m∑
j=1

t−1∑
τ=t−B+1

‖sj(τ)‖2 − γ σ
4

m∑
i=1

‖si(t)‖2,

(24)

where the second inequality uses the identity ab ≤ (a2 + b2)/2 with a and b being
the two square-root terms multiplied and divided, respectively, by B1/4

√
2γC2/σ.

Applying the above argument successively to t, t+ 1, . . . , t+B − 1, we obtain

F (u(t+B))− F (u(t))

≤ −γ
(
σ

4
− γ2C2

2B
2

σ

) m∑
j=1

t+B−1∑
τ=t

||sj(τ)||2 + γ3C
2
2B

2

σ

m∑
j=1

t−1∑
τ=t−B+1

||sj(τ)||2.

This proves the lemma.
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The next key lemma estimates the optimality gap F (u(t+B))− F (ū), where ū
is the unique solution of (2).

Lemma 2 (Optimality gap estimate). Let A3 and A4 be defined by

A4 =
C2B

2

2
+

8C2
1C

2
2B

σ
, A3 =

3C2

2
+

6C2
1C

2
2

σ
+A4.(25)

For t = 0, 1, . . . , we have

F (u(t+B))− F (ū) ≤ (1− γ)(F (u(t))− F (ū))

+ γA3

m∑
j=1

t+B−1∑
τ=t

||sj(τ)||2 + γ3A4

m∑
j=1

t−1∑
τ=t−B+1

‖sj(τ)‖2.

Proof. Fix any t ∈ {0, 1, . . . }. For each i ∈ {1, . . . ,m}, let ti denote the greatest
element of T i less than t+B. Then we have from (11) and (17) that〈

F ′
(
zi(ti) + si(ti)

)
, vi − wi(ti)

〉
≥ 0, ∀vi ∈ Ki.(26)

We also have from (10) and (16) that

ui(t+B) = ui(ti) + γsi(ti),

u(t+B) =
m∑
i=1

ui(ti + 1) =
m∑
i=1

ui(ti) + γ

m∑
i=1

si(ti).

For notational simplicity, define

w(t) =
m∑
i=1

wi(ti), û(t) =
m∑
i=1

ui(ti).

By assumption, there exists ūi ∈ Ki, i = 1, . . . ,m, such that (5) holds with vi =
wi(ti), i.e.,

ū =
m∑
i=1

ūi and
( m∑
i=1

‖wi(ti)− ūi‖2
) 1

2

≤ C1‖w(t)− ū‖.(27)

Then (ū1, . . . , ūm) is a solution of the convex program (1) and, by F being Gâteau-
differentiable, it satisfies the optimality condition

m∑
i=1

〈F ′(ū), vi − ūi〉 ≥ 0, ∀vi ∈ Ki, i = 1, . . . ,m.(28)

Defining

φij(t) =
j∑

k=1

wk(tk) +
m∑

k=j+1

uk(τ ik(ti)), j = 0, 1, . . . ,m,

we have that φi0(t) = zi(ti) and φim(t) = w(t) and

φij(t)− φij−1(t) = wj(tj)− uj(τ ij(ti)) ∈ K	j , j = 1, . . . ,m.(29)
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Setting vi = ūi in (26) and vi = wi(ti) in (28), we obtain that

〈
F ′
(
w(t)

)
− F ′(ū), w(t) − ū

〉
≤
〈
F ′
(
w(t)

)
, w(t) − ū

〉
≤

m∑
i=1

〈
F ′
(
w(t)

)
− F ′

(
zi(ti) + si(ti)

)
, wi(ti)− ūi

〉

=
m∑
i=1

〈
F ′
(
w(t)

)
− F ′

(
zi(ti)

)
, wi(ti)− ūi

〉

+
m∑
i=1

〈
F ′
(
zi(ti)

)
− F ′

(
zi(ti) + si(ti)

)
, wi(ti)− ūi

〉

=
m∑
i=1

m∑
j=1

〈
F ′(φij(t))− F ′(φij−1(t)), wi(ti)− ūi

〉
+

m∑
i=1

〈
F ′
(
zi(ti)

)
− F ′

(
zi(ti) + si(ti)

)
, wi(ti)− ūi

〉

≤ C2

( m∑
j=1

max
i=1,... ,m

‖uj(τ ij (ti))− wj(tj)‖2
) 1

2
( m∑
i=1

‖wi(ti)− ūi‖2
) 1

2

+ C2

( m∑
i=1

‖si(ti)‖2
) 1

2
( m∑
i=1

‖wi(ti)− ūi‖2
) 1

2

≤ C1C2

( m∑
j=1

(
4γ2B

t+B−2∑
τ=t−B+1

‖sj(τ)‖2 + 2‖sj(tj)‖2
)) 1

2

‖w(t)− ū‖

+ C1C2

( m∑
i=1

‖si(ti)‖2
) 1

2

‖w(t)− ū‖,(30)

where the third inequality uses (6) and (29); the fourth inequality uses (27) and
the fact that

‖uj(τ ij(ti))− wj(tj)‖2 = ‖uj(τ ij(ti))− uj(tj)− sj(tj)‖2

≤ 2‖uj(τ ij (ti))− uj(tj)‖2 + 2‖sj(tj)‖2

≤ 2γ2

( t+B−2∑
τ=t−B+1

‖sj(τ)‖
)2

+ 2‖sj(tj)‖2

≤ 4γ2B

t+B−2∑
τ=t−B+1

‖sj(τ)‖2 + 2‖sj(tj)‖2

(see (10), (11), (13), (14)). Also, the strong monotonicity (3) of F ′ on K implies

〈F ′(w(t)) − F ′(ū), w(t) − ū〉 ≥ σ‖w(t)− ū‖2,
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which together with (30) yields

‖w(t)− ū‖ ≤ C1C2

σ

( m∑
j=1

(
4γ2B

t+B−2∑
τ=t−B+1

‖sj(τ)‖2 + 2‖sj(tj)‖2
)) 1

2

+
C1C2

σ

( m∑
i=1

‖si(ti)‖2
) 1

2

.(31)

Next, since F ′(w(t)) is a subgradient of F at w(t) [20, p. 23], we have

F (w(t)) − F (ū) ≤ 〈F ′(w(t)), w(t) − ū〉,

so putting vi = ūi in (26) and adding it to the above inequality yields

F (w(t)) − F (ū)

≤
m∑
i=1

〈F ′(w(t)) − F ′(zi(ti) + si(ti)), wi(ti)− ūi〉

≤ C2
1C

2
2

σ

( m∑
j=1

(
4γ2B

t+B−2∑
τ=t−B+1

‖sj(τ)‖2 + 2‖sj(tj)‖2
)) 1

2

(32)

+
( m∑
i=1

‖si(ti)‖2
) 1

2
)2

≤ 2C2
1C

2
2

σ

(
4γ2B

m∑
j=1

t+B−2∑
τ=t−B+1

‖sj(τ)‖2 + 3
m∑
i=1

‖si(ti)‖2
)
,

where the second inequality uses (30) and (31) and the last inequality follows from
the identity (a+ b)2 ≤ 2(a2 + b2).

Next we estimate F (û(t)) − F (u(t)). Let t̄ = maxi=1,... ,m t
i and, for each i ∈

{1, . . . ,m} and τ ∈ {t, . . . , t̄}, define

ũi(τ) = ui(min{τ, ti}), ũ(τ) =
m∑
i=1

ũi(τ).(33)

Then, for each i ∈ {1, . . . ,m} and τ ∈ {t, . . . , t̄ − 1}, either ũi(τ + 1) = ũi(τ) so
that

〈F ′ (zi(τ) + si(τ)) , ũi(τ) − ũi(τ + 1)〉 = 0

or ũi(τ + 1) 6= ũi(τ) so that τ ∈ T i and τ < ti, implying by (11) and (17) that

〈F ′ (zi(τ) + si(τ)) , ui(τ) − wi(τ)〉 ≥ 0

and hence, by (33), that

〈F ′ (zi(τ) + si(τ)) , ũi(τ) − ũi(τ + 1)〉 = 〈F ′ (zi(τ) + si(τ)) , ui(τ) − ui(τ + 1)〉
= γ〈F ′ (zi(τ) + si(τ)) , ui(τ) − wi(τ)〉 ≥ 0.

Using this and defining

φij(τ) =
j∑

k=1

ũk(τ + 1) +
m∑

k=j+1

uk(τ ik(τ)), j = 0, 1, . . . ,m,
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we obtain that

F (ũ(τ + 1))− F (ũ(τ))

(34)

≤ −〈F ′(ũ(τ + 1)), ũ(τ)− ũ(τ + 1)〉

≤
m∑
i=1

〈F ′(zi(τ) + si(τ)) − F ′(ũ(τ + 1)), ũi(τ)− ũi(τ + 1)〉

=
m∑
i=1

〈F ′(zi(τ)) − F ′(ũ(τ + 1)), ũi(τ) − ũi(τ + 1)〉

+
m∑
i=1

〈F ′(zi(τ) + si(τ)) − F ′(zi(τ)), ũi(τ) − ũi(τ + 1)〉

=
m∑
i=1

m∑
j=1

〈F ′(φij−1(τ)) − F ′(φij(τ)), ũi(τ) − ũi(τ + 1)〉

+
m∑
i=1

〈F ′(zi(τ) + si(τ)) − F ′(zi(τ)), ũi(τ) − ũi(τ + 1)〉

≤ C2

( m∑
j=1

max
i=1,... ,m

‖φij−1(τ) − φij(τ)‖2
) 1

2
( m∑
i=1

‖ũi(τ) − ũi(τ + 1)‖2
) 1

2

+ C2

(
max

i=1,... ,m
‖si(τ)‖2

) 1
2
( m∑
i=1

‖ũi(τ) − ũi(τ + 1)‖2
) 1

2

≤ γC2

( m∑
j=1

(
max

i=1,... ,m
‖ũj(τ + 1)− uj(τ ij (τ))‖2

)) 1
2
( m∑
i=1

‖si(τ)‖2
) 1

2

+ γC2

m∑
i=1

‖si(τ)‖2

≤ γC2

(
γ2B

m∑
j=1

τ+1∑
ν=τ−B+1

‖sj(ν)‖2
) 1

2
( m∑
i=1

‖si(τ)‖2
) 1

2

+ γC2

m∑
i=1

‖si(τ)‖2

≤ γ3C2B

2

m∑
j=1

τ+1∑
ν=τ−B+1

‖sj(ν)‖2 + γ
3C2

2

m∑
i=1

‖si(τ)‖2,

where the first inequality uses the subgradient property of F ′(ũ(τ + 1)) [20, p. 23];
the third inequality uses (6); the fourth and fifth inequalities use (33) and (10) and
an inequality analogous to (23); the last inequality uses the identity ab ≤ (a2+b2)/2
with a and b being the two square-root terms. Summing the above inequality over
τ = t, t+ 1, . . . , t̄− 1 and observing that ũ(t̄) = û(t) and ũ(t) = u(t), we then have

F (û(t))− F (u(t)) ≤ γ3C2B

2

m∑
j=1

t̄−1∑
τ=t

τ+1∑
ν=τ−B+1

‖sj(ν)‖2 + γ
3C2

2

m∑
i=1

t̄−1∑
τ=t

‖si(τ)‖2

≤ γ3C2B
2

2

m∑
j=1

t+B−1∑
τ=t−B+1

‖sj(τ)‖2 + γ
3C2

2

m∑
i=1

t+B−1∑
τ=t

‖si(τ)‖2.(35)
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Finally, using the convexity of F and γ ∈ [0, 1], we see from (11) and (32) and
(35) that

F (u(t+B))− F (ū)

= F

( m∑
i=1

ui(t+B)
)
− F (ū)

= F

( m∑
i=1

(ui(ti) + γ(wi(ti)− ui(ti)))
)
− F (ū)

= F ((1− γ)û(t) + γw(t)) − F (ū)

≤ (1− γ)F (û(t)) + γF (w(t))− F (ū)

= (1− γ)(F (û(t))− F (ū)) + γ(F (w(t)) − F (ū))

≤ (1− γ)(F (u(t))− F (ū))

+ γ3C2B
2

2

m∑
j=1

t+B−1∑
τ=t−B+1

‖sj(τ)‖2 + γ
3C2

2

m∑
i=1

t+B−1∑
τ=t

‖si(τ)‖2

+ γ3 8C2
1C

2
2B

σ

m∑
j=1

t+B−2∑
τ=t−B+1

‖sj(τ)‖2 + γ
6C2

1C
2
2

σ

m∑
i=1

‖si(ti)‖2.

Using γ ≤ 1 then proves the lemma.

We will now use Lemmas 1 and 2 to prove our convergence rate result. To
simplify the notations, define

ak = F (u(kB))− F (ū), bk =
m∑
j=1

kB−1∑
τ=kB−B

‖sj(τ)‖2, k = 1, 2, . . . .

By Lemmas 1 and 2, we have

ak ≤ ak−1 − γA1bk + γ3A2bk−1,(36)
ak ≤ (1− γ)ak−1 + γA3bk + γ3A4bk−1,(37)

where A1, A2, A3, A4 are given by (18) and (25). By (15), we have A1 > 0. Choose
γ sufficiently small so that

% = max
{(

1 +
A1

A3

)−1
(

1 + (1− γ)
A1

A3
+ γ3/2

(
A2 +

A1A4

A3

))
, A−1

1 (γ1/2 + γ2A2)
}(38)

< 1.

Also, define a = max{a1, γ
3/2b1}/%. We claim that

max{an, γ3/2bn} ≤ a%n(39)

for n = 1, 2, . . . . We prove this by induction on n. Clearly (39) holds for n = 1 by
our definition of a. Suppose (39) holds for n = k − 1, where k > 1. Multiplying
(37) by A1/A3 and adding it to (36) gives(

1 +
A1

A3

)
ak ≤

(
1 + (1− γ)

A1

A3

)
ak−1 + γ3/2

(
A2 +

A1A4

A3

)
(γ3/2bk−1),
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which together with the inductive hypothesis max{ak−1, γ
3/2bk−1} ≤ a%k−1 and

(38) yields

ak ≤
(
1 +

A1

A3

)−1
(

1 + (1− γ)
A1

A3
+ γ3/2

(
A2 +

A1A4

A3

))
a%k−1 ≤ a%k.

Similarly, (36) and ak ≥ 0 give

γ3/2A1bk ≤ γ1/2ak−1 + γ2A2(γ3/2bk−1),

which together with max{ak−1, γ
3/2bk−1} ≤ a%k−1 and (38) yields

γ3/2bk ≤ A−1
1 (γ1/2 + γ2A2)a%k−1 ≤ a%k.

This shows that (39) holds for n = k, completing our induction proof.
Thus, we have shown linear rate of convergence (in the root sense) for both

an and bn, with a factor of %. The latter implies ui(t), t = 0, 1, . . . , is a Cauchy
sequence for each i and hence it converges strongly. This is summarized in the
theorem below.

Theorem 1. Consider the minimization problem (2) and the space decomposition
(4) of Section 2 (see (3), (5)–(9)). Let (u1(t), . . . , um(t)), t = 0, 1, . . . , be generated
by the asynchronous space decomposition method of Section 3 (see (10)–(12) and
(13), (14)) with stepsize γ satisfying (15), (38). Then, there exist a > 0 and % ∈
(0, 1), depending on σ,C1, C2 and B, γ only, such that

F (u(nB))− F (ū) ≤ a%n, n = 1, 2, . . . ,

where u(t) is given by (16) and ū denotes the unique solution of (2). Moreover,
u(t) converges strongly to ū and, for each i ∈ {1, . . . ,m}, ui(t) converges strongly
as t→∞.

5. Convergence rate

of the synchronous sequential and parallel algorithms

It is readily seen that the following Jacobi version of the method is a special case
of the asynchronous space decomposition method (10)–(12) with T i = {0, 1, . . .}
and τ ij(t) = t for all i, j, t (so B = 1 and ct = c). Thus, Theorem 1 can be applied
to establish its linear convergence and obtain an estimate of the factor % under the
assumptions of Section 2. Moreover, by observing that in this case the left-hand
side of (23) is zero so that Lemma 1 holds with A2 = 0, the stepsize restriction (15)
can be relaxed to γ ≤ 1/ct.

Algorithm 1.
Step 1. Choose initial values ui(0) ∈ Ki, i = 1, . . . ,m, and stepsize γ = 1/c, where

c is defined as in Section 2.
Step 2. For each t = 0, 1, . . . , find wi(t) ∈ Ki in parallel for i = 1, . . . ,m that

satisfies

F

∑
j 6=i

uj(t) + wi(t)

 ≤ F
∑
j 6=i

uj(t) + vi

 , ∀vi ∈ Ki .

Step 3. Set

ui(t+ 1) = ui(t) + γ(wi(t)− ui(t)) ,
and go to the next iteration.
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The following Gauss-Seidel version of the method is also a special case of
the asynchronous space decomposition method (10)–(12) with γ = 1, T i =
{i − 1 + km}k=0,1,... and τ ij (t) = t for all i, j, t (so B = m and ct = 1), Here
Theorem 1 cannot be directly applied due to γ = 1 possibly violating (15). How-
ever, by observing that in this case the left-hand side of (23) is again zero so that
Lemma 1 holds with A2 = 0, the proof of the theorem can be easily modified to
establish linear convergence of this method under the assumptions of Section 2,
with factor % depending on m,σ,C1, C2 only. Moreover, by grouping sets of the
same color into one set, we can ensure that m = c, where c is defined as in Section
2.

Algorithm 2.
Step 1. Choose initial values ui(0) ∈ Ki, i = 1, . . . ,m.
Step 2. For each t = 0, 1, . . . , find ui(t+ 1) ∈ Ki sequentially for i = 1, . . . ,m that

satisfies

F

∑
j<i

uj(t+ 1) + ui(t+ 1) +
∑
j>i

uj(t)


≤ F

∑
j<i

uj(t+ 1) + vi +
∑
j>i

uj(t)

 , ∀vi ∈ Ki .

Step 3. Go to the next iteration.

The above two methods for solving (2) were studied in [47] (also see [48, 49, 50]),
where convergence of the methods was proved under weaker assumptions. However,
no rate of convergence result was given. In [52], a linear rate of convergence for
the above two methods was proved for the unconstrained case of K = V . In the
finite-dimensional case of K = V = <n, the literature concerning the linear rate of
convergence is very rich. However, the study for linear convergence rate for general
convex sets Ki is very sparse. The linear rate of convergence for the Gauss-Seidel
method for general convex sets Ki can also be inferred from the results in [34, 35]
and references therein, but our estimate of the convergence factor is new.

In [52], the minimization subproblem at each iteration is solved inexactly. We
can do likewise in the constrained case. In particular, the proof of Theorem 1 (see
(21) and (26)) suggests that the exact minimization condition (17) can be relaxed
to the inexact minimization condition

〈F ′ (zi(t) + wi(t)− ui(t)) , vi − wi(t)〉 ≥ −
σ0

2
‖wi(t)− ui(t)‖2, ∀vi ∈ Ki,

with 0 < σ0 < σ. However, σ would need to be known explicitly and both γ and %
would depend on σ0.

6. Applications to convex programming

In this section we consider the Euclidean space V = V ′ = <n, which is the space
of n-dimensional real column vectors with duality pairing 〈f, x〉 = fTx and norm
‖x‖ =

√
xTx, where xT denotes transpose of x. We will discuss choices of the space

decomposition (4) and the corresponding estimates for C1, C2, c in (5), (6), (7). In
the case of nonlinear network flow, we will also relate our asynchronous method to
those studied in [5, §7.2.3], [56].
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6.1. Primal applications. Consider the problem (2), where F : <n 7→ < is a
differentiable convex function and K is a nonempty polyhedral set in <n. Then F
is continuous [42, p. 82] and continuously differentiable [42, p. 246]. We assume
that the gradient F ′ = ( ∂F∂xj )nj=1 is strongly monotone and Lipschitz continuous on
K, and we choose a space decomposition (4) such that each Ki is a polyhedral set.

Since eachKi is a polyhedral set, a result of Hoffman on the Lipschitzian behavior
of solutions of a linear system with respect to the right-hand side (see [13]) implies
that, for any vi ∈ Ki, i = 1, . . . ,m, there exists ūi ∈ Ki satisfying (5), where the
constant C1 depends on m and certain condition numbers for Ki, i = 1, . . . ,m. In
cases where each Ki has a simple structure, such as the Cartesian product of closed
intervals, C1 may be estimated explicitly. For a coloring of the sets, if Ki and Kj

are not orthogonal, i.e., (vi)T vj 6= 0 for some vi ∈ Ki, vj ∈ Kj , then we paint them
different colors. Let ĉ be the maximum number of sets Kj that are not orthogonal
to an arbitrary set Ki. Then an analysis similar to that used in subsection 7.1.3
shows that (6) holds with C2 = Lĉ, where L is the Lipschitz constant for F ′.

6.2. Dual applications. Consider the linearly constrained convex program

minimize G(x) subject to Ax ≥ b,(40)

where G : <n 7→ < is a strictly convex differentiable function, b ∈ <m, and A ∈
<m×n has nonzero rows. We assume there exists x̃ ∈ <n satisfying Ax̃ = b. By
attaching Lagrange multipliers λ ∈ <m to the inequalities Ax ≥ b in (40), we obtain
the Lagrangian dual problem

min
λ∈<m+

G∗(ATλ)− bTλ,(41)

where <m+ denotes the nonnegative orthant in <m, and G∗ is the convex conjugate
(also called Legendre-Fenchel transform) of G defined by

G∗(u) = sup
x∈<n

{
uTx−G(x)

}
(see [24, 42]). The convex programs (40) and (41) are dual in the sense that one has
a solution if and only if the other does, and these solutions satisfies G′(x) = ATλ
[42, Cor. 28.3.1 and 28.4.1]. Using b = Ax̃, we can rewrite the dual problem (41)
in the form of (2) with

F (u) = G∗(u)− x̃Tu, K = {u ∈ <n : u = ATλ for some λ ∈ <m+}.
We assume that (G∗)′ is strongly monotone and Lipschitz continuous on <n, so
that F satisfies (3) for some σ > 0. If G is twice differentiable, this assumption
essentially amounts to G′′ having bounded eigenvalues and the Hessian (G′′)−1

having bounded entries on <n. Let ū denote the unique solution of (2) and let Ai
denote the ith row of A.

We can decompose K in the form (4) with

Ki = {ui ∈ <n : ui = ATi λi for some λi ∈ <+}.
First we show that, for any vi ∈ Ki, i = 1, . . . ,m, there exists ūi ∈ Ki satisfying
(5), where

C1 = max
∅6=I⊂{1,... ,m}

‖D−1
I BI(BTI D

−2
I BI)−1‖,(42)

with DI being the diagonal matrix with diagonal entries ‖ATi ‖, i ∈ I, and BI
being a submatrix of AI = [Ai]i∈I comprising linearly independent columns of
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AI spanning the column space of AI . To see this, notice that ū = AT λ̄ for some
λ̄ ∈ <m+ and vi = ATi µi for some µi ∈ <+. Moreover, ui ∈ Ki, i = 1, . . . ,m, satisfies∑m
i=1 ui = ū if and only if ui = ATi λi and ATλ = AT λ̄ for some λ = (λi)mi=1 ∈ <m+ .

Thus, minimizing
∑m
i=1 ‖ui−vi‖2 subject to ui ∈ Ki and

∑m
i=1 ui = ū is equivalent

to minimizing
m∑
i=1

‖ATi λi −ATi µi‖2 =
m∑
i=1

‖ATi ‖2|λi − µi|2 = ‖D(λ− µ)‖2

subject to ATλ = AT λ̄, λ ≥ 0, where µ = (µi)mi=1. By making the variable
substitution ξ = λ− µ and letting r = AT (λ̄− µ), this in turn is equivalent to

minimize ‖Dξ‖ subject to AT ξ = r, ξ ≥ −µ.(43)

Since µ ≥ 0, the optimal value of (43) equals zero if r = 0. Suppose instead that
r 6= 0. Since µ ≥ 0, the optimal value of (43) is below that of

minimize ‖Dξ‖ subject to AT ξ = r, ξ ≥ 0.

The latter has a unique solution, which we denote by ξ̄ = (ξ̄i)mi=1. Since r 6= 0, then
ξ̄ 6= 0. Let I = {i ∈ {1, . . . ,m} : ξ̄i 6= 0}. Then, ξ̄I = (ξ̄i)i∈I solves the reduced
problem

minimize ‖DIξI‖ subject to BTI ξI = rI ,

where rI is the subvector of r corresponding to the columns of BI . This yields
ξ̄I = D−2

I BI(BTI D
−2
I BI)−1rI , and hence

optimal value of (43) ≤ ‖DI ξ̄I‖
= ‖D−1

I BI(BTI D
−2
I BI)−1rI‖

≤ C1‖rI‖
≤ C1‖r‖
= C1‖AT (λ̄ − µ)‖

= C1

∥∥∥∥ū− m∑
i=1

vi

∥∥∥∥.
Since Ki and Kj lie in orthogonal subspaces if AiATj = 0, we can color K1, . . . ,Km

as discussed in subsection 6.1 and show that (6) holds with C2 = Lĉ, where L is
the Lipschitz constant for (G∗)′ and ĉ is the maximum number of rows Aj that are
not orthogonal to an arbitrary row Ai.

If we replace the inequality Ax ≥ b in (40) by an equation Ax = b, the constraint
λ ∈ <m+ in (41) would be replaced accordingly by λ ∈ <m and it suffices to fix
I = {1, . . . ,m} in the estimate (42). This estimate further simplifies if A has
full row rank, in which case BI is square and invertible. If A does not have full
row rank, we could remove the redundant rows, but our experience with network
flow problems suggests that this removal can slow the convergence of Gauss-Seidel
methods on the problem [56].

In the case of a nonlinear network flow problem [43], where A is the node-arc
incidence matrix for a connected diagraph with m nodes and n arcs (i.e., every
column of A has one 1 and one −1 in two of its rows, and a 0 in the remaining
rows), we can estimate C1 explicitly in terms of m and n as follows: For any vi ∈ Ki,
i = 1, . . . ,m, we have ū = AT λ̄ = (λ̄k − λ̄l)nj=1;j∼(k,l) for some λ̄ = (λ̄i)mi=1 ∈ <m+
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and vi = ATi µi for some µi ∈ <+, where k ∼ (i, j) means that column k has a
1 in row i and a −1 in row j or, equivalently, arc k is directed from node i to
node j. Choose any spanning tree for the diagraph and choose a node ī such that
λ̄ī = mini λ̄i. Let λi = µī + (λ̄i − λ̄ī) and ui = ATi λi for all nodes i in the network.
Since µī ≥ 0 and λ̄i ≥ λ̄ī, we have λi ≥ 0 for all nodes i. Since each node i can be
reached from ī via a simple path Pi in the spanning tree, we also have

|λi − µi| =
∣∣∣− ∑

(k,l)∈P+
i

(λk − µk − λl + µl) +
∑

(k,l)∈P−i

(λk − µk − λl + µl)
∣∣∣

=
∣∣∣− ∑

(k,l)∈P+
i

(λ̄k − λ̄l − µk + µl) +
∑

(k,l)∈P−i

(λ̄k − λ̄l − µk + µl)
∣∣∣

≤
∑

(k,l)∈Pi

|λ̄k − λ̄l − µk + µl|

≤
√
hi

( ∑
(k,l)∈Pi

|λ̄k − λ̄l − µk + µl|2
) 1

2

≤
√
hi

( n∑
j=1

j∼(k,l)

|λ̄k − λ̄l − µk + µl|2
) 1

2

=
√
hi

∥∥∥∥ū− m∑
p=1

vp

∥∥∥∥,
where P+

i and P−i denote the set of forward arcs and backward arcs in Pi and hi
denotes the number of arcs in Pi. Thus,

m∑
i=1

‖ui − vi‖2 =
m∑
i=1

‖ATi (λi − µi)‖2

=
m∑
i=1

‖ATi ‖2|λi − µi|2 ≤
m∑
i=1

dihi

∥∥∥∥ū− m∑
p=1

vp

∥∥∥∥2

,

where di is the number of arcs incident to node i. This shows that (5) holds with
C1 =

√∑m
i=1 dihi. Notice that

∑m
i=1 di = 2n and hi is at most the diameter of the

spanning tree. Since the choice of the spanning tree is arbitrary, we can choose it
to minimize C1. Also, AiATj = 0 if and only if nodes i and j are not joined by an
arc, so ĉ = max{d1, . . . , dm} and the coloring of K1, . . . ,Km is equivalent to graph
coloring on the diagraph.

In the above case of a nonlinear network flow problem, if G is also separable
in the sense that G(x) =

∑n
j=1 Gj(xj) for all x = (xj)nj=1 and Gj : < 7→ <, then

πi(u1, . . . , um) given by (9) depends on only those uk for which node k is a neighbor
of node i and the asynchronous method (10)–(12) reduces to the asynchronous
network relaxation method studied in [5, §7.2.3] and [56]. It is known that iterates
generated by this method converge for any stepsize γ ∈ (0, 1), assuming G∗ is
convex differentiable and (41) has a solution (G need not be defined everywhere on
<n and (G∗)′ need not be strongly monotone or Lipschitz continuous). However,
no rate of convergence result was known. By applying Theorem 1, we obtain that
this method has a linear rate of convergence, assuming (G∗)′ is strongly monotone
and Lipschitz continuous and the stepsize is sufficiently small.



ASYNCHRONOUS SPACE DECOMPOSITION 1123

7. Applications to partial differential equations

without constraints

In this section we consider the Sobolev space V = H1
0 (Ω) = {v ∈ H1(Ω) :

v = 0 on ∂Ω} with duality pairing 〈u, v〉 =
∫

Ω
(
∑d
i=1 ∂iu∂iv + uv)dx and norm

‖v‖ = ‖v‖H1(Ω) = 〈v, v〉 1
2 , where Ω is an open, bounded, and connected subset

of <d with Lipschitz continuous boundary ∂Ω, H1(Ω) = {v ∈ L2(Ω) : ∂iv ∈
L2(Ω), i = 1, . . . , d}, and ∂iv is the locally Lebesgue integrable real function defined
on Ω satisfying

∫
Ω ∂iv φ dx = −

∫
Ω v

∂φ
∂xi

dx for all φ ∈ C∞0 (Ω) = {φ ∈ C∞(Ω) :
φ has compact support} [17, pp. 10-13]. We will consider two nonlinear elliptic
partial differential equations formulated as the minimization problem (2) and, for
each, we will consider the space decomposition (4) corresponding to, respectively,
DD and MG methods, and we will develop corresponding estimates for C1 in (5),
for C2 in (6) and for c in (7)–(9). Throughout, we denote |x| = (

∑d
i=1 x

2
i )

1
2 for any

x = (xi)di=1 ∈ <d.
The first partial differential equation corresponds to the minimization problem

(2) with

K = H1
0 (Ω), 〈F ′(u), v〉 =

∫
Ω

( d∑
i=1

ai(x, u,∇u)∂iv + a0(x, u,∇u)v − fv
)
dx,(44)

where f ∈ L2(Ω) and ∇u = (∂iu)di=1 is the gradient of u [18, p. 302]. It is assumed
that each nonlinear coefficient ai(x, p) is a real-valued function of x = (xj)dj=1 and
p = (pk)dk=0 and is sufficiently smooth in the sense that

ai ∈ C1(Ω×<d+1),(45)

max
j=1,2,...d
k=0,1,··· ,d

{
|ai(x, p)|,

∣∣∣∣ ∂ai∂xj
(x, p)

∣∣∣∣ , ∣∣∣∣ ∂ai∂pk
(x, p)

∣∣∣∣} ≤ L(46)

for all (x, p) ∈ Ω × <d+1 and i = 0, 1, . . . , d, with L a constant. In addition, the

matrix
[
∂ai
∂pk

(x, p)
]d
i,k=0

is assumed to be uniformly positive definite, i.e.,

d∑
i=0

d∑
k=0

∂ai
∂pk

(x, p)ξiξk ≥ σ
d∑
i=0

ξ2
i , ∀ξi ∈ <, i = 0, 1, . . . , d,(47)

for all (x, p) ∈ Ω × <d+1, with σ > 0 a constant. Under these assumptions, the
problem (2), which has the equation formulation

〈F ′(u), v〉 = 0, ∀v ∈ H1
0 (Ω),(48)

is well posed and has a unique solution u ∈ H1
0 (Ω) (see [18, p. 302] and [32]).

Moreover, straightforward calculation shows that

〈F ′(u)− F ′(v), u − v〉 ≥ σ‖u− v‖2,
〈F ′(u)− F ′(v), w〉 ≤ L(d+ 1)‖u− v‖‖w‖,(49)

for all u, v, w ∈ H1(Ω), so F ′ is strongly monotone and Lipschitz continuous.
The second partial differential equation corresponds to the minimization problem

(2) with

K = H1
0 (Ω), F (v) =

∫
Ω

(
1
2
|∇v|2 +

1
4
v4 − fv

)
dx,(50)
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where f ∈ L2(Ω) and d ∈ {2, 3}. The corresponding equation is the simplified
Ginzburg-Landau equation for superconductivity:

−∆u+ u3 = f in Ω,
u = 0 on ∂Ω,(51)

where u is the wave function which is valid in the absence of internal magnetic field
[54], and ∆u =

∑d
i=1 ∂i(∂iu) denotes the Laplacian of u. Notice that F ′ has the

form (44), with a0(x, p) = p3
0 and ai(x, p) = pi, i = 1, . . . , d, which does not satisfy

(47). Nevertheless, straightforward calculation shows

〈F ′(u)− F ′(v), u − v〉 =
∫

Ω

|∇u−∇v|2 + (u3 − v3)(u − v)dx

≥
∫

Ω

|∇u−∇v|2dx = |u− v|21,Ω,

for all u, v ∈ H1(Ω). Since the semi-norm | · |1,Ω is equivalent to the norm ‖ · ‖ on
H1

0 (Ω) [17, p. 12], this shows F ′ is strongly monotone on H1
0 (Ω).

In subsections 7.1 and 7.2 below, we will study asynchronous DD and MG meth-
ods for solving the above two equations (48) and (51). We will analyze the con-
vergence rate of the methods by estimating the constants C1, C2 and c for the
corresponding space decomposition of the finite element approximation subspace
and then applying Theorem 1. In particular, we will show that the above two equa-
tions can be solved in parallel with a convergence factor that is independent of the
finite element mesh size h, i.e., the number of iterations to reach a desired solution
accuracy is independent of h.

7.1. Domain decomposition methods.

7.1.1. Decomposition of the domain Ω. In DD methods, the domain Ω is decom-
posed into the disjoint union of subdomains Ωi, i = 1, . . . ,m, and their boundary,
i.e., Ω ∪ ∂Ω =

⋃m
i=1(Ωi ∪ ∂Ωi) and Ωi ∩ Ωj = ∅ for i 6= j. This is illustrated

in Figure 1 where a rectangular-shaped domain in <2 is decomposed into the dis-
joint union of m = 25 rectangular-shaped subdomains and their boundary. The
subdomains, which are assumed to form a regular quasi-uniform division (see p.
124 and Eq. (3.2.28) of [17] for definitions) with a specified maximum diameter
of H , are the finite elements of the coarse mesh. To form the fine mesh for the
finite element approximations, we further divide each Ωi into finite elements of
size (i.e., maximum diameter) h such that all the fine-mesh elements together form
a regular finite element division of Ω. We denote this fine division by Th. For
each Ωi, we consider an enlarged subdomain Ωδi = {e ∈ Th : dist(e,Ωi) ≤ δ},
where dist(e,Ωi) = minx∈e,y∈Ωi |x − y|. The union of Ωδi , i = 1, . . . ,m, covers
Ω with overlap proportional to δ. Let K0 ⊂ H1

0 (Ω) and K ⊂ H1
0 (Ω) denote the

continuous, piecewise rth-order polynomial (r ≥ 1) finite element subspaces, with
zero trace on ∂Ω, over the H-level and h-level subdivisions of Ω, respectively. For
i = 1, . . . ,m, let Ki denote the continuous, piecewise rth-order polynomial finite
element subspace with zero trace on the boundary ∂Ωδi and extended to have zero
value outside Ωδi ∪ ∂Ωδi . Then K	i = Ki for i = 0, 1, . . . ,m, and it can be shown
that

K =
m∑
i=0

Ki.
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a) The global fine mesh b) Color 0: the coarse mesh c) Color 1 subdomains

d) Color 2 subdomains e) Color 3 subdomains f) Color 4 subdomains

Figure 1. Decomposition of a rectangular-shaped domain in <2.

Thus the space decomposition (4), with summation index from 0 to m, holds. We
assume that the overlapping subdomains are chosen such that each subdomain Ωδi
and its corresponding finite element subspace Ki can be painted one of nc colors
(numbered from 1 to nc), with subdomains painted the same color being pairwise
nonintersecting. The coarse mesh and its corresponding subspace K0 are painted
the color 0. Moreover, nc should be independent of h. For general domain Ω, finding
overlapping subdomains with such property is nontrivial. If Ω is the Cartesian
product of intervals, we can easily find overlapping subdomains with nc = 2 if
d = 1, and nc ≤ 4 if d = 2, and nc ≤ 6 if d = 3. For the example of Figure 1,
d = 2 and nc = 4. Then the total number of colors needed for (7) and (9) to hold
is c = nc + 1.

7.1.2. Estimating C1 for equations (48) and (51). Let {θi}mi=1 be a smooth partition
of unity with respect to {Ωi}mi=1, i.e., θi ∈ C∞(Ω) with θi ≥ 0, θi = 0 outside of
Ωi, and

∑m
i=1 θi = 1. Let Ih be the finite element interpolation mapping onto K

which uses the function values at the h-level nodes. For any v ∈ K, let v0 be the
projection in the L2-norm of v onto K0, i.e., v0 ∈ K0 and

∫
Ω

(v0 − v)φ dx = 0 for
all φ ∈ K0, and let vi = Ih(θi(v − v0)). Then, it can be seen that vi ∈ Ki for
i = 0, 1, . . . ,m and satisfy v =

∑m
i=0 vi [45, pp. 163-165], [57, p. 607]. Moreover,

by further choosing θi so that |∇θi| has a certain boundedness property, it was
recently shown in [53, Lem. 4.1] that, for any s ≥ 1,(

m∑
i=0

‖vi‖s
) 1
s

≤ C c
1
s

(
1 +

(
H

δ

) 1
2
)
‖v‖,
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where C is a constant independent of the mesh parameters and m. Taking s = 2 and
using the subspace nature of Ki, we obtain that, for any vi ∈ Ki, i = 0, 1, . . . ,m,
there exists ūi ∈ Ki satisfying (5) (with summation index from 0 to m), where

C1 = C
√
c

(
1 +

(
H

δ

) 1
2
)
.

(also see [14, Thm. 16] and a work of Dryja and Widlund cited therein for related
results). By choosing the overlapping size δ proportional to the coarse-mesh size
H , the constant C1 will be independent of the mesh parameters and the number of
subdomains m.

7.1.3. Estimating C2 for equations (48) and (51). Consider F given by (50), asso-
ciated with the equation (51). By the mean value theorem, for any u ∈ <, v ∈ <, we
have |u3− v3| = 3|θu+ (1− θ)v|2|u− v| ≤ 3(|u|+ |v|)2|u− v| ≤ 6(|u|2 + |v|2)|u− v|
for some θ ∈ [0, 1]. Thus, using the continuous embedding of H1(Ω) in Lp(Ω)
for p < 2d/(d − 2) and d = 2, 3 (see [17, p. 114], [24, p. 21]), we have for any
u, v ∈ H1(Ω) and any subdomain Ω′ of Ω that u, v ∈ L4(Ω) and∣∣∣∣∫

Ω′
(u3 − v3)w dx

∣∣∣∣ ≤ 6
∫

Ω′
|u|2|u− v||w|+ |v|2|u− v||w| dx

≤ 6
((∫

Ω′
|u|4dx

)
1
2 +

(∫
Ω′
|v|4dx

)
1
2

)(∫
Ω′
|u− v|2|w|2dx

)
1
2

≤ 6
(
‖u‖2L4(Ω′) + ‖v‖2L4(Ω′)

)
‖u− v‖L4(Ω′)‖w‖L4(Ω′)

≤ C
(
‖u‖2H1(Ω′) + ‖v‖2H1(Ω′)

)
‖u− v‖H1(Ω′)‖w‖H1(Ω′),

where C depends only on the embedding constant. Also, define Ωδ0 = Ω for conve-
nience, so that every v ∈ Ki vanishes outside of Ωδi (i = 0, 1, . . . ,m). Then, for F
given by (50), we have from the above inequality that, for i, j = 0, 1, . . . ,m,

aij = 〈F ′(wij + uij)− F ′(wij), vi〉

=
∫

Ωδi∩Ωδj

(∇uij)T∇vi + uijvi +
(
(wij + uij)3 − w3

ij

)
vi dx

≤
(

1 + C‖wij + uij‖2H1(Ωδi∩Ωδj )
+ C‖wij‖2H1(Ωδi∩Ωδj )

)
· ‖uij‖H1(Ωδi∩Ωδj )

‖vi‖H1(Ωδi∩Ωδj )
,(52)

for any wij ∈ K, uij ∈ Kj , vi ∈ Ki, with aij = 0 whenever Ωδi ∩ Ωδj = ∅. Assume
there exists a constant α > 0 such that ‖wij + uij‖2H1(Ωδi∩Ωδj)

+ ‖wij‖2H1(Ωδi∩Ωδj )
≤ α

for i, j = 0, 1, . . . ,m. Also, for i, j = 1, . . . ,m, let εij = 0 if Ωδi ∩ Ωδj = ∅ and
otherwise let εij = 1. Let ĉ be the smallest integer such that every subdomain
intersects at most ĉ other subdomains. It is not difficult to show that the symmetric
matrix E = [εij ]mi,j=1 has the following estimate of its spectral radius (see [53,
Corollary 4.1] for a proof):

ρ(E) ≤ max
i=1,... ,m

m∑
j=1

εij ≤ ĉ.
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This together with the estimate (52) yields
m∑
i=1

m∑
j=1

aij ≤ (1 + Cα)
m∑
i=1

m∑
j=1

εij‖uij‖ ‖vi‖

≤ (1 + Cα)
m∑
i=1

m∑
j=1

εij max
i=1,... ,m

‖uij‖ ‖vi‖

= (1 + Cα)ĉ
( m∑
j=1

max
i=1,... ,m

‖uij‖2
) 1

2
( m∑
i=1

‖vi‖2
) 1

2

.(53)

Next, by using the fact Ωδj , j ∈ I(k), are disjoint subsets of Ω for k = 1, . . . , c, the
estimate (52) yields

m∑
j=1

a0j ≤ (1 + Cα)
m∑
j=1

‖u0j‖‖v0‖H1(Ωδj )

≤ (1 + Cα)
( m∑
j=1

‖u0j‖2
) 1

2
( m∑
j=1

‖v0‖2H1(Ωδj )

) 1
2

≤ (1 + Cα)
√
c

( m∑
j=1

‖u0j‖2
) 1

2

‖v0‖ , ∀u0j ∈ Kj, ∀v0 ∈ K0 .

Similar to the above argument, the estimate (52) gives
m∑
i=1

ai0 ≤ (1 + Cα)
m∑
i=1

‖ui0‖H1(Ωδi )
‖vi‖

≤ (1 + Cα)
( m∑
i=1

‖ui0‖2H1(Ωδi )

) 1
2
( m∑
i=1

‖vi‖2
) 1

2

, ∀ui0 ∈ K0, ∀vi ∈ Ki.

We combine these estimates to obtain
m∑
i=0

m∑
j=0

aij = a00 +
m∑
j=1

a0j +
m∑
i=1

m∑
j=1

aij +
m∑
i=1

ai0

≤ (1 + Cα)‖u00‖‖v0‖+ (1 + Cα)
√
c

( m∑
j=1

‖u0j‖2
) 1

2

‖v0‖

+ (1 + Cα)ĉ
( m∑
j=1

max
i=1,... ,m

‖uij‖2
) 1

2
( m∑
i=1

‖vi‖2
) 1

2

+ (1 + Cα)
( m∑
i=1

‖ui0‖2H1(Ωδi )

) 1
2
( m∑
i=1

‖vi‖2
) 1

2

≤ C̃2

( m∑
j=0

max
i=0,1,... ,m

‖uij‖2
) 1

2
( m∑
i=0

‖vi‖2
) 1

2

+ (1 + Cα)
( m∑
i=1

‖ui0‖2H1(Ωδi )

) 1
2
( m∑
i=1

‖vi‖2
) 1

2

,(54)

with C̃2 a constant depending on Cα, c, ĉ only. Compared with (6) (with i, j =
0, 1, . . . ,m), we see that (54) has an extra term on the right-hand side. In the
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appendix, we will show that this extra term does not affect the convergence rate
result of Section 4. In particular, we will show that Lemmas 1 and 2 hold with
C2 = C̃2 + (1 + Cα)

√
c, so that Theorem 1 is still valid.

For F specified by (44) and associated with the equation (48), it can be similarly
proved using (49) that (54) holds, possibly with different constants C and α.

Upon applying the asynchronous method (10)–(12) with the above choice of
space decomposition and under the assumptions (13)–(14), we obtain a parallel
DD method for (48) and (51) whose convergence factor, according to Theorem
1 and the above estimates of C1 and C2 and assuming the overlapping size δ is
proportional to the coarse mesh size H , is independent of the mesh parameters and
the number of the subdomains.

7.2. Multigrid methods.

7.2.1. Construction of the multigrid subspaces. In MG methods, Ω is divided into
a finite element triangulation T by a successive refinement process. More precisely,
we have T = TJ for some J > 1, where Tk, k = 1, . . . , J , is a nested sequence of
regular quasi-uniform triangulation, i.e., Tk is a collection of simplexes Tk = {τki }
of size (i.e., maximum diameter) hk such that Ω =

⋃
i τ
k
i and for which the quasi-

uniformity constants are independent of k [17, Eq. (3.2.28)] and with each simplex
in Tk−1 being the union of simplexes in Tk. We further assume that there is a
constant r < 1, independent of k, such that hk is proportional to r2k.

For example, in the two-dimensional case of d = 2, if we construct Tk by con-
necting the midpoints of the edges of the triangles of Tk−1, with T1 being the
given coarsest initial triangulation, the resulting sequence of triangulation is quasi-
uniform and r = 1/

√
2 (see Figure 2). Corresponding to each triangulation Tk, we

define the finite element subspace:

Mk = {v ∈ H1
0 (Ω) : v|τ ∈ P1(τ), ∀ τ ∈ Tk},

0
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Figure 2. The multigrid mesh and basis functions.
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where P1(τ) denotes the space of real-valued linear functions of d real variables
defined on τ . We associate with Mk a nodal basis, denoted by {φki }nki=1, that
satisfies φki ∈Mk and

φki (xkj ) = δij , the Kronecker function,

where {xki }nki=1 is the set of all interior nodes of the triangulation Tk. For each such
nodal basis function, we define the one-dimensional subspace

Kk
i = span (φki ).

Then, (Kk
i )	 = Kk

i and we have the space decomposition

K =
J∑
k=1

nk∑
i=1

Kk
i with K =MJ .

On each level k, we color the nodes of Tk so that neighboring nodes are always
of a different color. The number of colors needed for a regular mesh is a constant
independent of the mesh parameters, which we denote by nc. Then the total number
of colors needed for (7) and (9) (with summation indices adjusted accordingly) to
hold is c = ncJ .

7.2.2. Estimating C1 for equations (48) and (51). Let Qk be the projection in the
L2-norm onto the subspaceMk, which is well defined on H1

0 (Ω) ⊂ L2(Ω). For any
v ∈ K, let vk = (Qk −Qk−1)v, k = 1, . . . , J . Then, by Prop. 8.6 in [57, p. 611], we
have

J∑
k=1

‖vk‖2 ≤ C0‖v‖2,

where C0 is a constant independent of the mesh parameters and J . By further
decomposing each vk as

vk =
nk∑
i=1

vki with vki = vk(xki ) φki ,

the above estimate can be refined to show that

v =
J∑
k=1

nk∑
i=1

vki and
J∑
k=1

nk∑
i=1

‖vki ‖2 ≤ C‖v‖2,

where C is a constant independent of the mesh parameters and the number of
levels J [53, §4.2]. Thus, for any vki ∈ Kk

i , i = 1, . . . , nk, k = 1, . . . , J , there
exists ūki ∈ Kk

i satisfying (5) (with summation indices adjusted accordingly), where
C1 =

√
C.

7.2.3. Estimating C2 for equations (48) and (51). Let Λki denote the support set
of the basis function φki , for all i and k. Also, recall the constant r < 1 defined
earlier. Then, for any k < l and 1 ≤ i ≤ nk, 1 ≤ j ≤ nl, the following estimate

‖u‖H1(Λki ∩Λlj)
≤ C0r

d(l−k)‖u‖, ∀u ∈ Kk
i ,
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can be shown, where C0 is a constant independent of the mesh parameters and J
[53, Eq. (49)]. Then, for F given by (50), we obtain as in (52) that

〈F ′(w + u)− F ′(w), v〉
(55)

≤
(

1 + C‖w + u‖2H1(Λki ∩Λlj)
+ C‖w‖2H1(Λki ∩Λlj)

)
‖u‖H1(Λki ∩Λlj)

‖v‖H1(Λki ∩Λlj)

≤
(

1 + C‖w + u‖2H1(Λki ∩Λlj)
+ C‖w‖2H1(Λki ∩Λlj)

)
C0r

d(l−k)‖u‖ ‖v‖,

∀w ∈ K, u ∈ Kk
i , v ∈ K l

j ,

where C is the embedding constant. For any i, j, k, l, defining

εk,li,j =
{
C0γ

d|l−k|, if supp(φki ) ∩ supp(φlj) 6= ∅;
0, otherwise.

Assuming there exists a constant α > 0 such that ‖wk,li,j + uk,li,j‖2 + ‖wk,li,j ‖2 ≤ α for
all i, j, k, l, the estimate (55) then yields

J∑
k=1

nk∑
i=1

J∑
l=1

nl∑
j=1

〈F ′(wk,li,j + uk,li,j )− F ′(w
k,l
i,j ), vki 〉

≤ C0(1 + Cα)
∑
i,k

∑
j,l

εk,li,j‖uk.li,j‖‖vki ‖

≤ C0(1 + Cα)
J∑
k=1

nk∑
i=1

J∑
l=1

nl∑
j=1

εk,li,j max
i,k
‖uk,li,j‖ · ‖vki ‖,

∀uk,li,j ∈ K l
j, ∀vki ∈ Kk

i .

With proper ordering of the indices, the matrix E = [εk,li,j ] is symmetric and its
spectral radius ρ(E) has been shown to be less than a constant independent of the
mesh parameters and the number of levels [45, pp. 182–184]. Therefore,

J∑
k=1

nk∑
i=1

J∑
l=1

nl∑
j=1

〈F ′(wk,li,j + uk,li,j )− F ′(w
k,l
i,j ), vki 〉

≤ C0(1 + Cα)ρ(E)
( J∑
l=1

nl∑
j=1

max
i,k
‖uk,li,j‖2

) 1
2
( J∑
k=1

nk∑
i=1

‖vki ‖2
) 1

2

,

which shows that (6) holds, with the constant C2 = C0(1 + Cα)ρ(E) independent
of the mesh parameters and the number of levels for the MG approximation.

For F specified by (44), it can be similarly proved that (6) holds with C2 some
constant independent of the mesh parameters and the number of levels.

Upon applying the asynchronous method (10)–(12) with the above choice of
space decomposition and under the assumptions (13)–(14), we obtain a parallel
MG method for (48) and (51) whose convergence factor, according to the above
estimates of C1 and C2 and Theorem 1, is independent of the mesh parameters.
This method generalizes the BPX multigrid method proposed in [10], which was
used as a preconditioner for linear elliptic problems. Here, the parallel MG method
is used as a solver and is applicable not only to linear, but also to nonlinear elliptic
problems. And it further allows for asynchronous updates.
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8. Applications to obstacle problems

In this section, we will apply our asynchronous algorithm to the obstacle problem

−∆u ≥ f in Ω, u ≥ ψ in Ω, u = 0 on ∂Ω,

where f ∈ L2(Ω) and ψ ∈ H2(Ω) satisfies ψ ≤ 0 on ∂Ω. This problem is equivalent
to (2) with

K = {v ∈ H1
0 (Ω) : v ≥ ψ a.e. in Ω}, F (v) =

∫
Ω

(
1
2
|∇v|2 − fv

)
dx.

We will use the overlapping domain decomposition without the coarse mesh. If a
coarse mesh is added, it is not known how the coarse mesh obstacle can be chosen to
obtain an algorithm whose convergence factor is independent of mesh parameters.

Let Ωδi be defined as in subsection 7.1, i = 1, . . . ,m. Let θi be the partition of
unity with respect to Ωδi as described in subsection 7.1.2. Accordingly, let ψi =
Ih(θiψ) for all i and let ψ =

∑m
i=1 ψi, where Ih is the interpolation operator using

the h-level nodal values. Thus, the obstacle function ψ is replaced by its finite-
element interpolation. Defining

Ki = {v ∈ H1
0 (Ωδi ) : v ≥ ψi, v|e ∈ P1(e), ∀e ∈ Th},

and also assuming that K has been replaced by its finite-element analog, it is easy
to see that (4) holds. Suppose we apply the asynchronous algorithm with the initial
values ui(0) ∈ Ki chosen to satisfy

∑m
i=1 ui(0) ≤ ū. Then, it can be shown (see,

e.g., [1] and [51, §4]) that

m∑
i=1

wi(ti) ≤ ū, ∀t ≥ 1,

where wi(·) is defined by (12) and ti denotes the greatest element of T i less than
t + B. Thus (27) remains valid if we assume there exist ūi ∈ Ki satisfying (5)
only for those vi ∈ Ki satisfying

∑m
i=1 vi ≤ ū. Since (27) is the only point in the

proofs of Lemmas 1 and 2 where (5) is used, these lemmas and Theorem 1 would
remain valid. Under the condition that

∑m
i=1 vi ≤ ū, the constant C1 in (5) can be

estimated by choosing the partition of unity θi to satisfy |∇θi| ≤ C/δ and setting

ūi = vi + θi

(
ū−

m∑
j=1

vj

)
.

Then, it is straightforward to show that ūi ∈ Ki and
m∑
i=1

ūi = ū,

m∑
i=1

‖ūi − vi‖2 ≤ C(1 + δ−2)
∥∥∥∥ū− m∑

j=1

vj

∥∥∥∥2

,

with the constant C being independent of u, vi, the mesh size h, the overlapping
size δ, and the number of subdomains m (cf. subsection 7.1.2). The above estimate
shows that (5) holds with C1 =

√
C
√

1 + 1/δ2. Also, by dropping the coarse mesh
and taking into account the difference between the above F and the F given by
(50), we see from the proof of (53) that (6) holds with C2 = (1 + C)ĉ, with C an
embedding constant. Assuming that B is bounded by a given constant and γ is
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bounded by a constant less than 1, we then obtain from the definitions in Lemmas
1 and 2 that

1
D
≤ A1 ≤ D, A2 ≤ D, A3 ≤ D(1 + δ−2),

A4

A3
≤ D,

for some D > 0 independent of h, δ and m. Then, the convergence factor given by
(38) can be estimated by

% = max
{

1− γ

1 +A−1
1 A3

+ γ3/2 (A2 +A1A4/A3)
1 +A1A

−1
3

, γ1/2(A−1
1 + γ3/2A2A

−1
1 )
}

≤ max
{

1− γ

1 +D2(1 + δ−2)
+ γ3/2(D +D2), γ1/2(D +D2)

}
≤ max

{
1− γ

D1(1 + δ−2)
+ γ3/2D2, γ

1/2D2

}
,

where we let D1 = 1 +D2 and D2 = D +D2. Thus, for

γ < min{(D1D2(1 + δ−2))−2, D−2
2 },

we have % < 1, independent of h and m. Finally, we note that the convergence factor
for some synchronous overlapping domain decomposition without the coarse mesh
has been studied in [1, 60]. The schemes obtained from our algorithms are different
from those of [1, 60] in the treatment of the subproblem obstacles. The algorithms
of [1, 60] use the global obstacle for the subdomain problems. In our algorithms,
the subdomain obstacles can be updated dynamically during the iterations.

9. Appendix

In this appendix, we show that (54) can be used in place of (6) to prove Lemmas 1
and 2 for the DD method of subsection 7.1. Here, the indices i and j are understood
to always range over 0, 1, . . . ,m, instead of 1, . . . ,m.

First, we note that condition (6) is used only to show (22), (30) and (34) in the
proofs. For (22), if we use condition (54) instead of (6), then (22) would have C̃2

in place of C2 and would have the following extra term on its right-hand side:

E = (1 + Cα)γ
( m∑
i=1

‖u0(τ i0(t)) − u0(t)‖2H1(Ωδi )

) 1
2
( m∑
i=1

‖si(t)‖2
) 1

2

.

Correspondingly, (24) would have C̃2 in place of C2 and would have the above extra
term on its right-hand side. Using (23) and the fact that Ωδi , i ∈ I(k), are disjoint
subsets of Ω for k = 1, . . . , c, we see that

E ≤ (1 + Cα)γ2
√
B

( m∑
i=1

t−1∑
τ=t−B+1

‖s0(τ)‖2H1(Ωδi )

) 1
2
( m∑
i=1

‖si(t)‖2
) 1

2

≤ (1 + Cα)γ2
√
Bc

( t−1∑
τ=t−B+1

‖s0(τ)‖2
) 1

2
( m∑
i=1

‖si(t)‖2
) 1

2

,

which implies that (24) holds with C2 = C̃2 + (1 + Cα)
√
c. The remainder of the

proof of Lemma 1 then proceeds as before.
For (30) and (34), a similar argument can be applied to show that Lemma 2

holds with the above choice of C2.
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