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Sensitivity Analysis of Coupled Interconnects
for RFIC Applications
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Abstract—This paper investigates the sensitivity of on-wafer
coupled interconnects to the Si CMOS process parameters. Ex-
periments are conducted to emulate state-of-the-art and future
technologies. Some important parameters characterizing the cou-
pled interconnects have been examined. The influence of the pro-
cess parameters on transmission, reflection, near-end, and far-end
crosstalk capacities of the coupled interconnects are discussed.

Index Terms—CMOS process, coupled interconnects, sensitivity.

I. INTRODUCTION

THE recent decade has witnessed the explosion of the de-
velopment of wireless communication. Portable devices

such as pagers, cellular and cordless phones, global positioning
system (GPS) devices, wireless local-area network (WLAN) de-
vices, etc., have penetrated into all aspects of our daily lives.
Boosted by the demands of this rapidly growing wireless mo-
bile communication market, there is an increasing interest in the
development of the radio frequency (RF) integrated circuit (IC).
Because of the mature technology, low fabrication cost, high
packing density, as well as low power consumption, comple-
mentary metal oxide (CMOS) technology has become a strong
contender compared with other available technologies, such as
the GaAs metal semiconductor field effect transistor (MESFET),
heterojunction bipolar transistor (HBT), etc. [1].

Due to the combination of the increasing circuit complex-
ity and higher operating frequencies of CMOS ICs, the circuit
performance becomes more and more subjected to the intercon-
nects [2]. On the other hand, the evolving pace of the CMOS
process technology is truly spectacular. The process parameters
are optimized to improve the circuit performance. However, in-
fluences of the process parameter variations on the interconnects
have rarely been reported in the literature.

In our previous work [3], influences of the process parame-
ters, such as conductivity of the substrate, thickness, and per-
mittivity of the dielectric, as well as conductivity of the metallic
conductor on the transmission and reflection capacities of the
single interconnect, are examined. However, in a real case, the
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Fig. 1. Cross view of the test structure.

density of the interconnects are very high. The crosstalk among
interconnects is one of the most important internal EMC prob-
lems [4]. Hence, it would be very useful to provide information
about the sensitivity of the interconnects.

The objective of this paper is to investigate the sensitivity of
two interconnects to the process parameters at radio frequen-
cies. The dependance of the transmission, reflection, far-end,
and near-end crosstalks of the two interconnects on the process
parameters are investigated. This examination is dedicated to the
interconnects on the top metal layer since it is most commonly
allocated for routing critical high-frequency paths.

This paper is organized as follows. In Section II, the test
structure is presented. The influences of the process parameters
to the coupled interconnects are examined in Section III. Finally,
the paper is concluded in Section IV.

II. TEST STRUCTURE

In order to analyze the sensitivity of the two interconnects, a
large number of interconnect samples with various process pa-
rameters are needed. There are two ways to obtain the required
samples. The most straightforward one is to design and fabricate
all the possible test structures with different process parameters.
However, it is extremely costly, time-consuming, and impracti-
cal. An alternative way is to design and fabricate several typical
test structures and adopt an electromagnetic (EM) simulator, us-
ing the fabricated samples to calibrate the EM simulator. Then,
other possible interconnect stuctures can be investigated using
calibrated EM simulation.

In this work, IE3D from Zeland Software Inc. is employed to
do the EM simulations. The IE3D is a full-wave, method of mo-
ment (MOM) simulator and employs an automatic nonuniform
mesh generator with rectangular and triangular cells [5].

The cross view of the test structure is shown in Fig. 1. Three
sets of the test structures with various lengths and widths are
designed and fabricated using a 0.18-µm RF CMOS process by
Chartered Semiconductor Manufacture Ltd. (CHRT). In order
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Fig. 2. Top view of the test structure.

to calibrate the settings of the EM simulator, on-wafer mea-
surements of the three sets of fabricated test structures are
performed [6].

In the next section, the interconnect structure, as illustrated
in Fig. 1, is examined. The length (L) of both the interconnects
is 400 µm, the width (W ) is 10 µm, the height (h) is 3.5 µm,
and the line spacing (S) of the two interconnects is 10 µm. The
top view of the structure and the assignment of the ports are
shown in Fig. 2. Interconnect 1 is assumed to be the active line,
and Interconnect 2 is assumed to be the victim line. An input
signal is applied to port1. S-parameters, i.e., S11, S21, S31, and
S41 are examined.

III. INFLUENCES OF THE PROCESS PARAMETERS

Four major process parameters are considered, namely
conductivity of the substrate, permittivity of the dielectric,
thickness of the dielectric, and conductivity of the metallic
conductor. During simulation, these four parameters are
changed respectively. Only one parameter is changed each
time, while the rest are kept unchanged. The variation range
of the parameters is chosen to emulate the state-of-the-art and
future Si CMOS technologies.

A. Conductivity of the Substrate

In CMOS technology, low-resistivity substrate is used to im-
prove the yields and suppress the latchup. The performance of
the on-wafer interconnects is significantly affected by the lossy
nature of the silicon substrate [7]. In the current technology, the
substrate conductivity (σ1) is approximately 6–50 S/m (2–18
Ω-cm) [8]. In some processes, the conductivity of the sub-
strate may reach as high as 5 × 103 to 1 × 104 S/m (10–20 m
Ω-cm) [9].

In order to study the influence of the substrate conductivity,
typical values of 6, 50, 5 × 103, and 1 × 104 S/m as well as
19 S/m, which is provided by the CHRT process, are used for the
simulation. Comparisons of S11, S21, S31, and S41 are shown
in Figs. 3–6, respectively.

For S11, as shown in Fig. 3, it is observed that both its de-
pendence on the substrate conductivity and the corresponding
values are the same as that of the depicted single interconnect
in [3]. It indicates that the reflection of the active line is not
influenced much by the appearance of the victim line. For S21,
it follows the same dependent trend [3]. However, there is an
interesting phenomenon that can be noticed in Fig. 4. For low
conductivities, the corresponding values of S21 are smaller than
those of the single interconnect in [3]. However, for intercon-
nects with very high substrate conductivities, i.e., 5000 and
10 000 S/m, the values of S21 do not change much from those

Fig. 3. Comparison of S11 with respect to various substrate conductivities.

Fig. 4. Comparison of S21 with respect to various substrate conductivities.

of the single interconnect. The reason is that the energy loss
caused by the coupling can be neglected compared to the sub-
strate losses due to a high conductivity of the substrate. Figs. 5
and 6 illustrate the crosstalks at the far and the near-end of the
victim interconnect. It can be observed that the interconnect with
larger S11 has larger near-end crosstalk, while the interconnect
with larger S21 suffers more from far-end crosstalk. This is be-
cause the energy in the victim line is originated from the energy
in the active line. Given the same dielectric permittivity and
interconnect physical dimension, the coupling capacitance [10]
of the two interconnects is identical. The more the energy at the
active line, the more the coupled energy at the corresponding
victim line.
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Fig. 5. Comparison of S31 with respect to various substrate conductivities.

Fig. 6. Comparison of S41 with respect to various substrate conductivities.

B. Distance From the Substrate

The current trend of the metal technology evolution is shown
in Fig. 7. Due to the increase of the metal layers, the vertical
dimensions do not scale down with the horizontal dimensions.
When it comes to 2007, there will be up to 10 metal layers,
and the top metal layer will be away from the Si substrate up to
16 µm [11].

From Figs. 8–11, comparisons of S11–S41 with different top
metal distances (T ) from the substrate are illustrated. Three cho-
sen distances are 5.5 µm, which is provided by CHRT; 16 µm,
which is the predicted value for the year 2007; and 10 µm, which
is the value in between.

Fig. 7. Trend of interconnect stack.

Fig. 8. Comparison of S11 with respect to various distances from the substrate.

Fig. 9. Comparison of S21 with respect to various distances from the substrate.
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Fig. 10. Comparison of S31 with respect to various distances from the
substrate.

Fig. 11. Comparison of S41 with respect to various distances from the
substrate.

For S11, as shown in Fig. 8, both its dependence on the
substrate conductivity and the corresponding values are the same
as those of the depicted single interconnect in [3]. It indicates
that the reflection of the active line is not influenced much by the
appearance of the victim line. For S21, the same dependent trend
can be noted. However, the corresponding values are smaller
than those of the single interconnect in [3]. The reason is that a
portion of the input energy has been coupled to the victim line.

Figs. 10 and 11 demonstrate that the coupling is more severe
for the interconnects located further from the substrate. As is
known, metal layers further away from the substrate are recom-
mended for critical interconnects to reduce the substrate losses.

Fig. 12. Comparison of S11 with respect to various dielectric permittivities.

Fig. 13. Comparison of S21 with respect to various dielectric permittivities.

However, it is noticed from our investigation that the thicker di-
electric does not bring in merit only, but severer coupling is also
caused in the meantime, which downgrades circuit performance.

C. Permittivity of the Dielectric

Recently, numerous low-k materials spanning a wide range
of dielectric constants, from air (k = 1) to fluorinated oxides
(k = 3.6), have been explored for interconnect systems [12].

The values of 4.0 (parameter of the fabricated structures), 3.6,
and 1 are used as the relative permittivity (k) of the dielectric
for the simulation. The values correspond to the traditionally
used silicon dioxide and novel low-k materials. Corresponding
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Fig. 14. Comparison of S31 with respect to various dielectric permittivities.

Fig. 15. Comparison of S41 with respect to various dielectric permittivities.

comparisons of S11–S41 are given in Figs. 12–15, respectively.
As shown in Figs. 12 and 13, both S11 and S21 are inversely pro-
portional to the relative permittivity of the dielectric. It follows
the same trend as the single interconnect in [3]. From Fig. 15,
it can be observed that the interconnect structure with higher
dielectric permittivity suffers more near-end crosstalk. As pre-
sented in (1), given the same physical dimension (A and d, i.e.,
the area of each plane electrode and the separation between
the electrodes, respectively), the structure with larger dielectric
permittivity (k) has larger coupling capacitance. With the same
energy in the active line, the larger the coupling capacitance, the
greater the coupling capacity. Therefore, the near-end crosstalk
is proportional to k:

C = ε0
kA
d

(1)

Fig. 16. Comparison of S11 with respect to various metallic conductor con-
ductivities.

Fig. 17. Comparison of S21 with respect to various metallic conductor con-
ductivities.

The far-end crosstalk, as shown in Fig. 14, is inversely pro-
portional to the dielectric permittivity. This can be understood
as the crosstalk is affected by both the coupling capacitance and
the energy in the active line. Interconnects with larger k have
larger coupling capacitances but smaller transmitted energy at
the far-end port, which is characterized by S21.

D. Conductivity of the Metallic Conductor

Due to its higher conductivity (σ2) (∼5.8 × 107 S/m),
copper metallization has been introduced for the aggressive
interconnects instead of traditional Al (∼2.7 × 107 S/m)
(used by the fabricated structures) or AlCu (∼3.3 × 107 S/m)
metallization [12].



612 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 48, NO. 4, NOVEMBER 2006

Fig. 18. Comparison of S31 with respect to various metallic conductor con-
ductivities.

Fig. 19. Comparison of S41 with respect to various metallic conductor con-
ductivities.

As shown in Fig. 16, at low frequency, S11 is inversely propor-
tional to σ2. However, when the frequency approaches several
gigahertz, the influence of σ2 on S11 becomes negligible. The
reason is that at high frequency, the impedance is dominated
by the inductance and capacitance instead of resistance. S21 in
Fig. 17 follows the same trend in [3], while the transmission
capacity (S21) is slightly downgraded compared to the single
interconnects because of the energy coupling. From Figs. 18 and
19, it is observed that the interconnects with larger conductivity
suffer slightly more from coupling than those with lower con-
ductivities. It can be understood that the conductor with higher
conductivity has larger currents and hence a larger induced mag-

netic field and severer coupling. However, at high frequencies,
the resistance is not dominant compared with inductance. There-
fore, as shown in Figs. 18 and 19, couplings are not strongly
affected by the variations in the conductor’s conductivities.

IV. CONCLUSION

The sensitivity of on-wafer coupling interconnects of current
and future Si CMOS technologies has been investigated based
on the calibrated deck of a 0.18-µm RF CMOS process. With
comparisons to the sensitivity study of a single interconnect
in [3], it is observed that the reflection (S11) and transmission
(S21) of the coupled interconnects follow the same trend when
the process parameters (conductivity of the substrate, permittiv-
ity of the dielectric, thickness of the dielectric, and conductivity
of the metallic conductor) vary. Both the far-end crosstalk (S31)
and the near-end crosstalk (S41) are proportional to the conduc-
tivity of the conductors and the distance between the conductors
and the substrate. It is highlighted that although further distance
between the interconnects and the substrate can reduce the ef-
fect of substrate losses, severer coupling is caused, which will
downgrade the circuit performance. Hence, a tradeoff must be
made. As for the dielectric permittivity, S31 is inversely pro-
portional to it, while S41 has a proportional relationship. The
impact of the substrate conductivity is more complicated. No
monotonic relationship can be observed.
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