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Abstract. Discrete de Rham complexes are fundamental tools in the con-
struction of stable elements for some finite element methods. The purpose
of this paper is to discuss a new discrete de Rham complex in three space
dimensions, where the finite element spaces have extra smoothness com-
pared to the standard requirements. The motivation for this construction is
to produce discretizations which have uniform stability properties for cer-
tain families of singular perturbation problem. In particular, we show how
the spaces constructed here lead to discretizations of Stokes type systems
which have uniform convergence properties as the Stokes flow approaches
a Darcy flow.

Keywords: Discrete exact sequences, nonconforming finite elements, Dar-
cy–Stokes flow, uniform error estimates.
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1 Introduction

In [10] a robust finite element discretization of Darcy–Stokes flow in two
space dimensions was proposed. More precisely, for a domain � ⊂ R

2 the
following singular perturbation problem was studied:

� This is a “Springer Open Choice” article. Unrestricted non-commercial use, dis-
tribution, and reproduction in any medium is permitted, provided the original author
and source are credited.
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(I − ε2�)u− grad p = f in �,

divu = g in �,

u = 0 on ∂�,

(1)

where ε ∈ (0, 1] is the perturbation parameter. The unknowns are the vector
field u and the scalar field p, which in flow problems correspond to ve-
locity and pressure, respectively. We note that when ε is not too small this
problem is simply a standard linear Stokes problem, but with an additional
non-harmful lower-order term. However, if ε approaches zero the model
problem formally tends to a mixed formulation of the Poisson equation with
homogeneous Neumann boundary conditions, i.e., a Darcy flow. Hence, the
model covers the transition from fluid flow to porous medium flow. In this
respect, the singular perturbation system (1) is a prototype for problems
arising in multiscale modelling.

The main motivation for the finite element method constructed in [10]
was to construct a discretization which has convergence properties that are
uniform with respect to the perturbation parameter ε. Hence, for ε bounded
away from zero the method should behave as a finite element method for the
linear Stokes problem, while as ε tends to zero the method should approach
a mixed method for the Poisson equation. The approach taken in [10] was
to construct a pair of finite element spaces (Vh, Qh), for approximating the
solution (u, p), such that the Brezzi stability conditions, cf. [4], are satisfied
with stability constants independent of ε. The purpose of the present paper is
to design a corresponding finite element method in three space dimensions.

The construction and analysis presented in [10] are closely related to
discrete de Rham complexes. In two space dimensions the de Rham complex,
with minimal smoothness measured in L2, can be stated as

R
⊂−−−→ H 1 curl−−−→ H (div)

div−−−→ L2 −−−→ 0, (2)

where curl in the two-dimensional case denotes the operator which maps
a scalar field φ to the vector field (−∂x2φ, ∂x1φ). The precise definitions
of the spaces involved is given in the next section. Note that the function
spaces (2) have exactly the property that they consist of all L2 fields for
which the image of the differential operator mapping to the right also is in
L2. The statement that this is a complex just means that the composition
of two consecutive maps is zero. If the domain � is simply connected the
sequence (2) is exact in the sense that the range of each map is exactly the
null space of the succeeding map.

The Sobolev spaces H 1, H (div), and L2 occurring in (2) are funda-
mental function spaces used for weak formulations of a large collection
of differential systems. Furthermore, corresponding finite element spaces,
and, in particular, various discrete de Rham complexes, are important tools
in designing stable finite element discretizations of these systems.



A discrete de Rham complex with enhanced smoothness 289

A discrete de Rham complex in two dimensions can be written in the form

R
⊂−−−→ Wh

curl−−−→ Vh
div−−−→ Qh −−−→ 0, (3)

where Wh ⊂ H 1,Vh ⊂ H (div), and Qh ⊂ L2 are finite element spaces with
respect to a given triangulation Th of �. The best known examples involve
the Raviart–Thomas spaces [15] or the Brezzi–Douglas–Marini spaces [5] as
the choice ofVh, while Wh and Qh consist of standard piecewise polynomial
scalar fields which are globally continuous or discontinuous, respectively.

In [10] we constructed a discrete sequence of the form (3), but with
the additional property that the finite element spaces are nonconforming
approximations of spaces with extra smoothness. More precisely, Vh ⊂
H (div), i.e., the elements of Vh have continuous normal components over
all edges of the mesh. In addition, at each edge the tangential components
of the vector fields in Vh have continuous mean value. Correspondingly,
Wh ⊂ H 1 is a nonconforming approximation of H 2. Hence, the spaces
constructed in [10] are a discrete analogs of those of the complex

R
⊂−−−→ H 2 curl−−−→ H 1 div−−−→ L2 −−−→ 0, (4)

which is an exact sequence if the domain � is simply connected.
In three space dimensions the Sobolev space version of the de Rham

complex can be written in the form

R
⊂−−−→ H 1 grad−−−→ H (curl)

curl−−−→ H (div)
div−−−→ L2 −−−→ 0, (5)

which is an exact sequence if the domain � is contractable. Here H (curl)
consists of all vector fields u ∈ L2 with curlu ∈ L2. A corresponding
discrete de Rham complex of the form

R
⊂−−−→ Sh

grad−−−→ Wh
curl−−−→ Vh

div−−−→ Qh −−−→ 0 (6)

where Sh ⊂ H 1,Wh ⊂ H (curl), Vh ⊂ H (div), and Qh ⊂ L2 is referred to
as a conforming approximation of the complex (5). Well-known examples
of such finite element spaces are the Nédélec families described in [12] and
[13]; cf. also [1,2].

A three-dimensional example of a complex with extra smoothness, cor-
responding to (4), is given by

R
⊂−−−→ H 2 grad−−−→ H 1(curl)

curl−−−→ H 1 div−−−→ L2 −−−→ 0. (7)

Here H 1(curl) consists of all vector fields u ∈ H 1 with curlu ∈ H 1.
The sequence (7) is obviously a complex. Furthermore, if � is a convex
polyhedron then the sequence is exact; cf. [9, Chapter I.3.5].

The main purpose of the present paper is to construct an analog to the
one given in [10] for three space dimensions. Given a tetrahedral mesh Th
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we construct a conforming approximation of the complex (5) of the form
(6), which, at the same time, is a nonconforming approximation of (7) in the
sense that the discrete spaces of (6) are nonconforming approximations of
H 2,H 1(curl), andH 1, respectively. We show that the constructed spacesVh

and Qh lead to a robust discretization of the Darcy–Stokes system (1) in the
sense that the method is uniformly stable both with respect to the perturbation
parameter ε and the discretization parameter h. We should mention here
that an alternative approach to obtain discretizations of (1) which are stable
uniformly in ε is to use an augmented Lagrangian approach as in [7]. In
this formulation, any stable Stokes element indeed leads to uniformly stable
discretizations for (1).

In a similar manner the finite element spaces Sh andWh, constructed be-
low, can potentially be used to design uniform discretizations of other singu-
lar perturbation problems. For example, the space Sh is a three-dimensional
analog of the finite element space used in [14] to discretize fourth-order
problems which are perturbations of a second-order problem. However, we
do not discuss this here.

In §2 we introduce the notation used in the paper, and we define the
finite element spaces Sh,Wh,Vh, and Qh. The properties of these discrete
spaces are discussed in §3, and then in §4 we proceed to show that the pair
of spaces (Vh, Qh) leads to a uniformly stable discretization of the Darcy–
Stokes system (1). It can also be proven that the finite element space Wh

is a uniform stable element for a singular perturbed fourth-order elliptic
equation studied in [14]. As the proof is essentially the same as that in [14],
we omit the proof here.

2 Notation and preliminaries

We use Hm = Hm(�) to denote the L2–based Sobolev spaces of order m

on the polygonal domain � ⊂ R
3, and the corresponding norm by ‖ · ‖m.

The subspace Hm
0 is the closure in Hm of C∞

0 (�), while L2
0 consists of all

elements of L2 with mean value zero. The notation (·, ·) is used to denote the
standard L2 inner product over the domain �. In general we use boldface
symbols for vector fields and function spaces of vector fields. In particular
H (curl) = H (curl; �) is the space of all L2 vector fields v with curl v ∈
L2; H (div) = H (div; �) is defined in a similar manner. The gradient of a
vector field v is denoted by Dv, i.e., Dv is the 3 × 3 matrix with elements

(Dv)i,j = ∂vi/∂xj , 1 ≤ i, j ≤ 3.

For a subset T ⊂ R
n, the notation Pk = Pk(T ) is used for the space of

polynomials of degree k defined on T , and P
n
k denotes the corresponding

space of polynomial vector fields. If T ⊂ R
3 is a tetrahedron then �2(T )
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denotes the set of the four 2-dimensional faces, �1(T ) is the set of the six
1-dimensional edges, and �0(T ) the set of the four vertices.

In order to define the finite element spaces Sh,Wh,Vh, and Qh we first
define the restriction of these spaces to one tetrahedron. Througout this paper
{Th} is a family of shape-regular tetrahedral meshes, where h is the maximal
diameter. For T ∈ Th, let b = bT ∈ P4 be the quartic bubble function with
respect to T , i.e., b = λ1λ2λ3λ4, where λi are the barycentric coordinates
with respect to the vertices of T . The restriction of the space Sh to T is
denoted by S(T ) and is given by

S(T ) = {s = s2 + b s1 : si ∈ Pi , i = 1, 2}.
Hence, the space S(T ) is a linear space of dimension 14. The corresponding
space W (T ) is a space of dimension 36 given by

W (T ) = N1 + grad(bP1) + bP
3
1.

HereN1 = N1(T ) is the polynomial space which corresponds to the restric-
tion of the second lowest order H (curl) space of Nédélec’s first family to
one tetrahedron; cf. [12]. Hence,

N1 = {w ∈ P
3
2 : w · x ∈ P2}.

This space has dimension 20, and an elementw ∈ N1 is uniquely determined
by the two lowest order moments of the tangential components on each edge,
and the lowest order moment of the two tangential components on each face.
We refer to [12] for more details. The restriction of the spaceVh to T ,V (T ),
is given as

V (T ) = P
3
1 + curl(bP

3
1), (8)

which is a space of dimension 24. Finally, Q(T ) is simply taken to be P0. It
is straightforward to check that grad S(T ) ⊂ W (T ), curlW (T ) ⊂ V (T ),
and divV (T ) ⊂ Q(T ). Hence, the polynomial sequence

R
⊂−−−→ S(T )

grad−−−→ W (T )
curl−−−→ V (T )

div−−−→ Q(T ) −−−→ 0 (9)

is a complex. In fact, it can be easily checked that (9) is exact.
The finite element spaces Sh,Wh,Vh, and Qh are defined from the cor-

responding spaces of restrictions to a given tetrahedron, introduced above,
by specifying degrees of freedom for these local spaces. As for the degree
of freedom for the one-dimensional space Q(T ) = P0 we use the mean
value of the function over T . Hence, the corresponding global space Qh is
a subspace of L2.

Any function s ∈ S(T ) is determined by the values of s at each vertex
and ∫

e

s dxe , e ∈ �1(T ),

∫
f

∂s

∂n
dxf , f ∈ �2(T ). (10)
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Here and below dxe and dxf denote the integration with respect to arc length
or surface area, and n is a unit normal vector on f .

It is straightforward to check that these degrees of freedom uniquely
determine an element s ∈ S(T ). If the degrees of freedom associated with
�0(T ) and �1(T ) are all zero then s = bs1, where s1 ∈ P1. Furthermore,
on a face f ∈ �2(T )

∂s

∂n
= cf bf s1,

where cf �= 0 is a constant, and bf is the cubic bubble function associated
with the face f . However, bf is nonzero in the interior of f . Hence, if the
zero-order moment of ∂s/∂n is zero on each face f ∈ �2(T ) there must
exist an interior root of s1 on each face f , and therefore s = s1 = 0.

The local space S(T ) and the degrees of freedom determined by (10)
define the corresponding global space Sh. It is clear that the elements of
Sh are continuous, i.e., Sh ⊂ H 1. Furthermore, the normal derivatives are
weakly continuous over inter–element faces f , in the sense that

∫
f

[
∂s

∂n

]
dxf = 0,

where [·] denotes the jump across the face f . Hence, the space Sh is a
nonconforming approximation of H 2.

Finally, we have to design proper degrees of freedom for the spaces
of vector fields, W (T ) and V (T ). Recall that rigid motions in two- and
three-dimensional spaces are vector fields r ∈ R

n, n = 2, 3, of the form

r(x) = a + bx, (11)

where a ∈ R
n and b is a skew symmetric n × n real matrix (n = 2, 3). The

space of rigid motions is denoted byRM . Furthermore, if f ⊂ R
3 is a two-

dimensional affine space, i.e., a plane in R
3, then RM(f ) denotes the rigid

motions on f , i.e., RM(f ) is the space which only contains tangentials to
f and all vector fields from RM(f ) are of the form (11). Hence, RM(f )

is a linear space of dimension 3. In fact, all the vectors r(x) from RM(f )

for x ∈ R
3 are of the form

r(x) = r0 + β(x − x0) × n ∀β ∈ R,

where x0 ∈ f is a fixed point and r0 is a fixed tangent vector.
We show below that a vector field v ∈ V (T ) is uniquely determined by

24 degrees of freedom. For all f ∈ �2(T ) we specify the moments∫
f

(v · n)p dxf , p ∈ P1(f ),

∫
f

vt · r dxf , r ∈ RM(f ). (12)
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In the above, P1(f ) is the space of linear functions on f . Here and also later,
we use vt to denote the tangential component of v on f , i.e.,

vt = v − (v · n)n. (13)

Note that, if we introduce bases for the spaces P1(f ) and RM(f ), then
these moment conditions lead to 24 degrees of freedom for the elements
v ∈ V (T ).

The proof that these degrees of freedom are unisolvent for V (T ) is given
in the next section. Once V (T ) is defined, the finite element space Vh is
defined by these degree of freedoms over the finite elements of Th. It can
easily be seen that the elements of the corresponding global space Vh have
continuous normal derivatives. Therefore, Vh ⊂ H (div). Furthermore, the
tangential components are weakly continuous, so Vh is a nonconforming
approximation of H 1.

Remark 1 Note that if v ∈ Vh then the jumps of v on the inter-element faces
are orthogonal to rigid motions. From the observation of [11], based on the
general nonconforming theory of [3], it follows that the elements of the
nonconforming H 1 space Vh indeed satisfy Korn’s inequality.

The degrees of freedom for W (T ) are determined by the moments∫
e

(w · t)p dxe , e ∈ �1(T ), p ∈ P1(e), (14)

where t is a tangent vector on e, and for all f ∈ �2(T )∫
f

w dxf , and
∫

f

(curlw)t · r dxf , r ∈ RM(f ). (15)

It is a consequence of the discussion in §3 below that these degrees of free-
dom determine an element of W (T ) uniquely. It can also be seen that the
elements of the corresponding global space,Wh, have continuous tangential
components, and therefore Wh ⊂ H (curl). Furthermore, the normal com-
ponents of w, and the components of curlw are weakly continuous, and
hence the space Wh is a nonconforming approximation of H 1(curl).

3 The discrete de Rham complex

The purpose of this section is to complete the discussion of the finite el-
ement spaces Sh, Wh, Vh, and Qh. In particular, we show that the corre-
sponding complex (6) is exact. In order to show that elements v ∈ V (T )

andw ∈ W (T ) are uniquely determined by the degrees of freedom specified
by (12), or by (14) and (15), respectively, we need preliminary results in two
dimensions.
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3.1 Preliminary results in two dimensions

Throughout this subsection f ⊂ R
2 is a general triangle, and f̂ the reference

triangle given by

f̂ = {x ∈ R
2 : x1, x2 ≥ 0, x1 + x2 ≤ 1}.

We letλi , i = 1, 2, 3, be the barycentric cooordinates onf , andb = λ1·λ2·λ3

the cubic bubble function on f . The integral of b over f is denoted |b|f .
For example, if f = f̂ , then b(x) = x1x2(1 − x1 − x2) and |b|f = 1/120.

Furthermore, for each triangle f there is a 1–1 linear transformation 


of the form


(x̂) = Bx̂ + x0

mapping f̂ onto f . If λi(x) are the barycentric cooordinates on f and λ̂i(x̂)

the corresponding functions on f̂ , then

λi(x) = λ̂i(

−1(x)).

The corresponding Piola transform, P , maps 2-vectorfields defined on f̂ to
corresponding vectorfields on f . If ẑ is a vectorfield on f̂ then

z(x) = P ẑ(x) = J−1Bẑ(
−1(x)).

Here J is the determinant of B. The Piola transform maps constant vectors
to constant vectors. In addition, P ẑ(x) = J−1(x − x0) if ẑ(x̂) = x̂.

The following identities, which can be established by straightforward
calculations, are useful below.

Lemma 1 If f = f̂ , then∫
f

x1b dx =
∫

f

x2b dxf = 1/360 = |b|f /3,

∫
f

x2
1b dx =

∫
f

x2
2b dxf = |b|f /7,

∫
f

x1x2b dx = 2|b|f /21.

For a general triangle f , we define the barycenter xb ∈ f by

λi(x
b) = 1/3 i = 1, 2, 3.

It is a direct consequence of the lemma above that the integration rule∫
f

bp dx = |b|f p(xb) (16)
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is exact for p ∈ P1 and f = f̂ . By a change of variables this formula then
holds for any triangle f .

Assume that v ∈ P
2
1(f ) is of the form

v =
3∑

i=1

ci

(
λi − 1

3

)
grad λi. (17)

By (16), it follows that
∫

f

b(v · z) dx = 0

for all constant vector fields z. In addition we have the following character-
ization.

Lemma 2 If v ∈ P
2
1(f ) is of the form (17) and satisfies

∫
f

b(v · x) dx = 0 ,

then c1 + c2 + c3 = 0.

Proof Let ẑ and ψ be smooth vector fields on f̂ and f , respectively. Then
∫

f

b(ψ · P ẑ) dx =
∫

f̂

b̂(BT ψ̂ · ẑ) dx̂ , (18)

where ψ̂ = ψ ◦
, b̂ = b ◦
 and BT is the transpose of the matrix B. Note
that, if ψ = grad q, then gradx̂ q̂ = BT ψ̂ . Therefore, if v ∈ P

2
1(f ) is of

the form (17), then

BT v̂ =
3∑

i=1

ci

(
λ̂i − 1

3

)
gradx̂ λ̂i .

Hence, by the assumption and (18), the coefficients ci satisfy

(
3∑

i=1

ci

∫
f̂

b̂\
(

λ̂i − 1

3

)
gradx̂ λ̂i

)
· x̂ dx̂

=
∫

f̂

b̂(BT v̂ · x̂) dx̂

= J−1
∫

f

bv · (x − x0) dx = 0,
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where we have used the fact that (P x̂)(x) = J−1(x − x0). However, from
the identities of Lemma 1 we easily compute
( 3∑

i=1

ci

∫
f̂

b̂(λ̂i − 1

3
) gradx̂ λ̂i

)
· x̂ dx̂ =

∫
f̂

[
c1x1

(
x1 − 1

3

)

+ c2x2

(
x2 − 1

3

)
+ c3

(
x1 + x2 − 2

3

)
(x1 + x2)

]
dx1dx2

= 2

63
|b|f (c1 + c2 + c3),

and therefore c1 + c2 + c3 = 0. �


3.2 Unisolvent degrees of freedom

We now return to the discussion of polynomial spaces defined on a tetra-
hedron T ⊂ R

3. We recall that b = bT = ∏4
j=1 λj is the quartic bubble

function on T . Furthermore, on the face f = fi = {x : λi(x) = 0} ∈ �2(T )

we associate the cubic bubble function bf = ∏
j �=i λj . We need to show that

the functions in the spaces V (T ) and W (T ) are uniquely determined by
the moment conditions given by (12) and (14)–(15), respectively. We first
establish the following lemma.

Lemma 3 Assume that v ∈ P
3
1(T ) satisfies∫

f

bf (v × n) · rdxf = 0 , r ∈ RM(f ), f ∈ �2(T ). (19)

Then v = 0.

Proof If v ∈ P
3
1(T ) satisfies (19), then∫
f

bf vt · zdxf = 0 , z ∈ P
2
0(f ), f ∈ �2(f ).

This follows since v × n = Rvt , where the matrix R represents a rotation
by 90 degrees in the tangent space of f . SinceRM(f ) contains all constant
tangential vector fields, using (16), we conclude that

vt (x
b
f ) = 0, f ∈ �2(f ), (20)

where xb
f is the barycenter of a face f . The space of functions in P

3
1(T )

satisfying (20) is four-dimensional and is given as the span of the functions
(λi − 1

3) grad λi , i = 1, 2, 3, 4. Hence, v is of the form

v =
4∑

i=1

ci

(
λi − 1

3

)
grad λi (21)
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for some constants c1, c2, c3, c4. Restricting v to the face f1, given by λ1 = 0,
the tangential component vt has the form

vt =
4∑

i=2

ci

(
λi − 1

3

)
gradt λi,

where gradt λ = (grad λ)t is the tangential component of grad λ. Note that
(19) implies that, for any fixed x0 ∈ f1,

∫
f1

b1vt · (x − x0) dxf =
∫

f1

b1(v × n) · ((x − x0) × n
)
dxf = 0.

As a consequence of Lemma 2 we conclude that c2 + c3 + c4 = 0. By
considering all the four faces we conclude that

∑
i �=j

ci = 0 , j = 1, 2, 3, 4,

and this implies that c1 = c2 = c3 = c4 = 0. �

Next we show that the elements of V (T ) are uniquely determined by the 24
degrees of freedom given by (12).

Lemma 4 Assume that v ∈ V (T ) = P
3
1 +curl(bP

3
1) and that all the degrees

of freedom represented by (12) are zero. Then v = 0.

Proof Let v = p + curl bq, where p, q ∈ P
3
1. On each face f ∈ �2(T )

the normal component of curl bq is zero since it only depends on tangential
derivatives of bq. Therefore, v ·n = p ·n. Hence, if the 12 constraints on the
normal component of v are all zero, we can conclude that p ·n = 0 on each
face. Since three faces meet at a vertex, we conclude that p = 0 on each
vertex. However, this means that p = 0 or v = curl(bq). As a consequence,
on each face

vt = (curl bq)t = − ∂b

∂n
(q × n).

However, ∂b/∂n is proportional to bf . Therefore, if the conditions on vt in
(12) all vanish, then

∫
f

bf (q × n) · r dxf = 0 , r ∈ RM(f )

for all f ∈ �2(T ), and by Lemma 3 this implies that q = 0. �
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A similar argument can be given to show that the elements of W (T ) are
uniquely determined by the degrees of freedom given by (14)–(15). Recall
that a vector field w is in W (T ) if it is of the form

w = w0 + grad(bp) + bq ,

where p ∈ P1, q ∈ P
3
1 and w0 ∈ N1. From the definition of N1, we see that

w0 ∈ P
3
2 and thatw0 ·x = 0. If all the degrees of freedom given by (14)–(15)

are zero then we quickly conclude thatw0 = 0 from the standard 20 degrees
of freedom of N1 (two lowest order moments of the tangential component
on each edge and the loweat order moment of the tangential components
on each face). Furthermore, since w = grad(bp) + bq we see that w · n is
proportional to bf p on each face. Hence, we conclude that

∫
f

bf p dxf = 0 f ∈ �2(T )

and therefore, by (16), p = 0 at the barycenter of each face. Thus, it is true
that p = 0. Finally, if w = bq then the tangential component (curlw)t

is proportional to bf (q × n) on each face, and therefore Lemma 3 again
implies that q = 0.

3.3 The discrete complex

We have seen that the polynomial spaces S(T ), W (T ), V (T ), and Q(T ),
defined on a single tetrahedron T , all have a set of unisovent degrees of
freedom as specified in §2. For a tetrahedral mesh Th the spaces Sh,Wh, Vh,
and Qh are all defined as the functions which belong to the corresponding
polynomial spaces on each tetrahedron T , and the continuity conditions for
the global space are implicitly defined by the degrees of freedom on vertices,
edges, and faces.

It is straightforward to check that in the sequence

R
⊂−−−→ Sh

grad−−−→ Wh
curl−−−→ Vh

div−−−→ Qh −−−→ 0 (22)

each space is mapped into the succeeding space by the given operator, and
that the sequence is a complex. Furthermore, if � is contractible the sequence
is exact. In fact, this is an easy consequence of the analogous property for
more standard discrete spaces. To see this, let S0

h be the standard continuous
piecewise linear space with respect to the triangulation Th, W 0

h the second
lowest order Nédélec space corresponding to piecewise polynomials in N1,
and V 0

h the space of piecewise linear vector fields with H (div) continuity,
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i.e.,V 0
h is the lowest order space in Nédélec’s second family. For these spaces

it is well-known that the sequence

R
⊂−−−→ S0

h

grad−−−→ W 0
h

curl−−−→ V 0
h

div−−−→ Qh −−−→ 0 (23)

is exact; cf. [1,13]. By definition the restriction vT of an element v ∈ Vh to
a tetrahedron T ∈ Th is of the form

vT = v0
T + curl(bT qT ) with v0

T , qT ∈ P
3
1. (24)

However, on each face f ∈ �2(T ) the normal component of curl(bT qT ) is
zero. Therefore, the continuity requirements on v imply that the piecewise
polynomial v0 has continuous normal components, and hence v0 is an el-
ement of the space V 0

h . Furthermore, the weak continuity of the tangential
components of v implies that, for each face f of Th,∫

f

[(v0 + curl bq)t ] · r dxf = 0 , r ∈ RM(f ), (25)

where [·] denote the jump across f .
Assume now that div v = 0. In order to show that the sequence (22) is

exact we need to show that there isw ∈ Wh such that curlw = v. However,
if div v = 0 and v is of the form (24) then div v0 = 0, and by the exactness
of the sequence (23) we conclude that there is w0 ∈ W 0

h such that

vT = curl(w0
T + bT qT )

on each triangle T . Furthermore, from (25) we obtain∫
f

[
(curlw0 + bq)t

] · r dxf = 0 , r ∈ RM(f ).

Hence, if w = w0 + bq we get from (14)–(15) that w ∈ Wh.
We can use a similar argument to show that all curl–free elements ofWh

are gradients of functions in Sh. First note that any w ∈ Wh is of the form

wT = w0
T + grad(bT pT ) + bT qT (26)

on each tetrahedron T , where w0
T is in the class N1 and p and q are linear.

Furthermore, w0 ∈ W 0
h since the other two terms on the right-hand side of

(26) vanish for the standard degrees of freedom of W 0
h . If curlw = 0 then

clearly

curlw0 = 0 and curl bq = 0.

However, if curl bq = 0 then, in particular, the tangential component
(curl bq)t = 0 on all faces, and hence, by (14)–(15), the element bq of
Wh is zero. Furthermore, since curlw0 = 0 we can use (23) to obtain w0 =
grad s0 for a suitable s0 ∈ Sh,0. So w = grad s, where s = s0 + bp ∈ Sh.
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3.4 Commuting diagrams

The finite element spaces Sh,Wh,Vh, and Qh introduced above are subspaces
of H 1,H (curl),H (div), and L2, respectively. In addition, due to additional
weak continuity over inter-element faces, the spaces Sh, Wh, and Vh are
nonconforming approximations of H 2, H 1(curl), and H 1.

The degrees of freedom, or more precisely the moment conditions, spec-
ified above define canonical interpolation operators

�S
h : H 2 → Sh, �W

h : H 1(curl) → Wh, �V
h : H 1 → Vh,

and �
Q
h : L2 → Qh. Furthermore, the following diagram commutes:

R −−−→ H 2 grad−−−→ H 1(curl)
curl−−−→ H 1 div−−−→ L2 −−−→ 0⏐⏐��S

h

⏐⏐��W
h

⏐⏐��V
h

⏐⏐��
Q
h

R −−−→ Sh

grad−−−→ Wh
curl−−−→ Vh

div−−−→ Qh −−−→ 0

In other words the identities

grad �S
h = �W

h grad, curl�W
h = �V

h curl, div�V
h = �

Q
h div

all hold. It is a straightforward and standard argument to verify these iden-
tities, and we therefore omit the details here.

In the analysis for the finite element solutions, we need the corresponding
spaces to have homogeneous boundary conditions. Hence, the complex (7)
should be replaced by

0
⊂−−−→ H 2

0
grad−−−→ H 1

0 (curl)
curl−−−→ H 1

0
div−−−→ L2

0 −−−→ 0,

(27)

where

H 1
0 (curl) = {w ∈ H 1

0 : (curlw)t = 0 on ∂�}.
A corresponding discrete, nonconforming, approximation is obtained by
restricting the spaces Sh,Wh, andVh to the subspaces with vanishing degrees
of freedom on the boundary ∂�. For example, the space Vh is replaced by
Vh,0 given as all v ∈ Vh such that∫

f

(v · n)p dxf = 0 , p ∈ P1(f ),

∫
f

vt · r dxf = 0 , r ∈ RM(f ),

for all faces f in ∂�. Hence, v ·n vanishes on the boundary for any v ∈ Vh,0,
while the tangential component is zero in a weak sense. Hence, Vh,0 is
contained in H0(div), where

H0(div) = {v ∈ H (div) : v · n = 0 on ∂�}.
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Furthermore, Vh,0 is a nonconforming approximation of H 1
0 . We also let

Qh,0 = Qh ∩ L2
0.

As above we obtain the commuting diagram

0 −−−→ H 2
0

grad−−−→ H 1
0 (curl)

curl−−−→ H 1
0

div−−−→ L2
0 −−−→ 0⏐⏐��S

h

⏐⏐��W
h

⏐⏐��V
h

⏐⏐��
Q
h

0 −−−→ Sh,0
grad−−−→ Wh,0

curl−−−→ Vh,0
div−−−→ Qh,0 −−−→ 0

where the upper and lower rows are complexes.

4 Uniform error estimates for the Darcy–Stokes system

In this section we discuss how the finite element spaceVh,0 ×Qh,0 contained
in H0(div) × L2

0 can be used to construct a discretization of the singular
perturbation problem (1) in R

3 with uniform convergence properties with
respect to the parameter ε. The results are similar to the corresponding results
obtained in [10] for the two-dimensional case. Therefore, the discussion here
is brief, and we only focus attention on the parts where the analysis from
[10] needs to be modified essentially.

In order to avoid technical difficulties, we restrict the discussion to the
case when the source term g = 0. The standard weak formulation of the
system (1) is to find (u, p) ∈ H 1

0 × L2
0 such that

aε(u, v) + (p, div v) = (f , v) , v ∈ H 1
0 ,

(divu, q) = 0 , q ∈ L2
0.

(28)

Here we assume that data f ∈ H−1 ≡ (H 1
0 )∗ and aε is the bilinear form

aε(u, v) = (u, v) + ε2(Du,Dv),

defined onH 1
0 ×H 1

0 . The corresponding finite element solution (uh, ph) ∈
Vh,0 × Qh,0 is given by the equation

aε(uh, v) + (ph, div v) = (f , v) , v ∈ Vh,0,

(divuh, q) = 0 , q ∈ Qh,0.
(29)

As Vh,0 is nonconforming, the bilinear form aε(·, ·) is understood to be the
sum of the corresponding integrals over each tetrahedron of Th. Recall that
for a smooth vector field v

�v = grad div v − curl curl v,

and, as a consequence,

(Du,Dv) = (divu, div v) + (curlu, curl v),u ∈ H 1
0 , v ∈ H 1.
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If u is the solution of (28), we define the consistency error by

Eε(u, v) = aε(u, v) + (p, div v) − (f , v), v ∈ Vh,0. (30)

From Green’s formula we obtain

Eε(u, v) = ε2
∑
f ∈�h

2

∫
f

(curlu) [v × n] dxf . (31)

Here, �h
2 denotes all the faces for the tetrahedral mesh Th.

The uniform error analysis of the discretization of the system (1) is based
on the ε-dependent function space (H0(div)∩ε·H 1

0 )×L2
0.The corresponding

norm is given by

|||v|||2ε = ‖v‖2
0 + ‖ div v‖2

0 + ε2‖Dv‖2
0.

For convenience we also introduce ‖ · ‖a as the norm associated with the
bilinear form aε. For elements of Vh,0 these norms should be interpreted as
the corresponding broken norms.

Using the commuting diagram property div�V
h = �

Q
h div and the H 1

boundedness of �V
h we obtain that there exists a constant α1 > 0, indepen-

dent of h and ε, such that

sup
v∈Vh,0

(q, div v)

|||v|||ε ≥ sup
v∈Vh,0

(q, div v)

|||v|||1 ≥ α1‖q‖0 for all q ∈ Qh,0. (32)

Hence, the proper uniform inf–sup condition is satisfied.

Remark 2 Recall from [10] that most standard Stokes elements do not lead
to a uniformly stable discretization in the present case. This is due to the
fact that the bilinear form aε is not uniformly coercive with respect to the
energy norm ||| · |||ε on the space of weakly divergence-free vector fields, i.e.,
the second Brezzi condition is violated. However, in the present case, where
the divergence operator maps Vh,0 onto Qh,0, this condition is obvious. In
particular, divu = divuh = 0.

Taking v = �V
h u− uh in the first equation of (29) and (30), we obtain

‖u− uh‖a ≤ 2

(
‖u−�V

h u‖a + sup
v∈Vh,0

|Eε,h(u, v)|
‖v‖a

)
. (33)

Since the polynomial space V (T ) contains all linears, and the family {Th}
is shape-regular, we see from a scaling argument that

‖�V
h v − v‖a ≤ c(h2 + εh)‖v‖2, v ∈ H 2 ∩H 1

0 , (34)
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where the constant c is independent of v, ε and h. Under the assumption
that the solution u of (28) is in H 2 ∩H 1

0 we can use a trace theorem and a
scaling argument (cf. [10, Lemma 5.1]), to conclude that

sup
v∈Vh,0

|Eε(u, v)|
‖v‖a

≤ c ε

{
h‖ curlu‖1

h1/2‖ curlu‖1/2
1 ‖ curlu‖1/2

0 .
(35)

By combining (32)–(35) we obtain the following error estimates (cf. [10,
Theorem 5.1]):

‖u− uh‖0 + ε‖ curl(u− uh)‖0 ≤ c(h2 + εh)‖u‖2, (36)

‖p − ph‖0 ≤ c h(‖p‖1 + (ε + h)‖u‖2). (37)

These estimates are uniform in the sense that the constant c is independent
of u, ε and h. However, in general the term ‖u‖2 is not bounded uniformly
in ε. A real uniform estimate, corresponding to a result obtained in [10] in
the two-dimensional case, is of the form

‖u− uh‖0 + ε‖ u− uh‖1 + ‖p − ph‖0 ≤ c h1/2‖f ‖1. (38)

As illustrated by the development in [10] the key ingredient in deriving
such an estimate is proper uniform bounds on the solution u; cf. Lemma 5
below. However, the argument given in [10] for this result cannot easily
be extended to three dimensions. For completeness, we therefore give an
alternative proof here, valid in both two and three dimensions.

4.1 A uniform estimate

Throughout this section we assume that the domain � is a convex polyhe-
dron. Then we have the following uniform error estimate.

Theorem 1 If � is convex and f ∈ H 1(�), then the uniform error estimate
(38) holds with a constant c independent of h and ε.

The key ingredient to prove this result is a uniform regularity estimate.
By an energy argument it is straightforward to show that the weak solution
(u, p) of (1) satifies the uniform bound

|||u|||ε + ‖p‖0 ≤ c ‖f ‖0. (39)

Hence, for a fixed f ∈ L2, the quantity ‖Du‖0 is at most proportional to
ε−1 as ε tends to zero. However, if f is more regular an improved estimate
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can be obtained. To see this we let (u0, p0) ∈ H0(div) × L2
0 be the weak

solution of the corresponding reduced problem:

u0 − grad p0 = f in �,

divu0 = 0 in �,

u0 · n = 0 on ∂�.

(40)

Below we consider this problem with f ∈ H 1. Hence, it is an immediate
consequence of elliptic regularity that (u0, p0) is a classical solution in
(H 1 ∩H0(div)) × H 2, with corresponding norms depending continuously
on ‖f ‖1.

Lemma 5 Assume that � is convex and thatf ∈ H 1. There exists a constant
c > 0, independent of ε and f , such that

ε1/2‖u‖1 + ε3/2‖u‖2 ≤ c ‖f ‖1, (41)

‖u− u0‖0 + ‖p − p0‖1 ≤ c ε1/2‖f ‖1. (42)

Proof When � is convex the solution of the standard Stokes problem

−�ū− grad p̄ = f in �,

div ū = 0 in �,

ū = 0 on ∂�

(43)

satisfies the regularity estimate (cf. [8])

‖ū‖2 + ‖p̄‖1 ≤ c ‖f ‖0. (44)

By considering the pair (u, ε−2(p − p0)) as a weak solution of the system

−�u− grad(ε−2(p − p0)) = −ε−2(u− u0) ,

divu = 0,
(45)

we see from (44) that u ∈ H 1
0 ∩H 2, p ∈ L2

0 ∩ H 1 and

ε2‖u‖2 + ‖p − p0‖1 ≤ c ‖u− u0‖0 (46)

with constant c independent of ε. Due to the enhanced regularity of the
solution u we obtain from (45) that

aε(u, v) − (u0, v) + (p − p0, div v) =
〈
∂u

∂n
, v

〉
, v ∈ H 1 ∩H0(div),

where, 〈·, ·〉 is the L2 inner product on ∂�. For v = u− u0 this gives

‖u− u0‖2
0 + ε2‖Du‖2

0 = ε2(Du,Du0) + ε2

〈
∂u

∂n
,u0

〉
. (47)
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By using a standard trace inequality we further obtain

ε2〈∂u
∂n

,u0〉 ≤ c ε2‖u‖1/2
1 ‖u‖1/2

2 ‖u0‖1

≤ cδε‖u0‖2
1 + δε3‖u‖1‖u‖2

≤ cδε‖u0‖2
1 + δε2

2
‖u‖2

1 + δε4

2
‖u‖2

2 (48)

≤ cδε‖f ‖2
1 + C δ

(
ε2‖Du‖2

0 + ‖u− u0‖2
0

)
,

where we have used (46) and the H 1-regularity of u0 in the last step. Here
both the constants C and cδ are independent of ε, but cδ depends continuously
on δ. For the first term on the right-hand side of (47) we have

ε2(Du,Du0) ≤ ε2

4
‖Du‖2

0 + ε2‖Du0‖2
0 ≤ ε2

4
‖Du‖2

0 + c ε2‖f ‖2
1,

where the constant c is independent of ε. However, together with (47) and
(48), and by choosing δ sufficiently small, this implies that

‖u− u0‖2
0 + ε2‖Du‖2

0 ≤ c ε‖f ‖2
1 (49)

with c independent of ε. Together with (46) this implies the desired estimates
(41) and (42). �


Proof of Theorem 1: From Lemma 5 and (35), we see that

sup
vh∈Vh,0

|Eε(u, vh)|
‖vh‖a

≤ c h
1
2 ε‖ curlu‖ 1

2
1 ‖ curlu‖ 1

2
0 ≤ c h

1
2 ‖f ‖1.

Furthermore, since the interpolation operator �V
h is defined from traces on

the two-dimensional faces in �h
2, the interpolation estimate

‖�V
h v − v‖0 ≤ c h1/2‖v‖1/2

0 ‖v‖1/2
1 ,

follows from a standard trace inequality and scaling. From this estimate,
and by arguing exactly as in the proof of Theorem 6.1 of [10], we derive

‖u−�V
h u‖0 + ε‖u−�V

h u‖1 ≤ c h
1
2 ‖f ‖1.

Combining the two estimates above with the inf-sup condition (32) and error
bound (33), we obtain the desired uniform estimate (38). �
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