
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Practical algorithm for minimum delay
peer‑to‑peer media streaming

Luo, Jun.

2010

Luo, J. (2010). Practical algorithm for minimum delay peer‑to‑peer media streaming. IEEE
International Conference on Multimedia and Expo (ICME).

https://hdl.handle.net/10356/92346

https://doi.org/10.1109/ICME.2010.5582931

© 2010 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. This material is
presented to ensure timely dissemination of scholarly and technical work. Copyright and
all rights therein are retained by authors or by other copyright holders. All persons copying
this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder. http://www.ieee.org/portal/site This material is
presented to ensure timely dissemination of scholarly and technical work. Copyright and
all rights therein are retained by authors or by other copyright holders. All persons copying
this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.

Downloaded on 13 Mar 2024 15:24:42 SGT

PRACTICAL ALGORITHM FOR MINIMUM DELAY PEER-TO-PEER MEDIA STREAMING

Jun Luo

School of Computer Engineering, Nanyang Technological University (NTU), Singapore
Email: junluo@ntu.edu.sg

ABSTRACT
Though the existence of a minimum delay peer-to-peer media
streaming scheme has been shown (under the name of snow-
ball streaming), no actual algorithm has ever been designed
so far, due to the lack of a systematic way to construct the
chunk scheduling that achieves the minimum delay bound.
Inspired by the growth of interest in building hybrid streaming
systems that consist of backbone trees supplemented by other
overlay structures, we revisit the minimum delay streaming
problem and design practical min-delay algorithms to sup-
port the streaming in the backbone trees. What mainly dis-
tinguishes our multi-tree push from the conventional ones is
an unbalanced tree design guided by the snow-ball streaming,
which has a provable minimum delay. We design algorithms
to construct and maintain our SNowbAll multi-tree Pushing
(SNAP) overlay. Our simulations in ns-2 indicate that our ap-
proach outperforms other tree-based mechanisms.

Keywords— P2P streaming, delay, tree-based push

1. INTRODUCTION

We have been witnessing a tremendous growth of peer-to-
peer (P2P) streaming applications on the Internet. In the
networking research community, this momentum transforms
into many challenging problems. Among the major technique
problems, improving the delay performance of P2P stream-
ing appears to be a recurring issue, as pointed out by [1, 2, 3].
Earlier designs for P2P streaming are mainly tree-based push
(e.g., [4, 5]). Though they achieve satisfactory delay per-
formance, they do suffer higher maintenance complexity
and data outage upon peer dynamics [6]. Later designs that
make use of mesh-based pull (e.g., [7, 8]) are the mainstream
implementations that are widely deployed. They generally
provide a higher robustness against peer dynamics but have
to strike a compromise between efficiency and latency [3]. In
order to obtain the best from both worlds, several proposals
recently started to promote a hybrid approach [9, 10]. Such
a hybrid approach usually has a tree-based backbone that
actively pushes media data to stable and resourceful peers, as
well as a second-tier overlay that accommodates dynamic or
resource-scarce peers.

This work is supported in part by AcRF Tier 1 grant RG 32/09.

In order to reduce delay within a backbone tree, one
would desire to achieve the minimum delay bound for dis-
seminating every media chunk to (say) N peers. This bound,
given a homogeneous uploading capacity, is shown to be
1 + dlog2Ne [11], where the existence of a minimum delay
streaming scheme has been shown, under the name snow-ball
streaming. Unfortunately, due to the lack of a systematic way
to construct a distributed scheduling for chunk uploading, no
algorithm has ever been designed so far. Existing propos-
als that aim at minimizing delay are approximations of the
snow-ball streaming, through either deterministic pull [3] or
randomized push [12].

In this paper, we focus on the design of practical stream-
ing algorithms that achieve the minimum delay. In particular,
we propose algorithms to construct and maintain a multi-tree
overlay, called SNowbAll multi-tree Pushing (SNAP). The
scheduling policy guided by SNAP trees guarantees a mini-
mum delay for continuous chunk streaming, as promised by
the snow-ball streaming principle. We also implement SNAP
in ns-2, our simulation results show that SNAP outperforms
its up-to-date competitors. As we are advocating a hierarchi-
cal structure where stable peers [10, 13] are organized into a
multi-tree backbone while the remaining peers are accommo-
dated by another tier of overlay, we believe that our SNAP
can exactly be used for streaming in the backbone.

The remainder of this paper is organized as follows. We
briefly explain the idea of snow-ball streaming in Section 2,
and we also put forward a graph (tree in particular) represen-
tation for disseminating single media chunk using the snow-
ball principle. We then describe in Section 3 the algorithms
that construct and maintain SNAP, which consists of multi-
ple trees for continuous streaming. We report the experiment
results in Section 4 and conclude our paper in Section 5.

2. SNOW-BALL DISSEMINATION FOR SINGLE
CHUNK

Literally, the basic idea of snow-ball streaming for single-
chunk dissemination can be summarized as follows [11]:

After receiving a new chunk, a peer keeps push-
ing that chunk to other peers who have not re-
ceived it, until every peer receives the chunk.

978-1-4244-7493-6/10/$26.00 c©2010 IEEE ICME 2010

Mathematically, if we assume that time is sloted and all the
uploadings are aligned to the time slots, we could represent
the number of peers that receive that chunk as a function of
the sequence number of the time slots. Let 0-th slot be the
period during which the media serve uploads the chunk to the
first peer, then the number of peers that receive the trunk at
the end of kth is

Rk =

{
2k N −Rk−1 ≥ 2k

N −Rk−1 N −Rk−1 < 2k

where N is the total number of peers. The optimality of this
algorithm is proven in [11]: as every peer keeps busy in up-
loading immediately after its own reception, there is no room
to make further improvement.

It is pretty trivial to transform this algorithm into an un-
balanced tree structure that we call snow-ball tree (SBT). We
show such a transformation for N = 16 in Fig. 1. Basically,

1

2

34

56 78

910 1112 1314 1516 D tmax = 4(+)d

1 2 4 8 16

d

t

0-th

1-st

2-nd

3-rd

4-th

Fig. 1. The snow-ball tree (SBT) of single chunk dissemina-
tion. We illustrate both maximum delay calculation and the
definition of peer level set in the figure.

the peers that receive the chunk in the k-th time slot are put at
the k-th level of the tree. The geometric progression nature of
Rk guarantees that each peer in the k-th level definitely has a
parent in the previous levels.

This tree representation greatly facilitates the calculation
of chunk delay. It is clear that the delay of each upload-
ing consists of two parts: transmission delay t and average
queueing/propagation delay d̄. In general, a media chunk
consists of several packets (up to several MBs in volume), so
we usually have d̄� t, suggesting that the delay is dominated
by t. In Internet data transmission, the queueing/propagation
delay is often counted once due to the well known pipelining
effect. However, as a peer has to fully receive a chunk be-
fore sending it out, the extent that pipelining effect appears
strongly depends on the path from the root to a certain peer in
an SBT, which leads to the following maximum delay Dmax

and average delay D̄.

DSBT
max = dlog2Ne

(
d̄+ t

)
(1)

D̄SBT ≤ dlog2Ne
2

d̄+ (dlog2Ne − 1) t+ o(N) (2)

The maximum delay obviously comes from the path that has
no pipelining effect, the path 1 � 2 � 4 � 8 � 16 shown
in Fig. 1. The derivation of the average delay is a bit tricky
and we refer readers to our technical report. Note that our
derivation differs from the one presented in [11] in that we
explicitly separate the two delay components. If we let d̄ = 0,
we get the same expression presented in [11].

3. SNOWBALL STREAMING BY A MULTI-SBT
STRUCTURE

Although SBT is shown to be equivalent to the snow-ball al-
gorithm, the extension of SBT for multi-chunk dissemination
(hence media streaming) is far less trivial. In the original pro-
posal of the snowball streaming algorithm [11], the existence
of an algorithm for chunk streaming is proven by an induc-
tion, which cannot be used to derive a multi-tree structure.
Recently, Feng et al. [3] apply Trellis graphs to represent the
snowball streaming algorithm, but they fail to suggest a dis-
tributed chunk scheduling policy. Therefore, we need to find
a multi-tree extension for SBT that provides the same delay
guarantee for chunk streaming. To this end, we first propose
a centralized construction algorithm, then we show how to
make it operate in a distributed manner.

3.1. Multi-Tree Representation of The Snowball Algo-
rithm

Let N be the set of all peers and |N | = N . Our design goal
can be described as follows:

A set of SBTs such that, if the server takes turn to
push chunks to their roots in a round-robin fash-
ion, the minimum delay streaming is achieved.

For practical purposes, we require the multi-tree structure to
consists of a finite number of SBTs. In other words, the chunk
dissemination follows a repetitive pattern of trees with a pe-
riod of P . Note that, as each chunk has a corresponding SBT
and we know that SBT is delay optimal for single chunk dis-
semination, the challenge we are facing is to resolve the par-
allelism among all these P SBTs.

We refer to the i-the SBT in this P -tree pattern as Ti. We
denote by Lp

k,i the peer level set containing the set of peers in
the k-th level of Ti, and by Le

k,i the edge level set containing
the edges whose ends are in Lp

k,i . We illustrate the concept
of peer level set in Fig. 1, where we only show an arbitrary Ti
with {Lp

0,i, L
p
1,i, L

p
2,i, L

p
3,i, L

p
4,i} and with Lp

0,i containing the
peer that directly receives a chunk from the server. Finally,

1

5

109

11 12

2

6

1211

7

109

4

8

1211

9 10

4

8

1211

13 14 15 1613 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16

2 3 4 6 7 8 1098753 41 12118651 2 4 5 6 721 39 105 6 721 3

1

4 8

7 9

3 10

3

1 12

5 6

9 3

8

2 16

6 14

11 13

12 15

10

13 2

14 4

15 7

16 11

1

5

109

11 12

13 14 15 16

2 3 4 6 7 8

2

1 5

8 11

4 12

2 10

6 5

11 3

8

3 16

7 14

9 13

10 15

12

13 1

14 4

15 7

16 9

3

2 6

5 9

1 10

3 12

7 5

9 2

8

4 16

8 14

11 13

12 15

10

13 1

14 4

15 6

16 11

4

3 7

6 11

2 12

4 10

8 5

11 2

7

1 16

5 14

9 13

10 15

12

13 1

14 3

15 6

16 10

1

4 8

7 9

3 10

1 12

5 6

9 3

8

2 16

6 14

11 13

12 15

10

13 2

14 4

15 7

16 11

4

3 7

6 11

2 12

4 10

8 5

11 2

7

1 16

5 14

9 13

10 15

12

13 1

14 3

15 6

16 10

server

Fig. 2. The multi-SBT structure, K-ISet, and corresponding uploading schedules forN = 16. The scheduled uploadings below
each SBT take place concurrently when the server pushes a chunk to the root of this tree.

let K = dlog2Ne be the maximum depth of every SBT. As
the minimum delay can be guaranteed for every SBT only if
the maximum parallelism is achieved in terms of the upload-
ing scheduling, we have a sufficient condition for a multi-tree
structure to yield the minimum delay for chunk streaming.

Proposition 1 The following condition guarantees a multi-
tree structure to yield the minimum delay: If the edges in Le

1,i

is scheduled, then all edges in Le
k,i−k+1 : k ∈ (2,K), as well

as the N − 2K−1 edges in Le
K,i−K+1, should be able to be

scheduled together.

The proof is omitted and the readers are referred to our tech-
nical report. Basically, this scheduling squeezes the sequence
of a geometric progression (from 1 to 2K) into one time slot,
though the peers involved in the progression come from dif-
ferent trees. To facilitate further discussion, we use the fol-
lowing definition to characterize the origins of the edges in-
volved in the schedule described in Proposition 1.

Definition 1 A set of peers is an independent set (ISet) if they
are the origins of all the edges involved in the schedule de-
scribed in Proposition 1. In particular, for some integer K, a
K-ISet refers to an ISet in a system of N = 2K peers.

It is clear that an ISet should not contain duplicate peers,
as a peer can only perform one uploading within one time
slot. In the next section, we will explain how we can con-
struct a Multi-SBT structure that satisfies the requirement set

in Proposition 1. We use Fig. 2 to give a more tangible il-
lustration of the concepts of ISets, as well as the sufficient
scheduling required by Proposition 1.

3.2. Constructing the Multi-SBT Structure

Given the sufficient condition to achieve the minimum delay
described in Proposition 1, our design goal is achieved if we
could construct a multi-tree structure satisfying that condi-
tion. We first give, in Fig. 3, the algorithm that performs the
construction for N = 2K , then we show its extension to an
arbitrary N . We omit the correctness proof for brevity.

Algorithm Multi-SBT Construction for N = 2K

1. S ← N ; sk ← ∅, k = 0, 1, · · · ,K; k ← 0
2. repeat
3. sk ← (K − k)2(k−1)

+

distinct peers in S
4. do assign the peers in sk to the k-th level of the SBTs

in a periodic fashion.
5. S ← S\sk; k ← k + 1
6. until k = K
7. Fill the Lp

K,i with the peers that have not appeared in Ti.
8. return P distinct SBTs and {s0, s1, · · · , sK}.

Fig. 3. The multi-tree construction algorithm for N = 2K

Basically, the algorithm starts with empty “skeleton” of
trees whose vertices need to be indexed. The data struc-

ture used to represent the trees is {sk}k=0,1,··· ,K , with
sk =

⋃
i L

p
k,i (i.e., sk includes the peer level sets of all the

trees). According to the 3rd and 4th steps of the algorithm,
the peers in the k-th level of a multi-SBT structure repeat in a
period of Pk = K − k, given the number |sk| of peers to be
put in the k-th level of the multi-SBT structure and the fact
that there are 2(k−1)

+

peers in Lp
k,i of a tree Ti. Consequently,

the maximum number of required SBTs is the least common
multiple (LCM) of a set of periods {K,K − 1, · · · , 1}. For-
tunately, the period P of the tree pattern can actually be much
smaller than that number. As detailed calculation shows that
the total number of peers required to complete the algorithm
is only 2K − 1 = N − 1, we can make use of this extra peer
to increase the period of the first level to K, which has the
potential to greatly reduce P . We illustrate the outcome of
this algorithm for N = 16 in Fig. 2: the ISets (in particular
4-ISets) are shown as the sets of peers that encompassed in
the staircase-shaped frames. Although the LCM of the set of
periods {4, 3, 2, 1} is 12, the actual period is just 4, as we use
that extra peer to increase P1 from 3 to 4.

For an arbitrary N where 2K−1 < N < 2K , the size of
an ISet is between 2K−1 and 2K . Therefore, we simply put
N − 2K−1 peers in arbitrary positions in the relative comple-
ment of (K-1)-ISet in K-ISet, which is effectively equivalent
to changing the periods at certain levels, as shown by the steps
from 4 to 7 of the algorithm in Fig. 4 (which is an extension
of the basic algorithm in Fig. 3). These extra peers are then

Algorithm Multi-SBT Extension for Arbitrary N
1. Choose arbitrary Ñ ⊆ N s.t. |Ñ | = 2blog2 Nc

2. Run Multi-SBT Construction for Ñ
3. S ← N\Ñ ; s← ∅; k ← 0
4. Choose an ascendingly ordered set

K = {k1, k2, · · · , km} s.t. |S| =
∑

k∈K 2(k−1)
+

5. for all k ∈ K
6. s← 2(k−1)

+

distinct peers in S; sk ← sk ∪ s
7. do assign the peers in sk to the k-th level of the SBTs

in a periodic fashion; S ← S\s
8. Fill the Lp

K,i with the peers that have not appeared in Ti.
9. return P distinct SBTs and {s0, s1, · · · , sK}.

Fig. 4. The multi-tree extension algorithm for an arbitrary N

used to further upload chunks to the incomplete Lp
K,i (which

contains exactly N − 2K−1 peers) in every Ti. For example,
given N = 20, we have many strategies to extend the case of
N = 16. These may include:

1. Increase P0, P1, and P2 all by 1, i.e., K = {0, 1, 2}.
2. Increase P3 to 2: i.e., K = {3}.
3. Replace any 4 peers in the fourth level by a repetitive

pattern: K = {4}.
as well as any arbitrary combinations of the above strategies
that increase the size of an ISet by 4 peers. The 4 extra peers
added to an ISet are then used to further upload chunks to the

partial Lp
5,i (including exactly 4 peers) appended to every Ti

in the 8th step of the algorithm.

3.3. Distributed Pushing with SNAP

The centralized multi-SBT construction algorithms can only
be executed by the server. To be practical for P2P media
streaming, our SNowball multi-tree Pushing (SNAP), based
on the multi-SBT, should operate without each peer knowing
the global information about all the SBT trees. More pre-
cisely, we need to answer the following three questions:

Q1: How big the neighbor table of a peer can be?
Q2: How to efficiently reconstruct the SBTs upon peer join-

ing or leaving?
Q3: How to deal with bandwidth heterogeneity?

3.3.1. Sizing the Neighbor Table

A complete neighbor table of a peer should contain the chil-
dren of this peer in different SBTs; it consists of subsets of
peers for different trees. For example, as shown in Fig. 2,
the neighbor table of peer 1, {[5, 10, 16, 12]}, has only one
subset of peers, while that of peer 11 contains two subsets,
{[13, 3], [13, 2]}. Having such a complete neighbor table at
every peer, SNAP can proceed in a distributed way: each peer,
upon receiving a new chunk, chooses a subset of peers in a
round-robin fashion and pushes the chunk to the children in
the subset sequentially. It is straightforward to see that, for a
single SBT (as shown in Fig. 1), the size of a neighbor table
is bounded by dlog2Ne, where the bound is obtained at the
root. The periodic rotation of peers in every level of the multi-
SBT structure inevitably increases this size, but, as shown by
the following proposition, this increase is not drastic.

Proposition 2 The size of the largest neighbor table (owned
by the root of each SBT) is O

(
dlog2Ne2

)
.

In practice, peers may have a neighbor table of much smaller
size. For example, peers in the (K − 2)-th and (K − 1)-th
levels only have a neighbor table of size bounded by 3. This
shows that SNAP runs correctly with a neighbor table much
smaller than N . In other words, its scalability is guaranteed.

3.3.2. Coping with Peer Dynamics

From the server point of view, peer joining and leaving simply
reshape the multi-SBT overlay. For peer joining, this reshap-
ing is conducted by an algorithm similar to what is shown in
Fig. 4: it basically adapts to the variation in N by adjusting
the periods at certain levels. The reshaped multi-SBT is then
conveyed to certain peers by updating their neighbor tables.

If a peer leaves SNAP, its starved children in certain SBTs
will alert the server. Upon receiving such alerts, the server
will assign a parent for these peers at a lower level and also
(locally) update their neighbor tables, which actually reduces
the level of the corresponding peers. Let us consider the

SNAP shown in Fig. 2, if peer 5 leaves, peers 9, 14, 6 in the
second SBT will be starved. As a response to the alerts from
them, the server will replace 5 by 9 in the second tree and
replace 9 by 13 in both second and fourth trees. Of course,
all the edges (uploadings) ending at 5 are removed. It can be
easily shown that such local replacements can always main-
tain the optimality of the multi-SBT structure. It is true that
the delay will be increased during this repairing phase, which
actually accounts for the fact that the delay obtained in our
simulations is not optimal (see Sec. 4). However, the same
simulation results also show that SNAP performs much better
than the most up-to-date competitor [10], due to the use of
the optimal pushing tree and the fact that repairing is always
needed for a structured streaming overlay. Also, as SNAP is
supposed to act as the backbone of certain hybrid push-pull
streaming systems, we expect the repairing to be rare events
because a backbone consists of only stable peers.

3.3.3. Heterogeneous Cases

The biggest disadvantage of snowball streaming is its lim-
ited compatibility with the heterogeneity in peers’ uploading
bandwidth. As shown in [11], apart from two very special
cases, it is generally impossible to perform scheduling for het-
erogeneous cases.

To get around this limitation, we propose to unify the
bandwidth by “slicing” (through time sharing) the upload-
ing capacity of individual peers. More precisely, for a peer
i to joint SNAP, it must at least offer a baseline uploading
bandwidth Bbase, i.e., Bi ≥ Bbase, where Bi is the upload-
ing bandwidth of peer i; otherwise the peer has to stay out
of the SNAP and be accommodated by a second tier over-
lay. The value of Bbase is usually defined by the feature
of the streamed media. For example, Bbase = 300Kbps if
the streaming rate is 300Kbps. After joining SNAP, Bbase is
sliced fromBi, while the remaining bandwidthBi−Bbase (if
still non-zero) can be used, for example, to upload chunks in
the second tier overlay.

We note that our design entails a hybrid and hierarchical
system: as not all peers are able to offer Bbase, those whose
uploading bandwidths are scarce need to joint the second tier.
They may pull chunks from the server, peers in the SNAP
backbone, or among each other, or they may join (sub)tree
streaming but receive media contents with lower rate. Those
peers inevitably suffer the efficiency-latency tradeoff (for
mesh pull, due to the reason explained in [3]) or lower qual-
ity (for tree push, due to the lower bandwidth offered by
such peers), but this is the price that a system has to pay for
accommodating heterogeneity.

4. PERFORMANCE EVALUATION

We have implemented SNAP along with two other systems,
PPLive-like system [14] and LBTree [10], in ns-2. While

PPLive is a typical mesh-based pull system, LBTree is a tree-
based backbone. We use the same parameter settings as those
in [10]. We apply two metrics, startup latency and control
overhead, for the comparison. We refer to [10] for the defini-
tions of these metrics.

We generate the underlying topology using GT-ITM [15],
where the intra-transit bandwidths are 2Gbps and the transit-
stub/intra-stub bandwidths are set to 2Mbps, 5Mbps, and
10Mbps with equal probability. The link delay varies from
50ms to 500ms. Only nodes in stub-domains may participate
P2P streaming. The session length is 3600 seconds and each
chunk is 300Kb (1-second video), and we run 30 sessions for
each system with 500 peers. To focus more on the streaming
performance, we did not implement the algorithm to identify
stable peers, but rather use a probability p to characterize the
false negative of an identification algorithm. We use Pareto
distribution (mean 100 seconds, α = 1) to model the dura-
tions of peers that are falsely identified as stable, whereas real
stable peers stay until the end.

In Fig. 5 (a), we plot the empirical cumulative distribu-
tion function (CDF) of startup latency of all the three sys-
tems: SNAP, LBTree, and PPLive. It shows that, though LB-
Tree has already achieved a great improvement over PPLive
(already shown by [10]), SNAP obtains further improvement
over LBTree. We attribute this further improvement to the op-
timality of the SBT trees used by SNAP. One may complain
that the actually delay obtained through simulations are worse
than the optimal case (which should lead to a maximum delay
of only a few seconds). This is due to the more realistic as-
sumptions in our simulation: certain SNAP peers are falsely
identified; they will leave after a short period and these peer
leavings will lead to tree repairing (as explained in Sec.3.3.2),
which may potentially increase the delay.

We also evaluate the control overhead for the three sys-
tems. The overhead of PPLive comes from (i) regular gossip-
ing to maintain the mesh overlay, (ii) regular chunk availabil-
ity advertisements, and (iii) chunk requests. Both SNAP and
LBTree do not have such control overhead, but they need to
maintain the backbone, whose overhead varies with the stabil-
ity of the backbone. In our simulation, we vary the value of p
to emulate the stability changes of the backbone: the smaller
the value, the more stable the backbone is. As shown in Fig. 5
(b), the control overhead of PPLive remains constant with
different values of p, while that of SNAP and LBTree natu-
rally increases with p. Although LBTree performs constantly
better than SNAP, the discrepancy in overhead is negligible
for small values of p. This is reasonable as SNAP does en-
tail more efforts to maintain its multi-SBT overlay, compared
with the loosely coupled multi-tree structure of LBTree. In
fact, as the large discrepancy takes place only in very pes-
simistic cases (more than 50% of the backbone peers are in-
correctly identified), we deem SNAP an excellent mechanism
to trade overhead for better delay performance.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Startup Latency (second)

P
er

ce
nt

ile

SNAP
LBTree
PPLive

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

False Negative Probability p

M
es

sa
ge

s
pe

r
N

od
e

pe
r

S
ec

on
d

SNAP
LBTree
PPLive

(a) CDF of startup latency. (b) Control overhead as a function of p.

Fig. 5. Comparing SNAP with LBTree and PPLive. We only plot the mean values in (b), as the 95% confidence interval is very
narrow for every point in the figure due to the large amount of data being collected.

5. CONCLUSION

In this paper, we have focused on the design of the streaming
backbone that consists of stable peers. Based on the theoreti-
cal results of [11], our SNowbAll multi-tree Pushing (SNAP)
applies a distributed chunk scheduling policy guided by a
multi-tree overlay, and it guarantees minimum delay of chunk
streaming. Using simulations with ns-2, we have demon-
strated the effectiveness and efficiency of SNAP.

6. REFERENCES

[1] J. Liu, S.G. Rao, B. Li, and H. Zhang, “Opportunities
and Challenges of Peer-to-Peer Internet Video Broad-
cast,” Proceedings of the IEEE, vol. 96, no. 1, pp. 11–
24, 2007.

[2] X. Hei, Y. Liu, and K.W. Ross, “IPTV over P2P Stream-
ing Networks: The Mesh-Pull Approach,” IEEE Comm.
Mag., vol. 46, no. 2, 2008.

[3] C. Feng, B. Li, and B. Li, “Understanding the Perfor-
mance Gap between Pull-based Mesh Streaming Proto-
cols and Fundamental Limits,” in Proc. of the 28th IEEE
INFOCOM, 2009.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowston, and A. Singh, “SplitStream: High-
Bandwidth Multicast in Coorperative Environments,” in
Proc. of the 19th ACM SOSP, 2003.

[5] V. Venkataraman, K. Yoshida, and P. Francis,
“Chunkyspread: Heterogeneous Unstructured Tree-
based Peer-to-Peer Multicast,” in Proc. of the 14th IEEE
ICNP, 2006.

[6] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or Multiple-
Tree: A Comarative Study of Live P2P Streaming Ap-
proaches,” in Proc. of the 26th IEEE INFOCOM, 2007.

[7] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStream-
ing/DONet: A Data-Driven Overlay Network for Effi-
cient Live Media Streaming,” in Proc. of the 24th IEEE
INFOCOM, 2005.

[8] B. Li, S. Xie, Y. Qu, G.Y. Keung, C. Lin, J. Liu, and
X. Zhang, “Inside the New Coolstreaming: Principles,
Measurements and Performance Implications,” in Proc.
of the 27th IEEE INFOCOM, 2008.

[9] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understand-
ing the Power of Pull-Based Streaming Protocols: Can
We Do Better?,” IEEE J. on Sel. Areas in Communica-
tions, vol. 25, no. 9, pp. 1678–1694, 2007.

[10] F. Wang, J. Liu, and Y. Xiong, “Stalbe Peers: Existence,
Importance, and Application in Peer-to-Peer Live Video
Streaming,” in Proc. of the 27th IEEE INFOCOM, 2008.

[11] Y. Liu, “On the Minimum Delay Peer-to-Peer Video
Streaming: how Realtime can it be?,” in Proc. of the
15th ACM Multimedia, 2007.

[12] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and
A. Twigg, “Epidemic Live Streaming: Optimal Perfor-
mance Trade-Offs,” in Proc. of the 32nd ACM SIGMET-
RICS, 2008.

[13] Z. Liu, C. Wu, B. Li, and S. Zhao, “Distilling Superior
Peers in Large-Scale P2P Streaming Systems,” in Proc.
of the 28th IEEE INFOCOM, 2009.

[14] X. Hei, C. Liang, J. Liang, Y. Liu, and K.W. Ross, “In-
sights into PPLive: A Measurement Study of a Large-
Scale P2P IPTV System,” in Proc. of the IW3C2/ACM
WWW-IPTV, 2006.

[15] “GT-ITM,” http://www.cc.gatech.edu/projects/gtitm/.

