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Abstract

This paper describes a method for learn-
ing the countability preferences of English
nouns from raw text corpora. The method
maps the corpus-attested lexico-syntactic
properties of each noun onto a feature
vector, and uses a suite of memory-based
classifiers to predict membership in 4
countability classes. We were able to as-
sign countability to English nouns with a
precision of 94.6%.

1 Introduction

This paper is concerned with the task of knowledge-
rich lexical acquisition from unannotated corpora,
focusing on the case of countability in English.
Knowledge-rich lexical acquisition takes unstruc-
tured text and extracts out linguistically-precise cat-
egorisations of word and expression types. By
combining this with a grammar, we can build
broad-coverage deep-processing tools with a min-
imum of human effort. This research is close
in spirit to the work of Light (1996) on classi-
fying the semantics of derivational affixes, and
Siegel and McKeown (2000) on learning verb as-
pect.

In English, nouns heading noun phrases are typ-
ically eithercountableor uncountable (also called
count and mass). Countable nouns can be modi-
fied by denumerators, prototypically numbers, and
have a morphologically marked plural form:one
dog, two dogs. Uncountable nouns cannot be modi-
fied by denumerators, but can be modified by unspe-
cific quantifiers such asmuch, and do not show any
number distinction (prototypically being singular):
*one equipment, some equipment, *two equipments.
Many nouns can be used in countable or uncountable
environments, with differences in interpretation.

We call the lexical property that determines which
uses a noun can have the noun’s countability prefer-
ence. Knowledge of countability preferences is im-

portant both for the analysis and generation of En-
glish. In analysis, it helps to constrain the inter-
pretations of parses. In generation, the countabil-
ity preference determines whether a noun can be-
come plural, and the range of possible determin-
ers. Knowledge of countability is particularly im-
portant in machine translation, because the closest
translation equivalent may have different countabil-
ity from the source noun. Many languages, such
as Chinese and Japanese, do not mark countability,
which means that the choice of countability will be
largely the responsibility of the generation compo-
nent (Bond, 2001). In addition, knowledge of count-
ability obtained from examples of use is an impor-
tant resource for dictionary construction.

In this paper, we learn the countability prefer-
ences of English nouns from unannotated corpora.
We first annotate them automatically, and then train
classifiers using a set of gold standard data, taken
from COMLEX (Grishman et al., 1998) and the trans-
fer dictionaries used by the machine translation sys-
tem ALT-J/E (Ikehara et al., 1991). The classifiers
and their training are described in more detail in
Baldwin and Bond (2003). These are then run over
the corpus to extract nouns as members of four
classes —countable: dog; uncountable: furniture; bi-
partite: [pair of] scissorsandplural only: clothes.

We first discuss countability in more detail (§ 2).
Then we present the lexical resources used in our ex-
periment (§ 3). Next, we describe the learning pro-
cess (§ 4). We then present our results and evalu-
ation (§ 5). Finally, we discuss the theoretical and
practical implications (§ 6).

2 Background

Grammatical countability is motivated by the se-
mantic distinction betweenobject and substance
reference (also known asbounded/non-boundedor
individuated/non-individuated). It is a subject of
contention among linguists as to how far grammat-
ical countability is semantically motivated and how
much it is arbitrary (Wierzbicka, 1988).



The prevailing position in the natural language
processing community is effectively to treat count-
ability as though it were arbitrary and encode it as
a lexical property of nouns. The study of countabil-
ity is complicated by the fact that most nouns can
have their countability changed: either converted by
a lexical rule or embedded in another noun phrase.
An example of conversion is the so-called universal
packager, a rule which takes an uncountable noun
with an interpretation as a substance, and returns a
countable noun interpreted as a portion of the sub-
stance:I would like two beers. An example of em-
bedding is the use of a classifier, e.g. uncountable
nouns can be embedded in countable noun phrases
as complements of classifiers:one pieceof equip-
ment.

Bond et al. (1994) suggested a division of count-
ability into five major types, based on Allan (1980)’s
noun countability preferences (NCPs). Nouns which
rarely undergo conversion are marked as eitherfully
countable, uncountable or plural only. Fully countable
nouns have both singular and plural forms, and can-
not be used with determiners such asmuch, little, a
little, lessandovermuch. Uncountable nouns, such
as furniture, have no plural form, and can be used
with much. Plural only nouns never head a singular
noun phrase:goods, scissors.

Nouns that are readily converted are marked as ei-
ther strongly countable (for countable nouns that can
be converted to uncountable, such ascake) or weakly
countable (for uncountable nouns that are readily
convertible to countable, such asbeer).

NLP systems must list countability for at least
some nouns, because full knowledge of the refer-
ent of a noun phrase is not enough to predict count-
ability. There is also a language-specific knowl-
edge requirement. This can be shown most sim-
ply by comparing languages: different languages en-
code the countability of the same referent in dif-
ferent ways. There is nothing about the concept
denoted bylightning, e.g., that rules out *a light-
ning being interpreted asa flash of lightning. In-
deed, the German and French translation equivalents
are fully countable (ein Blitz andun éclair respec-
tively). Even within the same language, the same
referent can be encoded countably or uncountably:
clothes/clothing, things/stuff, jobs/work.

Therefore, we must learn countability classes
from usage examples in corpora. There are several
impediments to this approach. The first is that words
are frequently converted to different countabilities,
sometimes in such a way that other native speak-
ers will dispute the validity of the new usage. We

do not necessarily wish to learn such rare examples,
and may not need to learn more common conver-
sions either, as they can be handled by regular lexi-
cal rules (Copestake and Briscoe, 1995). The second
problem is that some constructions affect the appar-
ent countability of their head: for example, nouns
denoting a role, which are typically countable, can
appear without an article in some constructions (e.g.
We elected him treasurer). The third is that different
senses of a word may have different countabilities:
interest “a sense of concern with and curiosity” is
normally countable, whereasinterest“fixed charge
for borrowing money” is uncountable.

There have been at several earlier approaches
to the automatic determination of countabil-
ity. Bond and Vatikiotis-Bateson (2002) determine
a noun’s countability preferences from its seman-
tic class, and show that semantics predicts (5-way)
countability 78% of the time with their ontology.
O’Hara et al. (2003) get better results (89.5%) using
the much larger Cyc ontology, although they only
distinguish between countable and uncountable.

Schwartz (2002) created an automatic countabil-
ity tagger (ACT) to learn noun countabilities from
the British National Corpus. ACT looks at deter-
miner co-occurrence in singular noun chunks, and
classifies the noun if and only if it occurs with a de-
terminer which can modify only countable or un-
countable nouns. The method has a coverage of
around 50%, and agrees withCOMLEX for 68% of
the nouns marked countable and with theALT-J/E
lexicon for 88%. Agreement was worse for uncount-
able nouns (6% and 44% respectively).

3 Resources

Information about noun countability was obtained
from two sources. One wasCOMLEX 3.0 (Grish-
man et al., 1998), which has around 22,000 noun
entries. Of these, 12,922 are marked as beingcount-
able (COUNTABLE) and 4,976 as beinguncountable
(NCOLLECTIVEor :PLURAL *NONE*). The remainder
are unmarked for countability.

The other was the common noun part ofALT-
J/E’s Japanese-to-English semantic transfer dictio-
nary (Bond, 2001). It contains 71,833 linked
Japanese-English pairs, each of which has a value
for the noun countability preference of the English
noun. Considering only unique English entries with
different countability and ignoring all other informa-
tion gave 56,245 entries. Nouns in theALT-J/E dic-
tionary are marked with one of the five major count-
ability preference classes described in Section 2. In
addition to countability, default values for number



and classifier (e.g.blade for grass: blade of grass)
are also part of the lexicon.

We classify words into four possible classes, with
some words belonging to multiple classes. The first
class iscountable: COMLEX ’s COUNTABLEand ALT-
J/E’s fully, strongly and weakly countable. The sec-
ond class isuncountable: COMLEX ’s NCOLLECTIVEor
:PLURAL *NONE* and ALT-J/E ’s strongly and weakly
countable anduncountable.

The third class isbipartite nouns. These can only
be plural when they head a noun phrase (trousers),
but singular when used as a modifier (trouser leg).
When they are denumerated they usepair: a pair of
scissors. COMLEX does not have a feature to mark
bipartite nouns;trouser, for example, is listed as
countable. Nouns inALT-J/E markedplural only with
a default classifier ofpair are classified asbipartite.

The last class isplural only nouns: those that only
have a plural form, such asgoods. They can nei-
ther be denumerated nor modified bymuch. Many
of these nouns, such asclothes, use the plural form
even as modifiers (a clothes horse). The word
clothescannot be denumerated at all. Nouns marked
:SINGULAR *NONE* in COMLEX and nouns inALT-
J/E markedplural only without the default classifier
pair are classified asplural only. There was some
noise in theALT-J/E data, so this class was hand-
checked, giving a total of 104 entries; 84 of these
were attested in the training data.

Our classification of countability is a subset of
ALT-J/E ’s, in that we use only the three basicALT-
J/E classes ofcountable, uncountable and plural only,
(although we treatbipartite as a separate class, not a
subclass). As we derive our countability classifica-
tions from corpus evidence, it is possible to recon-
struct countability preferences (i.e.fully, strongly, or
weakly countable) from the relative token occurrence
of the different countabilities for that noun.

In order to get an idea of the intrinsic difficulty of
the countability learning task, we tested theagree-
ment between the two resources in the form of clas-
sification accuracy. That is, we calculate the average
proportion of (both positive and negative) countabil-
ity classifications over which the two methods agree.
E.g., COMLEX lists tomatoas being onlycountable
whereALT-J/E lists it as being bothcountable andun-
countable. Agreement for this one noun, therefore, is
75.0%, as there is agreement for the classes ofcount-
able, plural only andbipartite (with implicit agreement
as to negative membership for the latter two classes),
but not foruncountable. Averaging over the total set
of nouns countability-classified in both lexicons, the
mean was 93.8%. Almost half of the disagreements

came from words with two countabilities inALT-J/E
but only one inCOMLEX .

4 Learning Countability

The basic methodology employed in this research is
to identify lexical and/or constructional features as-
sociated with the countability classes, and determine
the relative corpus occurrence of those features for
each noun. We then feed the noun feature vectors
into a classifier and make a judgement on the mem-
bership of the given noun in each countability class.

In order to extract the feature values from corpus
data, we need the basic phrase structure, and partic-
ularly noun phrase structure, of the source text. We
use three different sources for this phrase structure:
part-of-speech tagged data, chunked data and fully-
parsed data, as detailed below.

The corpus of choice throughout this paper is the
written component of the British National Corpus
(BNC version 2, Burnard (2000)), totalling around
90m w-units (POS-tagged items). We chose this be-
cause of its good coverage of different usages of En-
glish, and thus of different countabilities. The only
component of the original annotation we make use
of is the sentence tokenisation.

Below, we outline the features used in this re-
search and methods of describing feature interac-
tion, along with the pre-processing tools and ex-
traction techniques, and the classifier architecture.
The full range of different classifier architectures
tested as part of this research, and the experi-
ments to choose between them are described in
Baldwin and Bond (2003).

4.1 Feature space

For eachtarget noun, we compute a fixed-length
feature vector based on a variety of features intended
to capture linguistic constraints and/or preferences
associated with particular countability classes. The
feature space is partitioned up intofeature clusters,
each of which is conditioned on the occurrence of
the target noun in a given construction.

Feature clusters take the form of one- or two-
dimensional feature matrices, with each dimension
describing a lexical or syntactic property of the
construction in question. In the case of a one-
dimensional feature cluster (e.g. noun occurring in
singular or plural form), each component feature
feats in the cluster is translated into the 3-tuple:

〈freq(feats|word),
freq(feats|word)

freq(word)
,

freq(feats|word)∑
ifreq(feati|word)

〉



Feature cluster
(base feature no.)

Countable Uncountable Bipartite Plural only

Head number (2) S,P S P P
Modifier number (2) S,P S S P
Subj–V agreement (2× 2) [S,S],[P,P] [S,S] [P,P] [P,P]
Coordinate number (2× 2) [S,S],[P,S],[P,P] [S,S],[S,P] [P,S],[P,P] [P,S],[P,P]
N of N (11× 2) [100s,P], . . . [lack,S], . . . [pair,P], . . . [rate,P], . . .
PPs (52× 2) [per,-DET], . . . [in,-DET], . . . — —
Pronoun (12× 2) [it,S],[they,P], . . . [it,S], . . . [they,P], . . . [they,P], . . .
Singular determiners (10) a,each, . . . much, . . . — —
Plural determiners (12) many, few, . . . — — many, . . .
Neutral determiners (11× 2) [less,P], . . . [BARE,S], . . . [enough,P], . . . [all,P], . . .

Table 1: Predicted feature-correlations for each feature cluster (S=singular,P=plural)

In the case of a two-dimensional feature cluster
(e.g. subject-position noun number vs. verb number
agreement), each component featurefeats,t is trans-
lated into the 5-tuple:

〈freq(feats,t|word),
freq(feats,t|word)

freq(word)
,

freq(feats,t|word)∑
i,j freq(feati,j |word)

,

freq(feats,t|word)∑
ifreq(feati,t|word)

,
freq(feats,t|word)∑

j freq(feats,j |word)
〉

See Baldwin and Bond (2003) for further details.
The following is a brief description of each fea-

ture cluster and its dimensionality (1D or 2D). A
summary of the number of base features and predic-
tion of positive feature correlations with countability
classes is presented in Table 1.

Head noun number:1D the number of the target
noun when it heads an NP (e.g.a shaggydog
= SINGULAR)

Modifier noun number: 1D the number of the tar-
get noun when a modifier in an NP (e.g.dog
food= SINGULAR)

Subject–verb agreement:2D the number of the tar-
get noun in subject position vs. number agree-
ment on the governing verb (e.g.thedogbarks
= 〈SINGULAR,SINGULAR〉)

Coordinate noun number:2D the number of the
target noun vs. the number of the head
nouns of conjuncts (e.g.dogs and mud =
〈PLURAL,SINGULAR〉)

N of N constructions:2D the number of the target
noun (N) vs. the type of the N in an N

of N construction (e.g.the type of dog =
〈TYPE,SINGULAR〉). We have identified a total
of 11 N types for use in this feature cluster
(e.g.COLLECTIVE, LACK, TEMPORAL).

Occurrence in PPs:2D the presence or absence of
a determiner (±DET) when the target noun oc-
curs in singular form in a PP (e.g.per dog
= 〈per,−DET〉). This feature cluster exploits
the fact that countable nouns occur determin-
erless in singular form with only very partic-
ular prepositions (e.g.by bus, *on bus, *with
bus) whereas with uncountable nouns, there are
fewer restrictions on what prepositions a target
noun can occur with (e.g.on furniture, with fur-
niture, ?by furniture).

Pronoun co-occurrence:2D what personal and
possessive pronouns occur in the same sen-
tence as singular and plural instances of the
target noun (e.g.The dog ate its dinner =
〈its,SINGULAR〉). This is a proxy for pronoun
binding effects, and is determined over a total
of 12 third-person pronoun forms (normalised
for case, e.g.he, their, itself).

Singular determiners:1D what singular-selecting
determiners occur in NPs headed by the tar-
get noun in singular form (e.g.a dog = a).
All singular-selecting determiners considered
are compatible with only countable (e.g.an-
other, each) or uncountable nouns (e.g.much,
little). Determiners compatible with either are
excluded from the feature cluster (cf.this dog,
this information). Note that the term “deter-
miner” is used loosely here and below to denote
an amalgam of simplex determiners (e.g.a), the
null determiner, complex determiners (e.g.all
the), numeric expressions (e.g.one), and adjec-
tives (e.g.numerous), as relevant to the partic-
ular feature cluster.

Plural determiners:1D what plural-selecting deter-
miners occur in NPs headed by the target noun
in plural form (e.g. few dogs= few). As
with singular determiners, we focus on those
plural-selecting determiners which are compat-



ible with a proper subset of count, plural only
and bipartite nouns.

Non-bounded determiners:2D what non-bounded
determiners occur in NPs headed by the target
noun, and what is the number of the target noun
for each (e.g.more dogs = 〈more,PLURAL〉).
Here again, we restrict our focus to non-
bounded determiners that select for singular-
form uncountable nouns (e.g.sufficient furni-
ture) and plural-form countable, plural only
and bipartite nouns (e.g.sufficient dogs).

The above feature clusters produce a combined
total of 1,284 individual feature values.

4.2 Feature extraction

In order to extract the features described above,
we need some mechanism for detecting NP and
PP boundaries, determining subject–verb agreement
and deconstructing NPs in order to recover con-
juncts and noun-modifier data. We adopt three ap-
proaches. First, we use part-of-speech (POS) tagged
data and POS-based templates to extract out the nec-
essary information. Second, we use chunk data
to determine NP and PP boundaries, and medium-
recall chunk adjacency templates to recover inter-
phrasal dependency. Third, we fully parse the data
and simply read off all necessary data from the de-
pendency output.

With the POS extraction method, we first Penn-
tagged the BNC using an fnTBL-based tagger (Ngai
and Florian, 2001), training over the Brown and
WSJ corpora with some spelling, number and hy-
phenation normalisation. We then lemmatised this
data using a version of morph (Minnen et al., 2001)
customised to the Penn POS tagset. Finally, we
implemented a range of high-precision, low-recall
POS-based templates to extract out the features from
the processed data. For example, NPs are in many
cases recoverable with the following Perl-style reg-
ular expression over Penn POS tags:(PDT)* DT

(RB|JJ[RS]?|NNS?)* NNS? [ˆN] .
For the chunker, we ran fnTBL over the lem-

matised tagged data, training over CoNLL 2000-
style (Tjong Kim Sang and Buchholz, 2000) chunk-
converted versions of the full Brown and WSJ cor-
pora. For the NP-internal features (e.g. determin-
ers, head number), we used the noun chunks directly,
or applied POS-based templates locally within noun
chunks. For inter-chunk features (e.g. subject–verb
agreement), we looked at only adjacent chunk pairs
so as to maintain a high level of precision.

As the full parser, we used RASP (Briscoe and
Carroll, 2002), a robust tag sequence grammar-
based parser. RASP’s grammatical relation output
function provides the phrase structure in the form
of lemmatised dependency tuples, from which it is
possible to read off the feature information. RASP
has the advantage that recall is high, although pre-
cision is potentially lower than chunking or tagging
as the parser is forced into resolving phrase attach-
ment ambiguities and committing to a single phrase
structure analysis.

Although all three systems map onto an identi-
cal feature space, the feature vectors generated for a
given target noun diverge in content due to the dif-
ferent feature extraction methodologies. In addition,
we only consider nouns that occur at least 10 times
as head of an NP, causing slight disparities in the
target noun type space for the three systems. There
were sufficient instances found by all three systems
for 20,530 common nouns (out of 33,050 for which
at least one system found sufficient instances).

4.3 Classifier architecture

The classifier design employed in this research is
four parallel supervised classifiers, one for each
countability class. This allows us to classify a sin-
gle noun into multiple countability classes, e.g.de-
mand is both countable and uncountable. Thus,
rather than classifying a given target noun accord-
ing to the unique most plausible countability class,
we attempt to capture its full range of countabilities.
Note that the proposed classifier design is that which
was found by Baldwin and Bond (2003) to be opti-
mal for the task, out of a wide range of classifier
architectures.

In order to discourage the classifiers from over-
training on negative evidence, we constructed the
gold-standard training data from unambiguously
negative exemplars and potentially ambiguous pos-
itive exemplars. That is, we would like classifiers
to judge a target noun as not belonging to a given
countability class only in the absence of positive ev-
idence for that class. This was achieved in the case
of countable nouns, for instance, by extracting all
countable nouns from each of theALT-J/E andCOM-
LEX lexicons. As positive training exemplars, we
then took the intersection of those nouns listed as
countable in both lexicons (irrespective of member-
ship in alternate countability classes); negative train-
ing exemplars, on the other hand, were those con-
tained in both lexicons but not classified as count-
able in either.1 The uncountable gold-standard data

1Any nouns not annotated for countability inCOMLEX were



Class Positive data Negative data Baseline
Countable 4,342 1,476 .746
Uncountable 1,519 5,471 .783
Bipartite 35 5,639 .994
Plural only 84 5,639 .985

Table 2: Details of the gold-standard data

was constructed in a similar fashion. We used the
ALT-J/E lexicon as our source of plural only and bi-
partite nouns, using all the instances listed as our
positive exemplars. The set of negative exemplars
was constructed in each case by taking the intersec-
tion of nouns not contained in the given countability
class inALT-J/E , with all annotated nouns with non-
identical singular and plural forms inCOMLEX .

Having extracted the positive and negative exem-
plar noun lists for each countability class, we filtered
out all noun lemmata not occurring in the BNC.

The final make-up of the gold-standard data for
each of the countability classes is listed in Table 2,
along with a baseline classification accuracy for
each class (“Baseline”), based on the relative fre-
quency of the majority class (positive or negative).
That is, for bipartite nouns, we achieve a 99.4% clas-
sification accuracy by arbitrarily classifying every
training instance as negative.

The supervised classifiers were built using
TiMBL version 4.2 (Daelemans et al., 2002), a
memory-based classification system based on thek-
nearest neighbour algorithm. As a result of exten-
sive parameter optimisation, we settled on the de-
fault configuration for TiMBL withk set to 9.2

5 Results and Evaluation

Evaluation is broken down into two components.
First, we determine the optimal classifier configura-
tion for each countability class by way of stratified
cross-validation over the gold-standard data. We
then run each classifier in optimised configuration
over the remaining target nouns for which we have
feature vectors.

5.1 Cross-validated results

First, we ran the classifiers over the full feature set
for the three feature extraction methods. In each
case, we quantify the classifier performance by way
of 10-fold stratified cross-validation over the gold-
standard data for each countability class. The fi-

ignored in this process so as to assure genuinely negative
exemplars.

2We additionally experimented with the kernel-based
TinySVM system, but found TiMBL to be superior in all cases.

Class System Accuracy (e.r.) F-score
Tagger∗ .928 (.715) .953
Chunker .933 (.734) .956Countable
RASP∗ .923 (.698) .950

Combined .939 (.759) .960
Tagger .945 (.746) .876

Chunker∗ .945 (.747) .876Uncountable
RASP∗ .944 (.743) .872

Combined .952 (.779) .892
Tagger .997 (.489) .752
Chunker .997 (.460) .704Bipartite
RASP .997 (.488) .700

Combined .996 (.403) .722
Tagger .989 (.275) .558

Chunker .990 (.299) .568Plural only
RASP∗ .989 (.227) .415

Combined .990 (.323) .582

Table 3: Cross-validation results

nal classification accuracy and F-score3 are averaged
over the 10 iterations.

The cross-validated results for each classifier are
presented in Table 3, broken down into the differ-
ent feature extraction methods. For each, in addi-
tion to the F-score and classification accuracy, we
present the relative error reduction (e.r.) in classifi-
cation accuracy over the majority-class baseline for
that gold-standard set (see Table 2). For each count-
ability class, we additionally ran the classifier over
the concatenated feature vectors for the three basic
feature extraction methods, producing a 3,852-value
feature space (“Combined”).

Given the high baseline classification accuracies
for each gold-standard dataset, the most revealing
statistics in Table 3 are the error reduction and F-
score values. In all cases other than bipartite, the
combined system outperformed the individual sys-
tems. The difference in F-score is statistically sig-
nificant (based on the two-tailedt-test,p < .05) for
the asterisked systems in Table 3. For the bipartite
class, the difference in F-score is not statistically sig-
nificant between any system pairing.

There is surprisingly little separating the tagger-,
chunker- and RASP-based feature extraction meth-
ods. This is largely due to the precision/recall trade-
off noted above for the different systems.

5.2 Open data results

We next turn to the task of classifying all unseen
common nouns using the gold-standard data and the
best-performing classifier configurations for each
countability class (indicated in bold in Table 3).4

3Calculated according to:2·precision·recall
precision+recall

4In each case, the classifier is run over the best-
500 features as selected by the method described in
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Figure 1: Precision–recall curve for countable nouns

Here, the baseline method is to classify every noun
as being uniquely countable.

There were 11,499 feature-mapped common
nouns not contained in the union of the gold-
standard datasets. Of these, the classifiers were able
to classify 10,355 (90.0%): 7,974 (77.0%) as count-
able (e.g.alchemist), 2,588 (25.0%) as uncountable
(e.g. ingenuity), 9 (0.1%) as bipartite (e.g.head-
phones), and 80 (0.8%) as plural only (e.g.dam-
ages). Only 139 nouns were assigned to multiple
countability classes.

We evaluated the classifier outputs in two ways.
In the first, we compared the classifier output to the
combinedCOMLEX andALT-J/E lexicons: a lexicon
with countability information for 63,581 nouns. The
classifiers found a match for 4,982 of the nouns. The
predicted countability was judged correct 94.6% of
the time. This is marginally above the level of match
betweenALT-J/E andCOMLEX (93.8%) and substan-
tially above the baseline of all-countable at 89.7%
(error reduction = 47.6%).

To gain a better understanding of the classifier
performance, we analysed the correlation between
corpus frequency of a given target noun and its pre-
cision/recall for the countable class.5 To do this,
we listed the 11,499 unannotated nouns in increas-
ing order of corpus occurrence, and worked through
the ranking calculating the mean precision and re-
call over each partition of 500 nouns. This resulted
in the precision–recall graph given in Figure 1, from
which it is evident that mean recall is proportional
and precision inversely proportional to corpus fre-
quency. That is, for lower-frequency nouns, the clas-

Baldwin and Bond (2003) rather than the full feature set, purely
in the interests of reducing processing time. Based on cross-
validated results over the training data, the resultant difference
in performance is not statistically significant.

5We similarly analysed the uncountable class and found the
same basic trend.

sifier tends to rampantly classify nouns as count-
able, while for higher-frequency nouns, the classi-
fier tends to be extremely conservative in positively
classifying nouns. One possible explanation for this
is that, based on the training data, the frequency
of a noun is proportional to the number of count-
ability classes it belongs to. Thus, for the more
frequent nouns, evidence for alternate countability
classes can cloud the judgement of a given classifier.

In secondary evaluation, the authors used BNC
corpus evidence to blind-annotate 100 randomly-
selected nouns from the test data, and tested the cor-
relation with the system output. This is intended
to test the ability of the system to capture corpus-
attested usages of nouns, rather than independent
lexicographic intuitions as are described in theCOM-
LEX andALT-J/E lexicons. Of the 100, 28 were clas-
sified by the annotators into two or more groups
(mainly countable and uncountable). On this set,
the baseline of all-countable was 87.8%, and the
classifiers gave an agreement of 92.4% (37.7% e.r.),
agreement with the dictionaries was also 92.4%.
Again, the main source of errors was the classi-
fier only returning a single countability for each
noun. To put this figure in proper perspective, we
also hand-annotated 100 randomly-selected nouns
from the training data (that is words in our com-
bined lexicon) according to BNC corpus evidence.
Here, we tested the correlation between the manual
judgements and the combinedALT-J/E andCOMLEX
dictionaries. For this dataset, the baseline of all-
countable was 80.5%, and agreement with the dic-
tionaries was a modest 86.8% (32.3% e.r.). Based
on this limited evaluation, therefore, our automated
method is able to capture corpus-attested count-
abilities with greater precision than a manually-
generated static repository of countability data.

6 Discussion

The above results demonstrate the utility of the
proposed method in learning noun countability
from corpus data. In the final system configu-
ration, the system accuracy was 94.6%, compar-
ing favourably with the 78% accuracy reported
by Bond and Vatikiotis-Bateson (2002), 89.5% of
O’Hara et al. (2003), and also the noun token-based
results of Schwartz (2002).

At the moment we are merely classifying nouns
into the four classes. The next step is to store the
distribution of countability for each target noun and
build a representation of each noun’s countability
preferences. We have made initial steps in this direc-
tion, by isolating token instances strongly support-



ing a given countability class analysis for that target
noun. We plan to estimate the overall frequency of
the different countabilities based on this evidence.
This would represent a continuous equivalent of the
discrete 5-way scale employed inALT-J/E , tunable to
different corpora/domains.

For future work we intend to: investigate further
the relation between meaning and countability, and
the possibility of using countability information to
prune the search space in word sense disambigua-
tion; describe and extract countability-idiosyncratic
constructions, such as determinerless PPs and role-
nouns; investigate the use of a grammar that distin-
guishes between countable and uncountable uses of
nouns; and in combination with such a grammar, in-
vestigate the effect of lexical rules on countability.

7 Conclusion

We have proposed a knowledge-rich lexical acqui-
sition technique for multi-classifying a given noun
according to four countability classes. The tech-
nique operates over a range of feature clusters draw-
ing on pre-processed corpus data, which are then fed
into independent classifiers for each of the count-
ability classes. The classifiers were able to selec-
tively classify the countability preference of English
nouns with a precision of 94.6%.
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