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Abstract Image restoration has been an active research topic and variational formulations
are particularly effective in high quality recovery. Although there exist many modelling and
theoretical results, available iterative solvers are not yet robust in solving such modeling
equations. Recent attempts on developing optimisation multigrid methods have been based
on first order conditions. Different from this idea, this paper proposes to use piecewise linear
function spanned subspace correction to design a multilevel method for directly solving
the total variation minimisation. Our method appears to be more robust than the primal-
dual method (Chan et al., SIAM J. Sci. Comput. 20(6), 1964–1977, 1999) previously found
reliable. Supporting numerical results are presented.

Keywords Image restoration · Total variation · Regularisation · Subspace correction ·
Multilevel solvers

1 Introduction

Given a bounded domain � ⊂ R
d , d = 1,2,3, . . . , we often need to solve problems which

can be written in the following general form

min
u

(∫
�

|∇u|dx +
∫

�

f (u)dx

)
. (1)

The equivalent problem to the above minimization is the Euler-Lagrange equation

−∇ ·
( ∇u

|∇u|
)

+ f ′(u) = 0, (2)
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which is a nonlinear partial differential equation (PDE), also known as a curvature equa-
tion [28]. The application of problems (1) and (2) ranges from image processing including
noise removal [8, 25, 26, 31], segmentation [16, 22], deblurring [4], inverse problems [15] to
interface motion driven by mean curvature [28, 30]. Owing to huge number of applications
involved with models (1) and (2), the demand for new and fast solvers for these problems
is equally huge. In this paper, we present a nonlinear multigrid method for efficiently solv-
ing (1).

In the literature the following methods have been used to solve (2):

(i) The fixed point iteration method [1, 40–44]: Once the coefficients 1/|∇ū| are fixed
at a previous iteration ū, various iterative solver techniques have been considered
[9–11, 24, 43, 44]. There exist excellent inner solvers but the outer solver can be slow.
Further improvements are still useful.

(ii) The explicit time marching scheme [29, 31]: It turns the nonlinear PDE into a parabolic
equation before using an explicit Euler method to march in time to convergence. The
method is quite reliable but often slow.

(iii) The primal-dual (PD) method [4, 14, 17]: It solves for both the primal and dual vari-
able together in order to achieve faster convergence with the Newton method (and a
constrained optimisation with the dual variable). There does not appear to exist any
multilevel version and also the inner solvers can have a convergence problem if the
problem dimension gets large and β gets small.

As shown in [32], a converging multigrid method (MGM) can be much faster than methods
of type (i) and (ii). In some cases, the MGM is also faster than the PD method (iii). The
algorithms proposed in this paper behave similarly to [32] but, unlike [32], are not parameter
dependent.

The MGM is one of the most powerful numerical methods for solving linear and non-
linear elliptic problems [38, 39, 46], although the method is known to be less robust for
either case with highly discontinuous coefficients [45]. As for the curvature equation (2),
several attempts have been made to develop MGM to solve it, cf. [2, 10, 32, 41]. How-
ever, the success so far is limited. The main problem is that the nonlinear diffusion co-
efficient 1/|∇u| can be highly oscillatory or degenerate (e.g. having large values close to
infinity). Recently in [18, 23], the linear algebraic multigrid method [33] was adapted for
solving the above PDE in each (outer) step of a fixed iteration while [32] attempted to use
the standard multigrid methods with a non-standard and somewhat global smoother. As for
solving (1) directly by MGM, the main obstacle to address is how to design the crucial coarse
grid minimization problems for correction as no operator equations are directly available.
Several related approaches, cf. [3, 5, 27, 34], tried to design such coarse grid problems by
using first order conditions (similar to using (2) to measure residuals). However, the con-
vergence of this kind of methods for certain nonlinear problems is not as good as for linear
problems [18, 20, 23, 32]. Several authors [35–38] have studied the combined approach of
MGM ideas and domain decomposition methods (DDM) (interpreted as subspace correc-
tion techniques) for some optimisation problems. Although it is proved that efficiency of
DDM and MGM for a class of nonlinear problems is as good as for linear elliptic problems,
there do not appear to exist any extensive uses of this approach for optimisation problems.
Moreover, problem (1) is beyond the class of problems that were previously studied.

In this paper, we shall propose a nonlinear multigrid method for solving (1) based on
subspace correction techniques. The essential idea is to use nonlinear smoothers for the sub-
problems which respect the minimization problem in order to reduce the energy functional.
For the nonlinear problem (1), we shall demonstrate numerically that the efficiency of the
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schemes can be as good as for linear problems. Thus we may summarise our contributions
of this work as follows:

(a) We apply the subspace correction idea to design a nonlinear multigrid, as opposed to the
geometric multigrid methods that were proposed [3, 5, 27, 34] based on regularising (2).

(b) The efficiency of the proposed algorithms is high: O(N logN) where N is the total
degree of freedom.

(c) The proposed algorithms are not parameter dependent.
(d) As an inner-outer iteration procedure, our methods respect the nonlinear nature in the

outer iteration in contrast to linearisation techniques.

The rest of the paper is organised as follows. In Sect. 2, we introduce the general sub-
space correction methods for convex functional minimisation. However we note that the
theory does not cover the problem type (2). In Sect. 3, we detail our proposed multilevel
algorithms for problem (2) and present some preliminary analysis. We present numerical
experiments in Sect. 4 for solving both the one-dimensional and two-dimensional image
denoising problems. Finally in Sect. 5, we discuss some conclusions and future work.

2 The Space Decomposition Algorithms

Consider a general minimization problem over a reflexive Banach space V :

min
v∈V

F (v), (3)

where F is a strongly convex and Gateaux differentiable cost functional. Assume that the
space V has been decomposed into a sum of smaller subspaces, i.e.

V = V1 + V2 + · · · + Vm. (4)

This means that for any v ∈ V , there exists vi ∈ Vi such that v = ∑m

i=1 vi . Then the idea
employed by [35–38] is to repeatedly solve the subspace minimisation of the type

min
v∈Vi

F (v(0) + v),

where v(0) denotes a current approximation. Following [35–38], two types of subspace cor-
rection methods can be derived based on (4), namely the parallel subspace correction (PSC)
method and the successive subspace correction (SSC) method, as simple generalisations of
the methods for operator equations [46]. The parallel subspace correction method can be
described as follows.

Algorithm 1 Choose an initial value u(0) ∈ V and relaxation parameters γi > 0 such that∑m

i=1 γi ≤ 1.

1. For � ≥ 0, if u(�) ∈ V is defined, then find p
(�)
i ∈ Vi in parallel for i = 1,2, . . . ,m such

that

F
(
u(�) + p

(�)
i

) ≤ F
(
u(�) + vi

)
, ∀vi ∈ Vi. (5)
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2. Set

u(�+1) = u(�) +
m∑

i=1

γip
(�)
i , (6)

and go to the next iteration.

The successive subspace correction method can be described as follows:

Algorithm 2 Choose an initial value u(0) ∈ V .

1. For � ≥ 0, since u(�) ∈ V is defined, find u(�+i/m) = u(�+(i−1)/m) + p
(�)
i with p

(�)
i ∈ Vi

sequentially for i = 1,2, . . . ,m such that

F
(
u(�+(i−1)/m) + p

(�)
i

) ≤ F
(
u(�+(i−1)/m) + vi

)
, ∀vi ∈ Vi. (7)

2. Go to the next iteration.

The classical Gauss-Seidel and Jacobi relaxation methods and the modern DDM and
MGM can all be interpreted as space decomposition algorithms. In order to reveal the re-
lation between MGM and space decomposition, one can use finite element spaces. Similar
explanations can also be given for finite difference approximations. For a given domain �,
we assume that the finite element partition T of � is constructed by a successive refinement
process. More precisely, T = TJ for some J > 1, and Tj for j ≤ J are a nested sequence of
quasi-uniform finite element partitions, i.e. Tj consist of finite elements Tj = {τ i

j } of size hj

such that � = ⋃
i τ

i
j for which the quasi-uniformity constants are independent of j and τ l

j−1

is a union of elements of {τ i
j }. We further assume that there is a constant γ < 1, independent

of j , such that hj is proportional to γ 2j . In Fig. 1 and Fig. 2, we plot the basis functions and
the refined meshes for a domain in one and two dimensions. The basis functions associated
with the boundary nodes are omitted in the 2D plot. For the two dimensional case, a finer
grid is obtained by connecting the midpoints of the edges of the triangles of the coarser grid,
with T1 being the given coarsest initial triangulation, which is quasi-uniform. In this exam-
ple, γ = 1/

√
2. We can use much smaller γ in constructing the meshes, but the convergence

will be slower. Corresponding to each finite element partition Tj , a finite element space Mj

can be defined by

Mj = {v : v|τ ∈ P1(τ ), ∀τ ∈ Tj },
where P1 denotes the space of all piecewise linear elements (the basis functions are as
illustrated in Fig. 1 and Fig. 2). Each finite element space Mj is associated with a nodal
basis, denoted by {φi

j }nj

i=1 satisfying

φi
j

(
xk

j

) = δik,

where {xk
j }nj

k=1 is the set of all nodes of the elements of Tj . Associated with each of such a
nodal basis function, we define an one dimensional subspace as follows

V k
j = span

(
φk

j

)
.
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Fig. 1 Basis functions and the mesh for one dimensional multigrids

Letting V = MJ , we have the following simple space decomposition:

V =
J∑

j=1

nj∑
k=1

V k
j . (8)

Each subspace V k
j is one dimensional and thus the subproblem (7) is easy to solve.

For both of the algorithms, as the energy is monotonically decreasing during the itera-
tions, it is easy to prove that solution u(�) converges to one minimizer of F under the condi-
tion that F is convex and continuous. If F is Lipschitz continuous and strongly convex, then
an estimate on the rate of convergence can be obtained [35, 38]. Moreover, the convergence
rate is mesh independent for the multigrid decomposition (8).

We remark that the above decomposition (8) is not an orthogonal (direct) sum in gen-
eral. It has more basis functions than the hierarchical basis [19, 46]. Without multilevels,
the simple decomposition V = ∑n1

k=1 V k
1 defined on the single level j = 1 (though leading

to a relaxation method) is not suitable because it is known that relaxations alone cannot
reach a global minimizer [6, 13]. It shall also be emphasized that this methodology differs
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Fig. 2 Basis functions and the mesh for two dimensional multigrids

from [3, 5, 27, 34] on one major aspect: here we minimize the same functional on all levels
while the other methods minimize a modified functional on coarse levels.

3 Image Restoration Algorithms Using the Total Variation Model

We now consider how to adapt the above methodology for solving (1).
For a given noisy image z defined on the domain � = [0,1]×[0,1], one of the most well-

known restoration models is the Rudin-Osher-Fatimi (ROF) total variation (TV) model [31]
which is to take F in (3) to be

F(u) = α

∫
�

√
u2

x + u2
y dx + 1

2

∫
�

‖Ku − z‖2 dx, (9)

where ∇u = ( ∂u
∂x

, ∂u
∂y

) = (ux, uy) and K is a known operator. As the TV term |∇u| is non-
differentiable, one often replaces the above by a regularized functional

F(u) = α

∫
�

√
u2

x + u2
y + β dx + 1

2

∫
�

‖Ku − z‖2 dx, (10)

as done in [17, 32, 41] and almost all multilevel methods. In this paper, we are concerned
with fast solution of this non-regularised model (9) in the denoising case with K = I . The
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minimizer of (9) is taken as the denoised image. We note that a recent study [7] demon-
strates that there are many advantages to transform (9) to a dual formulation; we expect to
generalize our MGM to this dual model in the near future.

In the following, we shall use Algorithm 2 for problem (10). The functional F of (10)
is convex and continuous in BV(�), the convergence of the algorithm is always guaranteed.
In case that β > 0, then the functional F is strongly convex in H 1(�), thus the theory
of [35, 38] guarantees that the algorithms has a convergence rate independent of the mesh
size, but it will depend on β . In our numerical experiments, we have observed that the
convergence rate is also independent of β . At the moment, it seems that there is still no
analysis which can explain this fact.

In the following, we explain the details in using Algorithm 2 for multigrid decompo-
sition (8). Note that all the subspaces in the multi-dimensional decomposition (8) are one
dimensional. Thus, the subproblems (7) are essentially trying to solve the following one
dimensional minimization problem:

min
c∈R

F
(
w + cφk

j

)
, (11)

where w = u(�+(i−1)/m) ∈ V and φk
j is the basis function over the j th level at the kth node.

As F is convex, c ∈ R is a minimizer of (11) if and only if it satisfies

∫
�

[
α

∇(w + cφk
j ) · ∇φk

j√
|∇(w + cφk

j )|2 + β
+ (

w + cφk
j − z

)
φk

j

]
dx = 0, (12)

where one noticed that we have included a regularising parameter β for the local prob-
lem (11). Although we do not have to solve (11) this way, it turns out that the resulting
method is not very sensitive to β unlike (10).

The key observation is that each of our local minimisation problems has only one degree
of freedom (i.e. one dimensional). To solve this nonlinear equation for c ∈ R, we may use
the fixed point iteration (e.g. as in [1]), i.e. start with an c(0) = 0 and recursively get c(�) from

∫
�

[
α

∇(w + c(�+1)φk
j ) · ∇φk

j√
|∇(w + c(�)φk

j )|2 + β
+ (

w + c(�+1)φk
j − z

)
φk

j

]
dx = 0. (13)

It is easy to see that

c(�+1) = bk
j − ak

j (w)

ak
j (φ

k
j )

, bk
j =

∫
�

(z − w)φk
j dx and

ak
j (v) =

∫
�

[
α

∇v · ∇φk
j√

|∇(w + c(�)φk
j )|2 + β

+ vφk
j

]
dx, (14)

where � ≥ 0 (global iteration), j = 1, . . . , J (all levels) and k = 1, . . . , nj (level j ). It is easy
to see that ak

j (φ
k
j ) > 0 so the iteration will not break down. As w is a function over the fine

mesh, much reformulation will be done in integration for efficiently obtaining ak
j (w) and

ak
j (φ

k
j ) as shown below. The iteration for (14) is stopped when |c(�+1) − c(�)|/|c(�)| ≤ τinner.

Numerical experiments will show that the convergence rate is nearly independent of τinner.
Normally, just carrying out one or two iterations for (12) is sufficient to obtain required
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results. Regarding complexity, we note that the domain integration in (13) and (14) does not
present complications because the basis function φk

j is only defined locally (as with finite
elements). This is addressed more precisely next.

3.1 The Algorithm with � ∈ R

Firstly we consider the case � ∈ R associated with signal processing. Note that φk
j (on level

j = 2 and at node k = 2) may be illustrated by Fig. 3. We wish to simplify the functional
as much as possible by using the compact support of φk

j . As mentioned before, the para-
meter β is only introduced later for local minimization. (In the following, where boundary
basis functions are involved, the usual adjustment in indices associated with summation is
assumed.)

In the discrete setting for one dimensional problems, the cost functional (9) is (assum-
ing α and F absorb the uniform step length �x = �y = h from here onwards)

F(u) = α

n−1∑
i=1

|D+
x ui | + 1

2

n∑
i=1

(ui − zi)
2,

where n is the total number of nodes, D+
x (also later D+

y ) is the standard forward finite
difference operator. Let �k

j be the support set of φk
j and �̄k

j be its closure. Corresponding
to �k

j , we define I k
j = {i| xi ∈ �k

j ∩ �} and Ī k
j = {i| xi ∈ �̄k

j ∩ �} with � being the set of
the nodal points on the finest mesh. It is clear that we can localize the contribution of I k

j

F (u) =
[
α

∑
i∈[1,n]\Ī k

j

|D+
x ui | + 1

2

∑
i∈[1,n]\Ik

j

(ui − zi)
2

]
+

[
α

∑
i∈Ī k

j

|D+
x ui | + 1

2

∑
i∈Ik

j

(ui − zi)
2

]

= F̃ k
j (u) + α

∑
i∈Ī k

j

|D+
x ui | + 1

2

∑
i∈Ik

j

(ui − zi)
2, (15)

where F̃ k
j contains all terms not overlapping with the support of φk

j . Our task now is the
following: given an initial guess w ≈ u, how to improve w.

Our idea is to look for u = w + cφk
j for the best c ∈ R. Recall that the above func-

tional F(u) is defined on the finest level so it is necessary to localize the formulation by
collecting terms involving c ∈ R only (see (12)). Let w = [w1, . . . ,wn]T and vi = φk

j (xi).
In the above functional (15), substitute u by w + cφk

j and then combine terms involving c:

F(w + cφk
j ) = F̃ k

j (w) + α
∑
i∈Ī k

j

|D+
x wi + cD+

x vi | + 1

2

∑
i∈Ik

j

(wi − zi + cvi)
2

= F̃ k
j (w) + α

∑
i∈Ī k

j

|D+
x wi + cD+

x vi | + 1

2

[
s(c2 − 2cz∗ + z∗2

) +
∑
i∈Ik

j

z̄2
i − z∗2

s

]

= Fk
j (w) + α

∑
i∈Ī k

j

|D+
x wi + cD+

x vi | + s

2
(c − z∗)2, (16)



J Sci Comput (2007) 33: 115–138 123

F
ig

.3
T

he
on

e
di

m
en

si
on

al
ba

si
s

fu
nc

tio
n

φ
k j

w
ith

•s
ho

w
in

g
its

he
ig

ht
—

on
th

e
co

ar
se

le
ve

lj
=

2
an

d
at

a
m

id
dl

e
no

de
k

=
2

(t
op

pl
ot

)
an

d
at

en
d

no
de

s
(b

ot
to

m
pl

ot
).

H
er

e
©

de
fin

es
th

e
fin

es
tl

ev
el

,�
re

fe
rs

to
th

e
fir

st
co

ar
se

le
ve

la
nd

�
to

th
e

se
co

nd
co

ar
se

le
ve

l



124 J Sci Comput (2007) 33: 115–138

where z̄ = z − w, Fk
j (w) = F̃ k

j (w) + [∑i∈Ik
j
z̄2
i − z∗2s]/2 does not involve c (ignored in

subsequent minimisation),

s =
∑
i∈Ik

j

v2
i and z∗ =

∑
i∈Ik

j

vi z̄i/s.

Therefore in 1D, solving (11) for c ∈ R is equivalent to solving

min
c∈R

[
α

∑
i∈Ī k

j

|D+
x wi + cD+

x vi | + s

2
(c − z∗)2

]
,

and (with β added locally) the following

min
c∈R

J (c), J (c) =
[
α

∑
i∈Ī k

j

√
(D+

x wi + cD+
x vi)2 + β + s

2
(c − z∗)2

]
. (17)

Further with c(0) = 0, implementing (13) and (14) for (17) leads to the iterations

[
α

∑
i∈Ī k

j

|D+
x vi |2√

(D+
x wi + c(�)D+

x vi)2 + β
+ s

]
c(�+1)

=
[
sz∗ − α

∑
i∈Ik

j

D+
x wiD

+
x vi√

(D+
x wi + c(�)D+

x vi)2 + β

]
, for � = 0,1,2, . . . . (18)

In summary, our algorithm proceeds as follows.

Algorithm 3 Let the signal domain � = [0,1] be discretized with J levels. Start from the
finest level j = 1 with the initial guess w = z:

(1) On level j , compute z̄ = z − w first.
(2) For each k = 1, . . . , nj :

First work out s and z∗ and then solve the local coarse problem by iterating (18) until
the relative (dynamic) residual is less than τinner.
Add the correction in the (built-in) interpolation step: w = w + cφk

j (x).
(3) If j < J , set j := j + 1 and continue with Step (1). If j = J , check whether the relative

(dynamic) residual is less than τouter; if yes, exit with u = w as the solution or otherwise
continue with Step (1) with j = 1.

3.2 The Algorithm with � ∈ R
2

Secondly we can apply the same argument of simplification to the image case with � ∈ R
2,

where we note that a 2D basis function φk
j (similar to Fig. 3) may be illustrated by Fig. 4.

That is, the terms in the functional F(w + cφk
j ), c ∈ R, from (11) may again be grouped and

simplified according to the compact support of φk
j . Similar to the 1D case in (16), the values
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of the 2D basis function may be denoted by matrix v, which takes the values

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 1

4
1
4

1
4

1
4 0 0 0 0

0 1
4

1
2

1
2

1
2

1
4 0 0 0

0 1
4

1
2

3
4

3
4

1
2

1
4 0 0

0 1
4

1
2

3
4 1 3

4
1
2

1
4 0

0 0 1
4

1
2

3
4

3
4

1
2

1
4 0

0 0 0 1
4

1
2

1
2

1
2

1
4 0

0 0 0 0 1
4

1
4

1
4

1
4 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

for the example of j = 3 and b = bj = 4 (as in Fig. 4) and when we zoom in the neighbor-
hood of index k (as v is actually a global quantity with a compact support). Let the quantities
v,�k

j , I k
j and Ī k

j be defined in a similar way as for 1D problems with k = (k1, k2). In the
discretized setting, we have

F(u) = α

n∑
�1=1

m∑
�2=1

√
(D+

x u�1,�2)
2 + (D+

y u�1,�2)
2 + 1

2

n∑
�1=1

m∑
�2=1

(u�1,�2 − z�1,�2)
2

= F̃ k
j (u) + α

∑
k1,k2∈Ī k

j

√
(D+

x uk1,k2)
2 + (D+

y uk1,k2)
2 + 1

2

∑
(k1,k2)∈Ik

j

(uk1,k2 − zk1,k2)
2,

(20)

where F̃ k
j contains all terms not overlapping with the support of φk

j . Similar to the 1D case,
we are ready to simplify F(w + cφk

j ) to reveal the simplified minimisation for c ∈ R by

grouping other unrelated terms (to c) into F . The result is the following (refer to (15)):

F(w + cφk
j )

= F(w + cv)

= F̃ k
j (w) + α

∑
(k1,k2)∈Ī k

j

√
(D+

x wk1,k2 + cD+
x vk1,k2)

2 + (D+
y wk1,k2 + cD+

y vk1,k2)
2

+ 1

2

∑
(k1,k2)∈Ik

j

(z̄k1,k2 − cvk1,k2)
2,

= Fk
j (w, z̄, v) + α

∑
(k1,k2)∈Ī k

j

Tk1,k2(c) + s

2
(c − z∗)2, (21)

where all three quantities F̃ , z̄ = z − w and F do not involve c,

z∗ =
∑

(k1,k2)∈Ik
j

z̄k1,k2vk1,k2

s
, s =

∑
(k1,k2)∈Ik

j

v2
k1,k2

, and

Tk1,k2(c) =
√

|D+
x (wk1,k2 + cvk1,k2)|2 + |D+

y (wk1,k2 + cvk1,k2)|2.
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To solve the local problem (21), we re-define

Tk1,k2(c) =
√

|D+
x (wk1,k2 + cvk1,k2)|2 + |D+

y (wk1,k2 + cvk1,k2)|2 + β,

adding a small parameter β > 0. Then omitting all non-essential details, we find that the
updating of (14) or (13) in the discretized setting for a 2D problem proceeds as follows:

[
α

∑
(k1,k2)∈Ī k

j

|D+
x vk1,k2 |2 + |D+

y vk1,k2 |2
Tk1,k2(c

(�))
+ s

]
c(�+1)

=
[
sz∗ − α

∑
(k1,k2)∈Ī k

j

D+
x wk1,k2D

+
x vk1,k2 + D+

y wk1,k2D
+
y vk1,k2

Tk1,k2(c
(�))

]
, for � = 0,1,2, . . . .

(22)

Putting all the steps together, we give the following

Algorithm 4 Let the image domain � = [0,1] × [0,1] be discretized with J levels. Start
from the finest level j = 1 with the initial guess w = z over n1 × m1 = n × m pixel points:

(1) On level j , compute z̄ = z − w first.
(2) For each index k = (k1, k2) with k1 = 1, . . . , nj and k2 = 1, . . . ,mj ,

First work out s and z∗ and then solve the local coarse problem by iterating (22) until
the relative (dynamic) residual is less than τinner.
Add the correction in the (built-in) interpolation step: w = w + cφk

j (x).
(3) If j < J , set j := j + 1 and continue with Step (1). If j = J , check whether the relative

(dynamic) residual is less than τouter; if yes, exit with u = w as the solution or otherwise
continue with Step (1) with j = 1.

Here, on level j , nj = (n − 1)/2j−1 + 1 and mj = (m − 1)/2j−1 + 1 define nj × mj basis
functions.

Finally we briefly discuss the complexity issue. For linear problems, the cost per iteration
for the multigrid iteration is typically O(DOF) where DOF is the total number of degrees
of freedom. For our nonlinear problems, the cost per iteration by our Algorithms 3 and 4
is O(DOF log(DOF)). To verify this result, we may consider the 2D case with DOF =
N = mn. Then the size of the set Ī k

j is 2j−1 × 2j−1 while the size of the set I k
j is less

than that of Ī k
j . Computing z̄ requires N flops (floating point operations). For each k on

level j , computing z∗ and s requires 4bj flops (with bj = 4j−1) so the total number of
flops for level j is 4bjnjmj ≈ 4N . Let t steps be needed for a typical inner iteration which
corresponds to about 32bj tnjmj ≈ 32tN . Hence over all J levels, the number of flops is
(N + 4N + 32tN)J = O(N logN) since max(J ) ≤ log2 min(m,n) = O(N logN).

4 Numerical Algorithms and Experiments

To demonstrate the effectiveness of our Algorithms 3 and 4, denoted by MG below, we now
present some experimental results. We remark that the above proposed algorithms have not
been applied to the image minimisation problem (2) before. It is pleasing to see some good
results for the first time.
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We shall first test the algorithms’ effectiveness by solving a few image denoising prob-
lems in both 1D and 2D. Then we experiment on the dependence of the convergence of the
proposed multigrid algorithm on image sizes and algorithm parameters. Finally we experi-
ment on the influence of the inner Picard fixed point iterations (12) on the overall conver-
gence performance. As we see, the method is not sensitive to the choice of problem sizes
and accuracy of the inner Picard type fixed point iterations. Finally we compare and remark
on the advantages of our algorithms over the popular method of [17]. In a simple word, our
algorithms (being multilevel) are fast, robust and reliable.

4.1 Test Problems and Results

We shall consider 4 signal denoising problems as shown in Fig. 5 and another 4 image
denoising problems as shown in Fig. 7. The signal-to-noise ratio (SNR) is taken as 10 (for
smaller SNR all iterations will be less, as expected). The iterative method will be stopped
whenever the relative dynamic residual ‖u(�) − u(�−1)‖2/‖u(�)‖2 < τouter for a prescribed
tolerance τouter. Then � will be the number of outer iteration steps (or cycles). There is
another prescribed tolerance τinner which is to control how accuracy the iterations should
be in the solution of the local minimisation (11). Here we take τinner = τouter = 10−3 and
β = 10−4 for the regularising parameter. The processed results by our algorithm is shown in
Fig. 6 (for N = 4097) and Fig. 8 (for N ×N = 257×257) respectively, where the symbol �
refers to our algorithm while the symbol × the method of [17]. Clearly one observes that
our method converges quite quickly and gives a result which is not distinguishable from the
result of [17].

Fig. 5 The 1D test examples
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Fig. 6 The 1D processed results with solutions from the two methods superimposed on each other: �—the
new multilevel algorithm and ×—the primal-dual method [17]

Fig. 7 The 2D test examples



130 J Sci Comput (2007) 33: 115–138

Fig. 8 The 2D multigrid restored results

4.2 Test of Convergence of the Method

When β �= 0, the convergence theory developed in [35, 38] may be invoked to establish a
convergence result of our algorithms. Here we hope to give some numerical tests to demon-
strate the convergence behaviour for the specific example of problem 3 with α = 15. First
we show in Fig. 9 the convergence history of MG residuals for τ = τouter = 10−10 and
n = 129. Second we show some more residual information in Table 1 for various n with
up to 100 steps of the MG method to achieve ‖r‖ ≤ τ = 10−10. Clearly convergence slows
downs at we approach the machine accuracy but it is not much depending on n. Hence in
the following tests, we shall restrict ourselves to a larger τ .

To test further on the sensitivity of the method on problem size n, it is of interest to inves-
tigate any dependence of the overall algorithm convergence as the problem sizes increase
(n in 1D signals and n × n in 2D images). In Table 2, we fix both tolerances τinner, τouter

and vary the problem size to see how many convergence steps are needed. Clearly one ob-
serves that the convergence of our method is not much affected by n, especially for the 2D
problems. For the 1D case, the convergence patterns become clear and the number of steps
(i.e. MG cycles) approaches a constant as n increases.

4.3 Sensitivity to the Inner Fixed Point Iterations

We next address how crucial the inner nodal solver is for the overall algorithm. To this
end, we fix the problem size n and the tolerance τouter. Table 3 shows the results obtained
for the selected test problems in 1D and 2D from varying the inner solver tolerance τinner

within the range of a value below τouter to another much larger value. Clearly the overall
multilevel method is not much affected. Note that for the cases associated with using the
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Fig. 9 Residual history for problem 3 with n = 129

Table 1 Residual information
for problem 3 with up to 100 MG
cycles

Problem size Levels MG cycles Residual

17 × 17 5 87 8.5E-10

33 × 33 6 100 5.9E-10

65 × 65 7 93 5.0E-10

129 × 129 8 87 1.1E-11

257 × 257 9 77 2.2E-11

largest tolerance τinner = 10, the number of inner iterations is mostly one and hence the
inner solver is far from convergence and yet the outer iterations can converge. This latter
observation is somewhat related to the inner-outer iteration control as shown in [21] and
adopted in the algorithm of [17]. It is possible to work out an appropriate formula for τinner.

4.4 Sensitivity of the Parameters α and β

There are two general issues here. Firstly one cares about whether or not α and β affect
the convergence of a method. Secondly for difficult choices of α and β , one desires for a
remedial solution. Here we mainly test the former as our algorithms are not sensitive to
such parameter changes. As for the latter question with other sensitive methods, one should
consider the parameter continuation idea as used and discussed in [18, 47].

We take two test examples as shown in Figs. 10 and 11. We have done the following
experiments (for the tolerance of τ = 10−3) in Table 4.
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Table 2 Test of dependence of the problem sizes (n in 1D and n × n in 2D): ‘Dim’ denotes ‘Dimension’,
‘Prob’ stands for ‘Problem number’, ‘Levels’ indicates the “levels used in the multilevel algorithm” and
‘Steps’ the “number of multilevel cycles”. Here τ = 10−3, β = 10−4. Clearly there is no strong dependence.
Here the problem numbers refer to Fig. 5 for 1D and Fig. 7 for 2D

Dim Prob Size Levels Steps Prob Size Levels Steps

1D 1 65 6 25 2 65 6 17

129 7 11 129 7 11

257 8 7 257 8 5

513 9 8 513 9 6

1015 10 5 1015 10 4

2049 11 4 2049 11 4

4097 12 3 4097 12 4

8193 13 4 8193 13 4

16385 14 3 16385 14 4

32769 15 3 32769 15 4

65537 16 3 65537 16 4

1D 3 65 6 9 4 65 6 34

129 7 7 129 7 23

257 8 8 257 8 18

513 9 5 513 9 12

1015 10 5 1015 10 8

2049 11 5 2049 11 6

4097 12 5 4097 12 4

8193 13 4 8193 13 4

16385 14 4 16385 14 4

32769 15 4 32769 15 4

65537 16 4 65537 16 4

2D 1 33×33 5 6 2 33×33 5 5

65×65 6 6 65×65 6 5

129×129 7 6 129×129 7 5

257×257 8 6 257×257 8 5

2D 3 33×33 5 6 4 33×33 5 5

65×65 6 6 65×65 6 5

129×129 7 6 129×129 7 5

257×257 8 6 257×257 8 5

Here we measure the restoration qualitatively by the peak signal-to-noise ratio (PSNR)
defined by (see e.g. [12])

PSNR(u,w) = 10 log10
2552

1
mn

∑
i,j (ui,j − wi,j )2

,

where wi,j and ui,j denote the pixel values of the restored and the original images respec-
tively.
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Table 3 Test of dependence of the accuracy of the inner nodal solver (n = 8193 and levels = 13 in 1D and
n × n = 257 × 257 and levels = 8 in 2D): ‘levels’ indicates the “levels used in the multilevel algorithm” and
‘steps’ the “number of multilevel cycles”. Here τ = β = 10−4 and τinner is the tolerance used for each nodal
relaxation solver (note: the minimal number of relaxation steps is 1). Clearly there is no strong dependence.
Here again, the problem numbers refer to Fig. 5 for 1D and Fig. 7 for 2D

Dimension Problem τinner Steps Problem τinner Steps

1D 1 10−5 8 2 10−5 4

10−4 8 10−4 4

10−3 8 10−3 4

10−2 8 10−2 4

10−1 8 10−1 4

10−0 8 10−0 4

10+1 8 10+1 4

1D 3 10−5 5 4 10−5 11

10−4 5 10−4 11

10−3 5 10−3 11

10−2 5 10−2 11

10−1 5 10−1 11

10−0 5 10−0 11

10+1 5 10+1 11

2D 1 10−5 10 2 10−5 5

10−4 10 10−4 5

10−3 10 10−3 5

10−2 8 10−2 5

10−1 8 10−1 5

10−0 10 10−0 5

10+1 11 10+1 5

2D 3 10−5 6 4 10−5 7

10−4 6 10−4 7

10−3 6 10−3 7

10−2 6 10−2 7

10−1 6 10−1 7

10−0 6 10−0 8

10+1 6 10+1 9

Clearly from Table 4, we observe that the convergence of Algorithm 4 is not significantly
affected by parameter changes. Evidently changing α leads to different restorations and
hence the PSNR values as expected.

One may wonder why our optimisation MG is less sensitive to the above parameters
while the MG is more sensitive for the essentially same model (1). We believe that this is due
to the PDE (2) attempting to assign a normal at pixels where such geometrical information
is not defined while the optimisation does not require such assignments.
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Fig. 10 Comparison with the CGM method [17] for test example P3: α = 20 and β = 10−20

Fig. 11 Comparison with the CGM method [17] for test example P5: α = 30 and β = 10−20
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Table 4 Test of dependence of
the parameters α and β

Problem α β MGM cycles PSNR

3 1.25 10−12 6 20.67

2.50 6 21.31

5.00 6 22.53

10.0 6 24.38

20.0 8 24.68

3 20.0 10−4 8 24.68

10−8 8 24.68

10−12 8 24.68

10−16 8 24.68

10−20 8 24.68

5 1.88 10−12 6 21.12

3.75 6 22.26

7.50 6 24.56

15.0 6 27.94

30.0 9 28.75

5 30.0 10−4 8 28.69

10−8 8 28.70

10−12 8 28.70

10−16 8 28.70

10−20 8 28.71

4.5 Comparisons with an Established Method

There are many aspects that could be compared with other methods. Here we choose to
compare with the well-known method (perhaps the best) of Chan-Golub-Mulet (CGM) [17]
as other methods such as the fixed point iterations and time marching schemes have been
shown to be slower than a multigrid method [32]. However our task of comparing with CGM
becomes somewhat easier because the CGM method ‘fails’ in 2 cases: (i) when the image
size N becomes large (due to ill-conditioning); (ii) when β ≤ 10−32 (due to singularity).
Here (i), not (ii), may be fixable but no such work is available for the primal-dual method.
(However there exists important work of β-free methods [1, 7, 13]; of these the dual method
is the most well-known.) In either of these cases, our method would converge although the
local solvers take a few more iterations.

It may be of interest to show some results from parameter ranges where the CGM per-
forms well: we take β = 10−20 and 2 test examples in Figs. 10 and 11. Here we mainly
compare the solution’s visual quality and the PSNR values. As seen from Figs. 10 and 11,
PSNR(uCGM) = 24.60 and PSNR(uMG) = 24.70 for problem 3, and PSNR(uCGM) = 28.27
and PSNR(uMG) = 28.74 for problem 4. Since the PSNR values of the results from our al-
gorithm are quite close to the CGM results, the restored images are indeed indistinguishable.

For larger images, our MG method can solve problems 3 and 4 in a reasonable time (as
seen below) on a Sun-Blade 1000 with Matlab 6.5:
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Problem N MGM cycles PSNR CPU

3 513 4 31.48 3165.6
1025 4 34.03 14478.0

4 513 4 30.16 4291.0
1025 4 33.09 14428.0

In contrast, CGM cannot be run because the memory requirement is too large.
Therefore our algorithm is evidently more robust (without having to concern about what

parameters to use) and being a multilevel method there is a scope to achieve even better
performance with future parallelization.

5 Conclusions

This paper has introduced a nonlinear multigrid method for solving curvature equations
related to total variation minimization. The resulting algorithms are efficient and different
from the existing optimisation multigrid methods in coarse level construction.

Mesh independent convergence has been observed from the numerical experiments.
Moreover, the iteration number needed to achieve a given accuracy for the solution also
seems to be independent of β . The same is also true for a large range of α. A theoretical
analysis for this behavior is still missing.

It is known that the CGM algorithm [17] is rather robust with respect to α and β . For
most of the experiments we have done, we need less than 10 outer iterations to get a result
as nearly undistinguishable as the unigrid method [17]. In fact, the CGM method fails to
converge when we take β = 10−32 while our method converges. If we must take β = 0, all
we need to do is to replace our local minimisation solvers.

Acknowledgements The first author wishes to thank the support of the Leverhulme Trust RF/9/RFG/2005
/0482 for this work.
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