This document is downloaded from DR-NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Learning the countability of English nouns from
corpus data

Baldwin, Timothy; Bond, Francis
2003

Baldwin, T., & Bond, F. (2003). Learning the countability of English nouns from corpus data.
Proceedings of 41st Annual Meeting of the Association for Computational Linguistics:
ACL-2003, 463-470.

https://hdl.handle.net/10356/92279

https://doi.org/10.3115/1075096.1075155

© 2003 ACL. This is the author created version of a work that has been peer reviewed and
accepted for publication by Proceedings of 41st Annual Meeting of the Association for
Computational Linguistics: ACL-2003, Association for Computational Linguistics. It
incorporates referee’ s comments but changes resulting from the publishing process, such
as copyediting, structural formatting, may not be reflected in this document. The
published version is available at: [DOI: http://dx.doi.org/10.3115/1075096.1075155].

Downloaded on 20 Mar 2024 20:03:53 SGT



Learning the Countability of English Nouns from Corpus Data

Timothy Baldwin Francis Bond
CSLI NTT Communication Science Laboratories
Stanford University Nippon Telegraph and Telephone Corporation
Stanford, CA, 12345 Kyoto, Japan
tbaldwin@csli.stanford.edu bond@cslab.kecl.ntt.co.jp
Abstract portant both for the analysis and generation of En-

glish. In analysis, it helps to constrain the inter-
This paper describes a method for learn-  pretations of parses. In generation, the countabil-
ing the countability preferences of English ity preference determines whether a noun can be-
nouns from raw text corpora. The method come plural, and the range of possible determin-
maps the corpus-attested lexico-syntactic  ers. Knowledge of countability is particularly im-
properties of each noun onto a feature  portant in machine translation, because the closest
vector, and uses a suite of memory-based  translation equivalent may have different countabil-
classifiers to predict membership in 4 ity from the source noun. Many languages, such
countability classes. We were able to as-  as Chinese and Japanese, do not mark countability,
sign countability to English nouns with a which means that the choice of countability will be
precision of 94.6%. largely the responsibility of the generation compo-
nent (Bond, 2001). In addition, knowledge of count-
ability obtained from examples of use is an impor-
tant resource for dictionary construction.
This paper is concerned with the task of knowledge- In this paper, we learn the countability prefer-
rich lexical acquisition from unannotated corporaences of English nouns from unannotated corpora.
focusing on the case of countability in English.\We first annotate them automatically, and then train
Knowledge-rich lexical acquisition takes unstrucclassifiers using a set of gold standard data, taken
tured text and extracts out linguistically-precise catfrom cOMLEX (Grishman et al., 1998) and the trans-
egorisations of word and expression types. Byer dictionaries used by the machine translation sys-
combining this with a grammar, we can buildtem ALT-J/E (Ikehara et al., 1991). The classifiers
broad-coverage deep-processing tools with a miand their training are described in more detail in
imum of human effort. This research is closeBaldwin and Bond (2003). These are then run over
in spirit to the work of Light (1996) on classi- the corpus to extract nouns as members of four
fying the semantics of derivational affixes, anctlasses —eountable: dog uncountable: furniture; bi-
Siegel and McKeown (2000) on learning verb aspartite: [pair of] scissorsandplural only: clothes
pect. We first discuss countability in more detail 2).

In English, nouns heading noun phrases are tyg-hen we present the lexical resources used in our ex-
ically eithercountable or uncountable (also called periment § 3). Next, we describe the learning pro-
count andmasg. Countable nouns can be modi-cess § 4). We then present our results and evalu-
fied by denumerators, prototypically numbers, andtion ¢ 5). Finally, we discuss the theoretical and
have a morphologically marked plural formone practical implications{ 6).
dog, two dogs Uncountable nouns cannot be modi-
fied by denumerators, but can be modified by unspe-  Background
cific quantifiers such asiuch and do not show any
number distinction (prototypically being singular):Grammatical countability is motivated by the se-
*one equipmentsome equipmenttwo equipments mantic distinction betweewbject and substance
Many nouns can be used in countable or uncountabiteference (also known &®undednon-boundedor
environments, with differences in interpretation.  individuated/non-individuated). It is a subject of

We call the lexical property that determines whictcontention among linguists as to how far grammat-
uses a noun can have the noun’s countability prefeical countability is semantically motivated and how
ence. Knowledge of countability preferences is immuch it is arbitrary (Wierzbicka, 1988).

1 Introduction



The prevailing position in the natural languagedo not necessarily wish to learn such rare examples,
processing community is effectively to treat countand may not need to learn more common conver-
ability as though it were arbitrary and encode it asions either, as they can be handled by regular lexi-
a lexical property of nouns. The study of countabilcal rules (Copestake and Briscoe, 1995). The second
ity is complicated by the fact that most nouns camproblem is that some constructions affect the appar-
have their countability changed: either converted bgnt countability of their head: for example, nouns
a lexical rule or embedded in another noun phrasdenoting a role, which are typically countable, can
An example of conversion is the so-called universappear without an article in some constructions (e.g.
packager, a rule which takes an uncountable nouive elected him treasurerThe third is that different
with an interpretation as a substance, and returnssanses of a word may have different countabilities:
countable noun interpreted as a portion of the sulinterest“a sense of concern with and curiosity” is
stance:l would like two_beers An example of em- normally countable, whereasterest“fixed charge
bedding is the use of a classifier, e.g. uncountabfer borrowing money” is uncountable.
nouns can be embedded in countable noun phrasesThere have been at several earlier approaches
as complements of classifiersne pieceof equip- to the automatic determination of countabil-
ment S ity. Bond and Vatikiotis-Bateson (2002) determine

Bond et al. (1994) suggested a division of counta noun’s countability preferences from its seman-
ability into five major types, based on Allan (1980)'stic class, and show that semantics predicts (5-way)
noun countability preferences (NCPs). Nouns whickountability 78% of the time with their ontology.
rarely undergo conversion are marked as eitigr O’Hara et al. (2003) get better results (89.5%) using
countable, uncountable O plural only. Fully countable the much larger Cyc ontology, although they only
nouns have both singular and plural forms, and caslistinguish between countable and uncountable.
not be used with determiners suchrasch, little, a ~ Schwartz (2002) created an automatic countabil-
little, lessand overmuch Uncountable nouns, suchity tagger (ACT) to learn noun countabilities from
asfurniture, have no plural form, and can be usedhe British National Corpus. ACT looks at deter-
with much Plural only nouns never head a singulafiner co-occurrence in singular noun chunks, and
noun phrasegoods, scissors classifies the noun if and only if it occurs with a de-

Nouns that are readily converted are marked as é@rminer which can modify only countable or un-
ther strongly countable (for countable nouns that can countable nouns. The method has a coverage of
be converted to uncountable, sucitaks orweakly —around 50%, and agrees witloMLEX for 68% of

countable (for uncountable nouns that are readilythe nouns marked countable and with the-J/e
convertible to countable, such bsel). lexicon for 88%. Agreement was worse for uncount-

NLP systems must list countability for at least?P!€ nouns (6% and 44% respectively).

some nouns, because full knowledge of the refers

ent of a noun phrase is not enough t% predict coun%’- Resources

ability. There is also a language-specific knowlinformation about noun countability was obtained

edge requirement. This can be shown most simfrom two sources. One waSOMLEX 3.0 (Grish-

ply by comparing languages: differentlanguages efinan et al., 1998), which has around 22,000 noun

code the countability of the same referent in difentries. Of these, 12,922 are marked as betngt-

ferent ways. There is nothing about the concepible (COUNTABLE and 4,976 as beingncountable

denoted bylightning, e.g., that rules outd light-  (NCOLLECTIVEOr :PLURAL *NONE?®). The remainder

ning being interpreted aa flash of lightning In-  are unmarked for countability.

deed, the German and French translation equivalentsThe other was the common noun part Aff-

are fully countable din Blitzand un éclair respec- je’s Japanese-to-English semantic transfer dictio-

tively). Even within the same language, the samgary (Bond, 2001). It contains 71,833 linked

referent can be encoded countably or uncountablyapanese-English pairs, each of which has a value

clothes/clothingthings/stuff jobs/work for the noun countability preference of the English
Therefore, we must learn countability classesoun. Considering only unique English entries with

from usage examples in corpora. There are sevemdifferent countability and ignoring all other informa-

impediments to this approach. The first is that wordgon gave 56,245 entries. Nouns in ther-J/E dic-

are frequently converted to different countabilitiestionary are marked with one of the five major count-

sometimes in such a way that other native spealability preference classes described in Section 2. In

ers will dispute the validity of the new usage. Weaddition to countability, default values for number



and classifier (e.goladefor grass blade of grasy came from words with two countabilities mL.T-J/E
are also part of the lexicon. ~ butonly one inCOMLEX .

We classify words into four possible classes, with _ N
some words belonging to multiple classes. The fird Learning Countability

class iscountable: COMLEX 'S COUNTABLEANAALT- 1 hasic methodology employed in this research is
JE'S fully, strongly and weakly countable. The Sec- , jyentify lexical and/or constructional features as-

ond class isncountable: COMLEX 'S NCOLLECTIVEOT g4 iated with the countability classes, and determine
:PLURAL *NONE* and ALT-JE'S strongly andweakly  {he relative corpus occurrence of those features for
countable anduncountable. each noun. We then feed the noun feature vectors

The third class isipartite nouns. These can only jhto a classifier and make a judgement on the mem-
be plural when they head a noun phraseusers, pership of the given noun in each countability class.
but singular when used as a modifiem(ser leg. In order to extract the feature values from corpus
When they are denumerated they psér: a pair of  gata, we need the basic phrase structure, and partic-
scissors COMLEX does not have a feature to markyjarly noun phrase structure, of the source text. We
bipartite nouns;trouser, for example, is listed as yse three different sources for this phrase structure:
countable. Nouns iaLT-JJE markedplural only with part-of-speech tagged data, chunked data and fully-
a default classifier gbair are classified asipartite. parsed data, as detailed below.

The last class iglural only nouns: those that only  The corpus of choice throughout this paper is the
have a plural form, such agoods They can nei- written component of the British National Corpus
ther be denumerated nor modified much Many (BNC version 2, Burnard (2000)), totalling around
of these nouns, such abthes use the plural form 9om w-units (POS-tagged items). We chose this be-
even as modifiersa( clothes horsp  The word cause of its good coverage of different usages of En-
clothescannot be denumerated at all. Nouns markeglish, and thus of different countabilities. The only
:SINGULAR *NONE* in COMLEX and nouns imLT-  component of the original annotation we make use
J/E markedplural only without the default classifier of is the sentence tokenisation.
pair are classified aslural only. There was some  Below, we outline the features used in this re-
noise in theALT-J/E data, so this class was handsearch and methods of describing feature interac-
checked, giving a total of 104 entries; 84 of thesgon, along with the pre-processing tools and ex-
were attested in the training data. traction techniques, and the classifier architecture.

Our classification of countability is a subset ofThe full range of different classifier architectures
ALT-JEE’s, in that we use only the three bagicT- tested as part of this research, and the experi-
JIE classes otountable, uncountable andplural only, ments to choose between them are described in
(although we treatipartite as a separate class, not aBaldwin and Bond (2003).
subclass). As we derive our countability classifica-
tions from corpus evidence, it is possible to record.1 Feature space

struct countability preferences (i-illy, strongly, Or  For eachtarget noun, we compute a fixed-length
weakly countable) from the relative token occurrencefeature vector based on a variety of features intended
of the different countabilities for that noun. to capture linguistic constraints and/or preferences
In order to get an idea of the intrinsic difficulty of associated with particular countability classes. The
the countability learning task, we tested thgree- feature space is partitioned up irfeature clusters
ment between the two resources in the form of claseach of which is conditioned on the occurrence of
sification accuracy. That is, we calculate the averaghe target noun in a given construction.
proportion of (both positive and negative) countabil- Feature clusters take the form of one- or two-
ity classifications over which the two methods agreealimensional feature matrices, with each dimension
E.g., COMLEX lists tomatoas being onlycountable  describing a lexical or syntactic property of the
whereALT-J/E lists it as being botkountable andun-  construction in question. In the case of a one-
countable. Agreement for this one noun, therefore, islimensional feature cluster (e.g. noun occurring in
75.0%, as there is agreement for the classeswi-  singular or plural form), each component feature
able, plural only andbipartite (with implicit agreement  feat, in the cluster is translated into the 3-tuple:
as to negative membership for the latter two classes),
but not foruncountable. Averaging over the total set (req(feat. [word)
of nouns countability-classified in both lexicons, the ' ’
mean was 93.8%. Almost half of the disagreements

freq(feats|word) freq(feats|word)
freq(word) Z ifreq(feat;|lword)




Feature cluster

Countable Uncountable Bipartite Plural only
(base feature no.)
Head number (2) S,P S P P
Modifier number (2) S,P S S P
Subj-V agreemen®(x 2) [S,S],[P,P] [S,S] [P.P] [P,P]
Coordinate number(x 2) [S.S).[P,SL[P.P] [S.,S]l[S.P] [P,S]IP.,P] [P,S]I[P.P]
N of N (11 x 2) [100sP], ... [lacks], ... [pair,P], ... [rateP], ...
PPs 2 x 2) [per,-DET], ... [in,-DET], ... — —
Pronoun (2 x 2) [it,S],[theyP], ... [it,S], ... [theyP], ... [theyP], ...
Singular determinersl() a,each ... much ... — —
Plural determinersi@) many few, ... — — many ...
Neutral determinersl({ x 2) [lessP], ... [BARES], ... [enoughP], ... [all,P], ...

Table 1: Predicted feature-correlations for each feature clustsimgular,p=plural)

In the case of a two-dimensional feature clusteDccurrence in PPs2?P the presence or absence of

(e.g. subject-position noun number vs. verb number
agreement), each component featfig ; ; is trans-
lated into the 5-tuple:

freq(feats, |word)
freq(word)

freq(feats ¢|word)
" i sfreq(feats jlword) ’
freq(feats |word)

(freq(feats, |word),

freq(feats ¢|word)
Z ifreq(feat; +|word)’ Z jfreq(feats, ;jlword)

See Baldwin and Bond (2003) for further details.

The following is a brief description of each fea-
ture cluster and its dimensionalityI) or 2D). A
summary of the number of base features and predic-
tion of positive feature correlations with countability
classes is presented in Table 1.

Head noun number:!® the number of the target
noun when it heads an NP (eashaggydog

= SINGULAR

Modifier noun number: P the number of the tar-
get noun when a modifier in an NP (edpg

food = SINGULAR

Subject-verb agreement® the number of the tar-
get noun in subject position vs. number agree-
ment on the governing verb (ettpe dogbarks

= (SINGULARSINGULAR)

Coordinate noun number:2P the number of the
target noun vs. the number of the head
nouns of conjuncts (e.gdogs andmud =

(PLURALSINGULAR)

N of N constructions:2P the number of the target
noun (N,) vs. the type of the Nin an N,
of N, construction (e.gthe type of dog =
(TYPESINGULAR). We have identified a total
of 11 N, types for use in this feature cluster
(e.g.COLLECTIVE, LACK, TEMPORAL

Pronoun co-occurrence?® what

a determiner+£DET) when the target noun oc-
curs insingular form in a PP (e.gper dog

= (per,—DET)). This feature cluster exploits
the fact that countable nouns occur determin-
erless in singular form with only very partic-
ular prepositions (e.doy bus, *on bus, *with
bug whereas with uncountable nouns, there are
fewer restrictions on what prepositions a target
noun can occur with (e.@n furniture with fur-
niture, 2oy furniture).

personal and
possessive pronouns occur in the same sen-
tence as singular and plural instances of the
target noun (e.g-The dog ateits dinner =
(its,SINGULAR). This is a proxy for pronoun
binding effects, and is determined over a total
of 12 third-person pronoun forms (normalised
for case, e.ghe, their, itsel).

Singular determiners:'® what singular-selecting

determiners occur in NPs headed by the tar-
get noun in singular form (e.ca dog = a).

All singular-selecting determiners considered
are compatible with only countable (e.gn-
other, each or uncountable nouns (e.giuch,
little). Determiners compatible with either are
excluded from the feature cluster (tiis dog,
this informatior). Note that the term “deter-
miner” is used loosely here and below to denote
an amalgam of simplex determiners (& .the
null determiner, complex determiners (ead.
the), numeric expressions (e.gne, and adjec-
tives (e.g.numerouy, as relevant to the partic-
ular feature cluster.

Plural determiners:'P what plural-selecting deter-

miners occur in NPs headed by the target noun
in plural form (e.g.few dogs= few). As

with singular determiners, we focus on those
plural-selecting determiners which are compat-



ible with a proper subset of count, plural only As the full parser, we used RASP (Briscoe and
and bipartite nouns. Carroll, 2002), a robust tag sequence grammar-

. based parser. RASP’s grammatical relation output
2D
Non-bounded determiners:™ what non-bounded nction provides the phrase structure in the form

determiners occur in NPs headed by the targef |emmatised dependency tuples, from which it is
noun, and what is the number of the target Nougssiple to read off the feature information. RASP

for each (e.gmore dogs= (MOrePLURAD).  h55 the advantage that recall is high, although pre-

Here again, we restrict our focus to non-.icin i ; : :
' . X cision is potentially lower than chunking or taggin
bounded determiners that select for singula P 4 g gging

f I fficient furni "as the parser is forced into resolving phrase attach-
orm uncountable nouns (e.gufficient fumi- et ambiguities and committing to a single phrase
ture) and plural-form countable, plural only

; | fici structure analysis.
and bipartite nouns (e.gufficient dogs Although all three systems map onto an identi-

~cal feature space, the feature vectors generated for a
The above feature clusters produce a combingglven target noun diverge in content due to the dif-

total of 1,284 individual feature values. ferent feature extraction methodologies. In addition,
. we only consider nouns that occur at least 10 times
4.2 Feature extraction as head of an NP, causing slight disparities in the

In order to extract the features described abovfA'96t noun type space for the three systems. There
we need some mechanism for detecting NP an{"® sufficient instances found by all three systems

PP boundaries, determining subject—verb agreemdflf 20,530 common nouns (out of 33,050 for which
and deconstructing NPs in order to recover corfit least one system found sufficient instances).
juncts and noun-modifier data. We adopt three AR 3 Classifier architecture
proaches. First, we use part-of-speech (POS) tagget - _ _ . _
data and POS-based templates to extract out the ndé1e classifier design employed in this research is
essary information. Second, we use chunk dafgur parallel supervised classifiers, one for each
to determine NP and PP boundaries, and mediurgountability class. This allows us to classify a sin-
recall chunk adjacency templates to recover inte@le noun into multiple countability classes, edg-
phrasal dependency. Third, we fully parse the daf@and is both countable and uncountable. Thus,
and simply read off all necessary data from the ddather than classifying a given target noun accord-
pendency output. ing to the unique most plausible countability class,
With the POS extraction method. we first PennWe attempt to capture its full range of countabilities.
tagged the BNC using an fnTBL-based tagger (Nga¥ote that the proposed classifier design is that which
and Florian, 2001), training over the Brown andVvas found by Baldwin and Bond (2003) to be opti-
WSJ corpora with some spelling, number and hyr_nal for the task, out of a wide range of classifier
phenation normalisation. We then lemmatised thidrchitectures. =
data using a version of morph (Minnen et al., 2001) I order to discourage the classifiers from over-
customised to the Penn POS tagset. Finally. aining on negative evidence, we constructed the
implemented a range of high-precision, low-recalold-standard training data from unambiguously
POS-based templates to extract out the features frdiggative exemplars and potentially ambiguous pos-
the processed data. For example, NPs are in maftyy® exemplars. That is, we would like classifiers
cases recoverable with the following Perl-style regi© judge a target noun as not belonging to a given
ular expression over Penn POS tageDT)* DT countability class only in the absence of positive ev-
(RBJJJ[RS]?INNS?)* NNS? [N] . idence for that class. This was achieved in the case
For the chunker. we ran fnTBL over the lem-Cf countable nouns, for instance, by extracting all

matised tagged data, training over CoNLL 2000¢Puntable nouns from each of ther-J/& andcom-
style (Tjong Kim Sang and Buchholz, 2000) chunkLEX lexicons.  As positive training exemplars, we

converted versions of the full Brown and WSJ corthen took the intersection of those nouns listed as
untable in both lexicons (irrespective of member-

pora. For the NP-internal features (e.g. determirfz0UM 1S _ . :
ers, head number), we used the noun chunks directff}iP in alternate countability classes); negative train-
or applied POS-based templates locally within noul'd €xémplars, on the other hand, were those con-
chunks. For inter-chunk features (e.g. subject—verin€d in both lexicons but not classified as count-
agreement), we looked at only adjacent chunk pai le in eithet The uncountable gold-standard data

S0 as to maintain a high level of precision. *Any nouns not annotated for countabilitydoMLEX were



Class | Positive data  Negative data  Baseline Class | System | Accuracy (e.r) F-score

Countable 4,342 1,476 746 Taggef 928 (.715) 053
Uncountable 1,519 5,471 .783 Countable Chunker 933 (.734) 956
Bipartite 35 5,639 .994 RASF .923 (.698) 950
Plural only 84 5,639 985 Combined | .939 (.759) .960
. Tagger .945 (.746) .876
Table 2: Details of the gold-standard data Uncountable| Chunket 945 (.747) 876
RASP 944 (.743) 872
was constructed in a similar fashion. We used the Combined .952 (.779) .892
ALT-JIE lexicon as our source of plural only and bi- Tagger 997 (.489) 152
partite nouns, using all the instances listed as our Bipartite Cé‘xgk;r -gg; (~jgg) -;83
positive exemplars. The set of negative exemplars Combined | 996 524033 799
was constructed in each case by taking the intersec- Tagger 1989 (.275) 558
tion of nouns not contained in the given countability pjqj gy | Chunker .990 (.299) 568
class inALT-J/E , with all annotated nouns with non- RASP .989 (.227) 415
identical singular and plural forms TOMLEX . Combined | 990 (.323) 582
Having extracted the positive and negative exem- Table 3: Cross-validation results

plar noun lists for each countability class, we filtered o
out all noun lemmata not occurring in the BNC.  nal classification accuracy and F-scoaee averaged

The final make-up of the gold-standard data fopver the 10 iterations.
each of the countability classes is listed in Table 2, The cross-validated results for each classifier are
along with a baseline classification accuracy fopresented in Table 3, broken down into the differ-
each class (“Baseline”), based on the relative freent feature extraction methods. For each, in addi-
quency of the majority class (positive or negative)tion to the F-score and classification accuracy, we
That s, for bipartite nouns, we achieve a 99.4% clagresent the relative error reduction (e.r.) in classifi-
sification accuracy by arbitrarily classifying everycation accuracy over the majority-class baseline for
training instance as negative. that gold-standard set (see Table 2). For each count-

The supervised classifiers were built usingbility class, we additionally ran the classifier over
TiIMBL version 4.2 (Daelemans et al., 2002), alhe concatenated feature vectors for the three basic
memory-based classification system based orthe feature extraction methods, producing a 3,852-value
nearest neighbour algorithm. As a result of exterfeature space (*Combined”).

sive parameter optimisation, we settled on the de- Given the hlgh baseline classification accuracies
fault configuration for TIMBL withk set to 9.2 for each gold-standard dataset, the most revealing

statistics in Table 3 are the error reduction and F-
score values. In all cases other than bipartite, the
combined system outperformed the individual sys-
Evaluation is broken down into two componentstéms. The difference in F-score is statistically sig-
First, we determine the optimal classifier configurabificant (based on the two-tailgetest,p < .05) for
tion for each countability class by way of stratifiedthe asterisked systems in Table 3. For the bipartite
cross-validation over the gold-standard data. Welass, the difference in F-score is not statistically sig-
then run each classifier in optimised configuratiofificant between any system pairing.

over the remaining target nouns for which we have There is surprisingly little separating the tagger-,

5 Results and Evaluation

feature vectors. chunker- and RASP-based feature extraction meth-
ods. This is largely due to the precision/recall trade-
51 Cross-validated results off noted above for the different systems.

First, we ran the classifiers over the full feature se§ >  Open data results

for the three feature extraction methods. In each o

case, we quantify the classifier performance by way¥e next turn to the task of classifying all unseen
of 10-fold stratified cross-validation over the gold-COmmon nouns using the gold-standard data and the

standard data for each countability class. The fRest-performing classifier configurations for each
countability class (indicated in bold in Table ).

ignored in this process so as to assure genuinely negative———— _ o
exemplars. *Calculated according to}Zrecision-reca

2\We additionally experimented with the kernel-based “In each case, the classifier is run over the best-
TinySVM system, but found TiMBL to be superior in all cases.500 features as selected by the method described in




' N ' sifier tends to rampantly classify nouns as count-
xxxfxf able, while for higher-frequency nouns, the classi-
WM fier tends to be extremely conservative in positively
o precision - classifying nouns. One possible explanation for this
i X is that, based on the training data, the frequency
ul of a noun is proportional to the number of count-
/X( ability classes it belongs to. Thus, for the more
" frequent nouns, evidence for alternate countability
classes can cloud the judgement of a given classifier.
s In secondary evaluation, the authors used BNC
Mean frequency corpus evidence to blind-annotate 100 randomly-
selected nouns from the test data, and tested the cor-
Figure 1: Precision—recall curve for countable noun&'ation with the system output. This is intended
to test the ability of the system to capture corpus-

Here, the baseline method is to classify every noudttested usages of nouns, rather than independent
as being uniquely countable. lexicographic intuitions as are described in tuav-

There were 11,499 feature-mapped commokEX andALT-J/E lexicons. Of the 100, 28 were clas-
nouns not contained in the union of the goldSified by the annotators into two or more groups
standard datasets. Of these, the classifiers were affeinly countable and uncountable). On this set,
to classify 10,355 (90.0%): 7,974 (77.0%) as counthe baseline of all-countable was 87.8%, and the
able (e.galchemis}, 2,588 (25.0%) as uncountableclassifiers gave an agreement of 92.4% (37.7% e.r.),
(e.g. ingenuity, 9 (0.1%) as bipartite (e.chead- agreement with the dictionaries was also 92.4%.
phone$, and 80 (0.8%) as plural only (e.gam- Again, the main source of errors was the classi-

countability classes. noun. To put this figure in proper perspective, we

We evaluated the classifier outputs in two ways2ISC hand-annotated 100 randomly-selected nouns
om the training data (that is words in our com-

In the first, we compared the classifier output to the. . . .
P P ined lexicon) according to BNC corpus evidence.

combinedcOMLEX andALT-J/E lexicons: a lexicon ¥ d1h lation b h |
with countability information for 63,581 nouns. The1€reé, We tested the correlation between the manua
dgements and the combinedr-JJE andCOMLEX

classifiers found a match for 4,982 of the nouns. The -~ ) . )
predicted countability was judged correct 94.6% ofictionaries. For th(:s dataset, the baseline of all-
the time. This is marginally above the level of matcrfountable was 80.5%, and agreement with the dic-
betweemLT-JE andCOMLEX (93.8%) and substan- tionaries was a modest 86.8% (32.3% e.r.). Based

tially above the baseline of all-countable at 89 70N this limited evaluation, therefore, our automated
(error reduction = 47.6%). " "method is able to capture corpus-attested count-

abilities with greater precision than a manually-

To gain a better understanding of th_e classifig enerated static repository of countability data.
performance, we analysed the correlation betwe

corpus frequency of a given target noun and its Pres  Discussion
cision/recall for the countable clads.To do this,
we listed the 11,499 unannotated nouns in increa¥he above results demonstrate the utility of the
ing order of corpus occurrence, and worked throughroposed method in learning noun countability
the ranking calculating the mean precision and rédrom corpus data. In the final system configu-
call over each partition of 500 nouns. This resultedation, the system accuracy was 94.6%, compar-
in the precision—recall graph given in Figure 1, froming favourably with the 78% accuracy reported
which it is evident that mean recall is proportionaby Bond and Vatikiotis-Bateson (2002), 89.5% of
and precision inversely proportional to corpus fre©’Hara et al. (2003), and also the noun token-based
guency. Thatis, for lower-frequency nouns, the clagesults of Schwartz (2002).
At the moment we are merely classifying nouns

Baldwin and Bond (2003) rather than the full feature set, purelinto the four classes. The next step is to store the
in the interests of reducing processing time. Based on crosgistribution of countability for each target noun and
validated results over the training data, the resultant differencg ild . f h , bil
in performance is not statistically significant. uild a representation o ea_c. _nouns qounta | ity

SWe similarly analysed the uncountable class and found thereferences. We have made initial steps in this direc-
same basic trend. tion, by isolating token instances strongly support-

Precision
Recall




ing a given countability class analysis for that targefrancis Bond. 2001Determiners and Number in English, con-

noun. We plan to estimate the overall frequency of trasted with Japanese, as exemplified in Machine Transla-

the different countabilities based on this evidence. t'orl‘.' Ph.D. thesis, University of Queensland, Brisbane, Aus-
. . . tralia.

This would represent a continuous equivalent of the

discrete 5-way scale employedAnr-J/E , tunable to Ted Briscoe and John Carroll. 2002. Robust accurate statistical
different corpora/domains ’ annotation of general text. IRroc. of the 3rd International

. . . Conference on Language Resources and Evaluation (LREC
For future work we intend to: investigate further 2002) pages 1499-1504, Las Palmas, Canary Islands.

the relat|_or_1_between meaning a_r?d c_ountabll_lty, angou Burnard. 2000.User Reference Guide for the British Na-
the possibility of using cquntablllty mform_atlon 0 tional Corpus Technical report, Oxford University Comput-
prune the search space in word sense disambigua-ing Services.

tion; describe and extract countability-idiosyncraticynn copestake and Ted Briscoe. 1995. Semi-productive poly-
constructions, such as determinerless PPs and rolessemy and sense extensiafournal of Semanti¢pages 15—
nouns; investigate the use of a grammar that distin- 67.

guishes between countable and uncountable usesvafiter Daelemans, Jakub Zavrel, Ko van der Sloot, and An-
nouns; and in combination with such a grammar, in- tal van den Bosch. 2002TiMBL: Tilburg memory based
vestigate the effect of lexical rules on countability. ~[eamer version 4.2, reference guiciK technical report

Ralph Grishman, Catherine Macleod, and Adam Myers, 1998.
COMLEX Syntax Reference Manu&roteus Project, NYU.
(http://nlp.cs.nyu.edu/comlex/refman.ps ).

7 Conclusion

We have proposed a knowledge-rich lexical acqui-
Sition technique for multi_classifying a given nounsatOI'U lkehara, Satoshi Shirai, Akio Yokoo, and Hiromi
according to four countability classes. The tech- Nakaiwa. 1991. Toward an MT system without pre-editing
. ) — effects of new methods IALT-J/E —. In Proc. of the Third
nique operates over a range of feature clusters draw-pachine Translation Summit (VT Summit Jipages 101
ing on pre-processed corpus data, which are then fed106, Washington DC.
into independent classifiers for each of the countyac (ight. 1996. Morphological cues for lexical semantics.
ability classes. The classifiers were able to selec- |n proc. of the 34th Annual Meeting of the AQiages 25—

tively classify the countability preference of English 31, Santa Cruz, USA.

nouns with a precision of 94.6%. Guido Minnen, John Carroll, and Darren Pearce. 2001. Ap-
plied morphological processing of EnglishNatural Lan-
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