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On Self-Dual Cyclic Codes over Finite Fields
Yan Jia, San Ling, Chaoping Xing

Abstract

In coding theory, self-dual codes and cyclic codes are important classes of codes which have been extensively studied. The main
objects of study in this paper are self-dual cyclic codes over finite fields, i.e., the intersection of these two classes. We show that self-dual
cyclic codes of length n over Fq exist if and only if n is even and q = 2m with m a positive integer. The enumeration of such codes is
also investigated. When n and q are even, there is always a trivial self-dual cyclic code with generator polynomial x

n
2 +1. We therefore

classify the existence of self-dual cyclic codes, for given n and q, into two cases: when only the trivial one exists and when two or more
such codes exist. Given n and m, an easy criterion to determine which of these two cases occurs is given in terms of the prime factors
of n, for most n. We also show that, over a fixed field, the latter case occurs more frequently as the length grows.

Index Terms

self-dual, cyclic code, finite field, generator polynomial

I. INTRODUCTION

Cyclic codes and self-dual codes over finite fields are important classes of block codes that have been extensively studied, for their
beautiful underlying algebraic structures, fascinating links to other objects such as polynomials and lattices, as well as practicality
for use. The intersection of these two classes, i.e., self-dual cyclic codes over finite fields, forms the focus of the study in this paper.
In particular, we investigate issues related to their existence, characterization and enumeration.

First, it is shown that self-dual cyclic codes of length n over Fq exist if and only if q is a power of 2 and n is even. When these
conditions are met, there is always a trivial self-dual cyclic code with generator polynomial x

n
2 + 1. A natural question that then

arises is the existence of self-dual cyclic codes other than this trivial one.
One approach to this question is to enumerate all self-dual cyclic codes of length n over F2m , for any given n and m. It is well

known that cyclic codes of length n over Fq may be regarded as ideals in the quotient polynomial ring Fq[x]/(xn − 1), and each
cyclic code is uniquely generated by a generator polynomial in the corresponding ideal – the unique monic polynomial of minimal
degree which is also a factor of xn − 1. Through obtaining a characterization of the generator polynomials of the self-dual cyclic
codes, based on the irreducible factors of xn − 1, we produce a formula for the desired enumeration of self-dual cyclic codes.

An explicit form of this enumeration formula involves a two-variable function χ defined number-theoretically as follows: χ(j,m) =
0 if j divides (2m)k+1 for some k ≥ 0, and χ(j,m) = 1 otherwise. It turns out that the question on the existence of self-dual cyclic
codes other than the trivial one can be directly addressed via the values of this function χ(j,m), where m is as in the underlying
field F2m and j runs through all the odd prime factors of the length n. An analysis of the values of χ(j,m) provides us directly
with the answer to the aforesaid question for all n without any prime factor congruent to 1 modulo 8. No enumeration formula is
needed.

Another natural question that subsequently emerges is the following: over a fixed field F2m and as the length n grows, which of
the following two cases occurs more frequently – where only the trivial self-dual cyclic code of length n exists, or where there are
at least two such codes? By an analysis of the asymptotic behavior of the function χ, we confirm that it is more common to have
two or more self-dual cyclic codes of length n as n grows.

This paper is organized as follows. After a brief introduction to the key notions and notations in Section 2, the conditions for the
existence of self-dual cyclic codes are given in Section 3. In Section 4, we give a characterization of the generator polynomials of
self-dual cyclic codes, which is then used in Section 5 for the enumeration formula. Section 6 deals with the asymptotic occurrence
problem explained above. A summary and a brief discussion of open problems conclude the paper in Section 7.

II. PRELIMINARIES

Let Fq denote the finite field of q = pm elements where p is a prime and m is a positive integer, and let F∗q denote Fq \ {0}.
Denote by Fq[x] the polynomial ring in indeterminate x with coefficients from Fq .

A linear code C of length n and dimension k over Fq is a k-dimensional subspace of the vector space Fnq . It is known as an
[n, k]q code. The elements of the subspace are the codewords of C and are written as row vectors: c = (c0, c1, . . . , cn−1).

The dual of a linear code C is defined as the dual space of the vector space C with respect to the Euclidean inner product. It is
denoted by C⊥. In particular, if C = C⊥, then C is called a self-dual code.

If C is an [n, k]q code, then C⊥ is an [n, n − k]q code. Obviously, a self-dual code C over Fq must be an [n, n2 ]q code, which
implies n must be even.
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Singapore 637371.
The research is partially supported by the Singapore National Research Foundation Competitive Research Program grant NRF-CRP2-2007-03 and the Singapore
Ministry of Education under Research Grant T208B2206.
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An [n, k]q code C is called cyclic provided that, for each codeword c = (c0, c1, . . . , cn−1) in C , the vector (cn−1, c0, . . . , cn−2)
is also a codeword in C .

We briefly state some well-known facts regarding cyclic codes. For further details, [3] can be consulted. There is a one-to-one
correspondence between the vectors c = (c0, c1, . . . , cn−1) in Fnq and the polynomials c(x) = c0 + c1x + · · ·+ cn−1x

n−1 in Fq[x]
of degree at most n− 1. Under this correspondence, a cyclic code C of length n over Fq can be regarded as a principal ideal in the
quotient ring Rn = Fq[x]/(xn − 1). Therefore, we also regard C as an ideal in Rn. Among all the generators of the ideal C , there
is a unique monic one with minimal degree that divides xn − 1. It is called the generator polynomial of the cyclic code C and we
denote it by G(x). The dimension of C is n− degG(x). Let

H(x) = (xn − 1)/G(x). (1)

H(x) is called the check polynomial of C . Suppose that H(x) = Hbx
b + · · ·+H1x+H0, where b is the degree of H(x) and Hi

(0 ≤ i ≤ b) are coefficients from Fq . Note that Hb = 1 and H0 6= 0. We define
←−
H (x) = xdegH(x)H(x−1) = H0x

b +H1x
b−1 + · · ·+Hb−1x+Hb = xbH(x−1).

Then the reciprocal polynomial of H(x) is
H∗(x) = H−1

0

←−
H (x).

In particular, if a polynomial is equal to its reciprocal polynomial over Fq , then it is called self-reciprocal over Fq . Notice that H∗(x)
is a monic polynomial and it divides xn − 1 over Fq . Actually, H∗(x) is the generator polynomial of C⊥, so the dimension of C⊥

is n− degH(x). Therefore we have the following proposition.

Proposition 1. A cyclic code C of length n is self-dual if and only if

G(x) = H∗(x),

where G(x) is the generator polynomial of C , H(x) is the check polynomial and H∗(x) is the reciprocal polynomial of H(x).

III. EXISTENCE OF SELF-DUAL CYCLIC CODES

Clearly, self-dual codes of odd lengths over Fq do not exist. It is natural to ask for the conditions required of q and the length n
in order for [n, n2 ]q self-dual cyclic codes to exist. The following result provides an answer to this question.

Theorem 1. There exists at least one self-dual cyclic code of length n over Fq if and only if q is a power of 2 and n is even.

Proof: Suppose that C is a self-dual cyclic code of length n over Fq . Then n must be even and degG = degH = n
2 . As

G(x)H(x) = xn − 1, we have G0H0 = −1, where G0 and H0 are the constant terms of G(x) and H(x), respectively. Therefore,

G(x−1)H(x−1) = x−n − 1,
⇒ (G0G

∗(x))(H0H
∗(x)) = 1− xn,

⇒ G∗(x)H∗(x) = xn − 1.
(2)

By Proposition 1, we have
G(x) = H∗(x),

⇒
←−
G(x) = H−1

0 H(x),
⇒ G0G

∗(x) = H−1
0 H(x),

⇒ G∗(x) = −H(x).

(3)

Therefore, we have G∗(x)H∗(x) = −H(x)G(x) = −(xn − 1). Then by (2) and (3), we have

xn − 1 = −(xn − 1).

Hence, the following identity holds:
2(xn − 1) = 0,

which implies that the characteristic of the field Fq is 2, i.e., q is a power of 2.
Conversely, if q is a power of 2 and n is even, then the polynomial xn − 1 can be written as follows over Fq:

xn − 1 = xn + 1 = (x
n
2 + 1)2.

By Proposition 1, it is easy to check that the cyclic code with generator polynomial x
n
2 + 1 is self-dual.

Theorem 1 gives a necessary and sufficient condition for the existence of self-dual cyclic codes.
The final part of the proof of Theorem 1 reveals the existence of the self-dual cyclic code with generator polynomial x

n
2 + 1

whenever n and q are even. This leads us to introduce the following definition.

Definition 1. For n even, the [n, n2 ]2m self-dual cyclic code C with generator polynomial x
n
2 + 1 is called the trivial self-dual cyclic

code, denoted by C̄ [n]2m , or simply C̄ without specifying the length n and the field F2m if no confusion arises.

Throughout the rest of this paper, in view of Theorem 1, we assume that the integer n is even and q = 2m for some positive integer
m.
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IV. GENERATOR POLYNOMIALS OF [n, n2 ]2m SELF-DUAL CYCLIC CODES

Each cyclic code over F2m is uniquely determined by its generator polynomial, a monic divisor of xn + 1 over F2m . In order to
describe the generator polynomials of [n, n2 ]2m self-dual cyclic codes, we need to know the factorization of the polynomial xn + 1
over F2m . Write

n = 2ν(n)n̄, (4)

where n̄ is an odd integer and ν(n) is a positive integer depending on n. Then

xn + 1 = (xn̄ + 1)2ν(n)

.

For any irreducible polynomial dividing xn̄+1 over F2m , its reciprocal polynomial also divides xn̄+1 over F2m and is also irreducible
over F2m . Since gcd(n̄, 2m) = 1, the polynomial xn + 1 can be factorized into distinct irreducible polynomials as follows [2, p.
2753]:

xn̄ + 1 = f1(x) · · · fs(x)h1(x)h∗1(x) · · ·ht(x)h∗t (x),

where fi(x) (1 ≤ i ≤ s) are monic irreducible self-reciprocal polynomials over F2m while hj(x) and its reciprocal polynomial
h∗j (x) (1 ≤ j ≤ t) are both monic irreducible polynomials over F2m . We say that hj(x) and h∗j (x) form a reciprocal polynomial
pair. Note that s and t both depend on n and m. Therefore, we regard them as two functions of the pair (n,m).

Definition 2. Let n be an even positive integer and let m be a positive integer. Define s(n,m) to be the number of self-reciprocal
polynomials in the factorization of xn̄ + 1 over F2m , and t(n,m) the number of reciprocal polynomial pairs in the factorization of
xn̄ + 1 over F2m , where n̄ is defined as in Equation (4).

Therefore,
xn + 1 = f1(x)2ν(n)

· · · fs(n,m)(x)2ν(n)

h1(x)2ν(n)

h∗1(x)2ν(n)

· · ·ht(n,m)(x)2ν(n)

h∗t(n,m)(x)2ν(n)

. (5)

We can describe the generator polynomials for the [n, n2 ]2m self-dual cyclic codes as soon as we know the factorization of xn + 1
over F2m .

Theorem 2. Let xn+1 be factorized as in Equation (5). A cyclic code C of length n is self-dual over F2m if and only if its generator
polynomial is of the form

f1(x)2ν(n)−1

· · · fs(x)2ν(n)−1

h1(x)β1h∗1(x)2ν(n)−β1 · · ·ht(x)βth∗t (x)2ν(n)−βt , (6)

where s = s(n,m), t = t(n,m) and 0 ≤ βi ≤ 2ν(n) for each 1 ≤ i ≤ t.

Proof: Let C be a cyclic code of length n over F2m and let G(x) be its generator polynomial. We need to show that C is
self-dual if and only if G(x) is of the form as in Equation (6).

To simplify the notation in the proof, let ν, s and t be ν(n), s(n,m) and t(n,m), respectively. Since the generator polynomial
G(x) of a cyclic code of length n is monic and divides xn + 1, we may assume that

G(x) = f1(x)α1 · · · fs(x)αsh1(x)β1h∗1(x)γ1 · · ·ht(x)βth∗t (x)γt ,

where 0 ≤ αi ≤ 2ν for each 1 ≤ i ≤ s, and 0 ≤ βj , γj ≤ 2ν for each 1 ≤ j ≤ t.
Then the check polynomial is

H(x) = f1(x)2ν−α1 · · · fs(x)2ν−αsh1(x)2ν−β1h∗1(x)2ν−γ1 · · ·ht(x)2ν−βth∗t (x)2ν−γt .

Hence
H∗(x) = f1(x)2ν−α1 · · · fs(x)2ν−αsh∗1(x)2ν−β1h1(x)2ν−γ1 · · ·h∗t (x)2ν−βtht(x)2ν−γt ,

since fi(x) (1 ≤ i ≤ s) are self-reciprocal while hj(x) and h∗j (x) (1 ≤ j ≤ t) are reciprocal polynomial pairs over F2m .
By Proposition 1, C is self-dual if and only if G(x) = H∗(x), i.e.,{

αi = 2ν − αi, for each 1 ≤ i ≤ s
γj = 2ν − βj , for each 1 ≤ j ≤ t,

or, equivalently, {
αi = 2ν−1, for each 1 ≤ i ≤ s
γj = 2ν − βj , for each 1 ≤ j ≤ t.

Therefore, C is self-dual if and only if its generator polynomial G(x) is of the form as in Equation (6).
From the above discussion, it is clear that in order to construct the generator polynomial of an [n, n2 ]2m self-dual cyclic code, we

just need to determine the exponents associated with the irreducible factors of xn+1 over F2m . Theorem 2 says that the exponents of
the irreducible self-reciprocal polynomials in the factorization should be 2ν(n)−1 while the exponents of each reciprocal polynomial
pair should sum up to 2ν(n) without other restrictions. Therefore, the number of distinct [n, n2 ]2m self-dual cyclic codes is exactly
the number of choices of the exponents of the reciprocal pairs, i.e., the number of choices of βj’s for 1 ≤ j ≤ t(n,m). Thus we
immediately have the following corollary.
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TABLE I
SELF-DUAL CYCLIC CODES OVER F2 OF LENGTHS UP TO 46

n n̄ (2ν(n) + 1)t(n,1) G(x) n n̄ (2ν(n) + 1)t(n,1) G(x)

2 1 1 12 30 15 3 12011403110213

4 1 1 110111 1101411

6 3 1 110211 13021103140112

8 1 1 110311 32 1 1 1101511

10 5 1 110411 34 17 1 1101611

12 3 1 110511 36 9 1 1101711

14 7 3 140212 38 19 1 1101811

110611 40 5 1 1101911

120214 42 21 9 1102110811021102110211

16 1 1 110711 1402110113021101130212

18 9 1 110811 110114011201120111021101120111

20 5 1 110911 1201110113011104140113

22 11 1 1101011 1102011

24 3 1 1101111 1301140411011301110112

26 13 1 1101211 110112011102110112011201140111

28 7 5 1101110111011105110111 1202130111021301110214

14021101130212 1102110211021108110211

1101311 44 11 1 1102111

12021301110214 46 23 3 14061602120212

1101110511011101110111 1102211

12021202160614

Corollary 1. Let xn + 1 be factorized over F2m as in Equation (5). Then the number of [n, n2 ]2m self-dual cyclic codes is exactly
(2ν(n) + 1)t(n,m). In particular, if t(n,m) = 0, i.e., all monic irreducible factors of xn̄ + 1 are self-reciprocal, then there is a unique
[n, n2 ]2m self-dual cyclic code.

Example 1. Consider the case: n = 14 and q = 2. Now n̄ = 7. The factorization of x14 + 1 over F2 is

x14 + 1 = (x+ 1)2(x3 + x+ 1)2(x3 + x2 + 1)2.

It is observed that the polynomial x+ 1 is a self-reciprocal polynomial and x3 + x+ 1 is the reciprocal polynomial of x3 + x2 + 1
over F2. There are 3 binary self-dual cyclic codes of length 14 with the following generator polynomials respectively:

(x+ 1)(x3 + x+ 1)2 = x7 + x6 + x3 + x2 + x+ 1,
(x+ 1)(x3 + x+ 1)(x3 + x2 + 1) = x7 + 1,

(x+ 1)(x3 + x2 + 1)2 = x7 + x6 + x5 + x4 + x+ 1.

The one with generator polynomial x7 + 1 is the trivial self-dual cyclic code.

Table I lists all binary self-dual cyclic codes of lengths up to 46. In the table, only the coefficients of the generator polynomials
are listed in ascending order. For example, 140212 in the column labeled by G(x) means that the generator polynomial is 1 + x+
x2 + x3 + x6 + x7.

Table II lists all self-dual cyclic codes of lengths up to 30 over F4. In Table II, w is a primitive element in F4 with w2 +w+1 = 0.
The coordinates of the vector in the column labeled by G(x) are the coefficients of the generator polynomial in ascending order. For
example, [w,w, 1, 1] means the generator polynomial is w + wx+ x2 + x3.
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TABLE II
SELF-DUAL CYCLIC CODES OVER F4 OF LENGTH UP TO 30

n n̄ (2ν(n) + 1)t(n,2) G(x)

2 1 1 [1, 1]
4 1 1 [1, 0, 1]
6 3 3 [w2, w2, 1, 1], [1, 0, 0, 1], [w,w, 1, 1]
8 1 1 [1, 0, 0, 0, 1]

10 5 1 [1, 0, 0, 0, 0, 1]
12 3 5 [w, 0, w, 0, 1, 0, 1], [w2, w2, 1, w, w2, 1, 1], [1, 0, 0, 0, 0, 0, 1]

[w,w, 1, w2, w, 1, 1], [w2, 0, w2, 0, 1, 0, 1]
14 7 3 [1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1]
16 1 1 [1, 0, 0, 0, 0, 0, 0, 0, 1]
18 9 9 [w,w,w2, w2, 0, 0, w2, w2, 1, 1], [w2, w2, 1, w, w2, 1, w, w2, 1, 1], [1, 1, w, w, 0, 0, w2, w2, 1, 1]

[w2, 0, 0, w2, 0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 1], [w, 0, 0, w, 0, 0, 1, 0, 0, 1]
[1, 1, w2, w2, 0, 0, w, w, 1, 1], [w,w, 1, w2, w, 1, w2, w, 1, 1], [w2, w2, w, w, 0, 0, w, w, 1, 1]

20 5 1 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
22 11 3 [1, 1, w, w, 1, 1, 1, 1, w2, w2, 1, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 1, w2, w2, 1, 1, 1, 1, w, w, 1, 1]
24 3 9 [w2, 0, 0, 0, w2, 0, 0, 0, 1, 0, 0, 0, 1], [1, 1, w2, w, 0, w, 1, w2, 0, w2, w, 1, 1]

[w, 0, w, 0, 1, 0, w2, 0, w, 0, 1, 0, 1], [w2, w2, 1, w, w2, 1, w, w2, 1, w, w2, 1, 1]
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [w,w, 1, w2, w, 1, w2, w, 1, w2, w, 1, 1]
[w2, 0, w2, 0, 1, 0, w, 0, w2, 0, 1, 0, 1], [1, 1, w, w2, 0, w2, 1, w, 0, w, w2, 1, 1]
[w, 0, 0, 0, w, 0, 0, 0, 1, 0, 0, 0, 1]

26 13 1 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
28 7 5 [1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1], [1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1]

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1]
[1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1]

30 15 27 [w2, 0, w, 0, 1, w2, 0, w, w2, 1, 1, 0, 0, w2, 0, 1], [w, 1, 1, 1, 0, w2, 1, w2, 0, w2, 0, 0, w, 1, w2, 1]
[1, 0, 1, 0, w2, 1, w, 1, 1, w2, 1, w, 0, 1, 0, 1], [1, w, w2, 0, 1, 0, 1, w, 0, w2, 0, w2, 1, 0, w, 1]
[w2, w2, 1, w, w2, 1, w, w2, 1, w, w2, 1, w, w2, 1, 1], [w,w2, w, 1, 0, 0, w2, 0, w2, w, w2, 0, w, w,w, 1]
[w, 0, 0, 0, 0, w, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, w2, 0, 1, w, 0, w, 0, w2, 1, 0, 1, 0, w, w2, 1]
[w2, 0, 1, 0, 0, w2, w2, 1, w, 0, 1, w2, 0, w, 0, 1], [1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1]
[w2, 1, w, 0, w2, w2, w, w2, 0, 1, 1, w2, 1, 0, w, 1], [w,w,w2, 1, w, 1, w2, 1, w, w2, w, 1, w, w2, 1, 1]
[w, 1, w2, 0, w, w,w2, w, 0, 1, 1, w, 1, 0, w2, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[w2, w, 0, w2, 1, w2, w2, 0, 1, w, 1, 1, 0, w, w2, 1], [w2, w2, w, 1, w2, 1, w, 1, w2, w, w2, 1, w2, w, 1, 1]
[w,w2, 0, w, 1, w, w, 0, 1, w2, 1, 1, 0, w2, w, 1], [1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1]
[w, 0, w2, 0, 1, w, 0, w2, w, 1, 1, 0, 0, w, 0, 1], [1, w2, w, 0, 1, 0, 1, w2, 0, w, 0, w, 1, 0, w2, 1]
[w2, 0, 0, 0, 0, w2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [w2, 1, 1, 1, 0, w, 1, w, 0, w, 0, 0, w2, 1, w, 1]
[w,w, 1, w2, w, 1, w2, w, 1, w2, w, 1, w2, w, 1, 1], [1, w, 0, 1, w2, 0, w2, 0, w, 1, 0, 1, 0, w2, w, 1]
[1, 0, 1, 0, w, 1, w2, 1, 1, w, 1, w2, 0, 1, 0, 1], [w2, w, w2, 1, 0, 0, w, 0, w, w2, w, 0, w2, w2, w2, 1]
[w, 0, 1, 0, 0, w, w, 1, w2, 0, 1, w, 0, w2, 0, 1]

V. ENUMERATION OF SELF-DUAL CYCLIC CODES

Recall that n = 2ν(n)n̄, q = 2m and t(n,m) is the number of irreducible reciprocal pairs in the factorization of xn̄ + 1 over F2m .
In order to know the number of distinct [n, n2 ]2m self-dual cyclic codes, by Corollary 1, we need to know the values of ν(n) and
t(n,m). For given n and q, it is easy to compute the value of ν(n). However, it is hard to obtain a general formula for the value of
t(n,m).

In this section, we fix n and m. Now, we briefly state some well-known facts regarding the factorization of xn̄ + 1 over F2m . For
further details, [1] can be referred to. We adopt the same definitions and notations as in [1]. Let F be the algebraic closure of F2m .
Thus F contains all the n̄ roots of xn̄ + 1.

It is well known that
xn̄ + 1 =

∏
j|n̄

Qj(x),

where Qj(x) is the jth cyclotomic polynomial over F2m , i.e., the polynomial whose roots in F are all of order j. Notice that Qj(x)
is in F2m [x]. In order to describe the factorization of Qj(x), we need the following definitions.

Definition 3. Let i and j be any two positive integers with gcd(i, j) = 1. The order of i in the multiplicative group (Z/jZ)∗, denoted
by ordj(i), is defined to be the smallest integer e such that j divides ie − 1.

Definition 4. Let j be an odd positive integer and m positive integer. We say the pair (j,m) is good if j divides (2m)k + 1 for some
integer k ≥ 0 and bad otherwise.

Definition 5. Let χ be a function defined on the pair (j,m), with j odd, as follows:

χ(j,m) =

{
0, if (j,m) is good,
1, otherwise.

With the help of the above definitions and notations, we have the following lemma.
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Lemma 1. Let j be an odd positive integer. The jth cyclotomic polynomial Qj(x) factors into φ(j)
e distinct monic irreducible

polynomials over F2m of the same degree e, where φ is the Euler function and e = ordj(2m).
Moreover, if (j,m) is good, then all the irreducible polynomials in the factorization of Qj(x) are self-reciprocal. Otherwise, all

of them form reciprocal polynomial pairs.

Proof: The first part is just Theorem 2.47 in [1, p. 65]. Hence we only show the second part.
Let f(x) be any irreducible polynomial of degree e in the factorization of Qj(x) over F2m , where e is the same as in the statement

of the lemma. Then its reciprocal polynomial f∗(x) is also irreducible and of degree e. Let ξ be any root of f(x) in F. By the
definition of cyclotomic polynomials, the order of ξ in F is j. Moreover, the set

{ξ2mi : 0 ≤ i ≤ e− 1}

comprises all distinct roots of f(x). Notice that even if i > e − 1, ξ2mi is also a root of f(x). Here, we restrict i between 0 and
e− 1 so that the elements in the set are distinct.

Suppose that the pair (j,m) is good, i.e., j | (2m)k + 1 for some k ≥ 0. Then ξ(2m)k+1 = 1 since j is the order of ξ. Therefore,
we have ξ−1 = ξ(2m)k . This means that ξ−1 is a root of f(x), too. Since ξ−1 is also a root of f∗(x), all the e roots of f(x)
are the e roots of f∗(x). Therefore, we have f(x) = f∗(x), i.e., all the irreducible polynomials in the factorization of Qj(x) are
self-reciprocal.

Next, suppose that the pair (j,m) is bad. Then ξ−1 is a root of f∗(x) but not a root of f(x). Otherwise, we can express ξ−1

as ξ−1 = ξ(2m)k for some k ≥ 0, which implies (j,m) is good, contradicting the assumption. Therefore the polynomial f(x) is
not equal to its reciprocal polynomial f∗(x). Since the roots of f(x) and f∗(x) have the same order j, f∗(x) is an irreducible
polynomial in the factorization of Qj(x) and different from f(x). It follows that, if (j,m) is bad, all the irreducible polynomials in
the factorization of Qj(x) form reciprocal polynomial pairs.

By Lemma 1, if the pair (j,m) is good, then Qj(x) contributes nothing to the number of reciprocal pairs t(n,m) in the factorization
of xn̄ + 1 over F2m . Otherwise, Qj(x) contributes φ(j)

2ordj(2m) reciprocal polynomial pairs to t(n,m). Hence, we get the following
theorem.

Theorem 3. Assume that n = 2ν(n)n̄ and xn + 1 is factorized as in (5). Then the number of reciprocal polynomial pairs t(n,m) is

t(n,m) =
1

2

∑
j|n̄

χ(j,m)φ(j)/ordj(2m),

and the number of [n, n2 ]2m self-dual cyclic codes is

(1 + 2ν(n))
1
2

∑
j|n̄ χ(j,m)φ(j)/ordj(2m).

In particular, when the pair (n̄,m) is good, t(n,m) = 0 and there is only the trivial self-dual cyclic code C̄ [n]2m , i.e., the [n, n2 ]2m

self-dual cyclic code with generator polynomial x
n
2 + 1.

Proof: The first part is immediately deduced from Lemma 1 and the second part is from Corollary 1. Hence we only show the
third part. Suppose that (n̄,m) is good. Then n̄ divides (2m)k + 1 for some integer k ≥ 0. Therefore, for any j | n̄, the integer j also
divides (2m)k + 1 for the same k. Thus, the pair (j,m) is good and χ(j,m) = 0 for each j | n̄. By the first part of this theorem,
we have t(n,m) = 0.

Tables III and IV list the numbers of self-dual cyclic codes over F2 and F4 for lengths up to 200, respectively.
By Theorem 3, the function χ is therefore very important to the enumeration of self-dual cyclic codes. Hence, we focus next on

the study of the behavior of the function χ.

Definition 6. Let i ≥ 0 and j ≥ 1 be integers. We say 2i exactly divides j, denoted by 2i ‖ j, when 2i divides j but 2i+1 does not
divide j.

Definition 7. For each r ≥ 0, let Smr be defined as Smr := {p : p is an odd prime and 2r ‖ ordp(2m)}.

With the help of the above definitions, we characterize the good pairs (j,m) with j an odd prime. A necessary and sufficient
condition is given in [4, Theorem 1]. The following theorem follows immediately from [4, Theorem 1] when a = 2m and b = 1.

Theorem 4. Let j be an odd positive integer and m a positive integer. Then χ(j,m) = 0 if and only if there exists e ≥ 1 such that
p ∈ Sme for every prime p dividing j. In particular, for an odd prime p, then χ(p,m) = 0 if and only if p ∈ Smr for some r ≥ 1,
i.e., ordp(2m) is even.

By Theorem 4, if p ∈ Sm0 , then χ(p,m) = 1. Moreover, we have

χ(pl,m) = χ(p,m),

where p is a prime and l is a positive integer.
Generally, for every prime p, there exists ep ≥ 0, dependent on p, such that p ∈ Smep . We have χ(j,m) = 0 if and only if these

ep’s are all equal and positive for each prime p dividing j. Thus, by Theorem 4, we can determine the value of χ(j,m) as soon
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TABLE III
THE NUMBER OF SELF-DUAL CYCLIC CODES OVER F2 OF FIXED LENGTHS UP TO 200

n n̄ (2ν(n) + 1)t(n,1) n n̄ (2ν(n) + 1)t(n,1) n n̄ (2ν(n) + 1)t(n,1)

46 23 3 98 49 9 150 75 9
48 3 1 100 25 1 152 19 1
50 25 1 102 51 9 154 77 9
52 13 1 104 13 1 156 39 5
54 27 1 106 53 1 158 79 3
56 7 9 108 27 1 160 5 1
58 29 1 110 55 3 162 81 1
60 15 5 112 7 17 164 41 1
62 31 27 114 57 1 166 83 1
64 1 1 116 29 1 168 21 81
66 33 1 118 59 1 170 85 81
68 17 1 120 15 9 172 43 1
70 35 9 122 61 1 174 87 3
72 9 1 124 31 125 176 11 1
74 37 1 126 63 243 178 89 81
76 19 1 128 1 1 180 45 25
78 39 3 130 65 1 182 91 81
80 5 1 132 33 1 184 23 9
82 41 1 134 67 1 186 93 729
84 21 25 136 17 1 188 47 5
86 43 1 138 69 9 190 95 3
88 11 1 140 35 25 192 3 1
90 45 9 142 71 3 194 97 1
92 23 5 144 9 1 196 49 25
94 47 3 146 73 81 198 99 1
96 3 1 148 37 1 200 25 1

TABLE IV
THE NUMBER OF SELF-DUAL CYCLIC CODES OVER F4 OF FIXED LENGTHS UP TO 200

n n̄ (2ν(n) + 1)t(n,2) n n̄ (2ν(n) + 1)t(n,2) n n̄ (2ν(n) + 1)t(n,2)

32 1 1 90 45 729 146 73 81
34 17 1 92 23 5 148 37 1
36 9 25 94 47 3 150 75 243
38 19 3 96 3 33 152 19 9
40 5 1 98 49 9 154 77 81
42 21 81 100 25 1 156 39 125
44 11 5 102 51 243 158 79 3
46 23 3 104 13 1 160 5 1
48 3 17 106 53 1 162 81 81
50 25 1 108 27 125 164 41 1
52 13 1 110 55 27 166 83 3
54 27 27 112 7 17 168 21 6561
56 7 9 114 57 81 170 85 6561
58 29 1 116 29 1 172 43 125
60 15 125 118 59 3 174 87 27
62 31 27 120 15 729 176 11 17
64 1 1 122 61 1 178 89 81
66 33 81 124 31 125 180 45 15625
68 17 1 126 63 177147 182 91 2187
70 35 27 128 1 1 184 23 9
72 9 81 130 65 1 186 93 59049
74 37 1 132 33 625 188 47 5
76 19 5 134 67 3 190 95 27
78 39 27 136 17 1 192 3 65
80 5 1 138 69 81 194 97 1
82 41 1 140 35 125 196 49 25
84 21 625 142 71 3 198 99 2187
86 43 27 144 9 289 200 25 1
88 11 9
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as we know the value of ep for each prime factor p of j. Given any m, the following proposition characterizes the ep’s for all odd
primes p except for those congruent to 1 modulo 8.

Proposition 2. Let p be an odd prime.
1) Let p ≡ 3 (mod 8).

a) If m is odd, then p ∈ Sm1 and χ(p,m) = 0.
b) If m is even, then p ∈ Sm0 and χ(p,m) = 1.

2) Let p ≡ 5 (mod 8).
a) If m is odd, then p ∈ Sm2 and χ(p,m) = 0.
b) If m ≡ 2 (mod 4), then p ∈ Sm1 and χ(p,m) = 0.
c) If m ≡ 0 (mod 4), then p ∈ Sm0 and χ(p,m) = 1.

3) Let p ≡ 7 (mod 8). Then p ∈ Sm0 and χ(p,m) = 1.

Proof: For each case, we only show the value of r such that p ∈ Smr . Then the value of χ(p,m) follows immediately by
Theorem 4. In this proof, we mainly use Euler’s criterion:

2
p−1

2 ≡ (−1)
p2−1

8 (mod p),

where p is an odd prime. Therefore, we have

2
p−1

2 ≡

{
−1 (mod p), if p ≡ 3, 5 (mod 8),

1 (mod p), if p ≡ 7 (mod 8).
(7)

1) Case 1a: Let p ≡ 3 (mod 8) and let m be odd. By Equation (7), we have

2m
p−1

2 ≡ (−1)m ≡ −1 (mod p).

From this, we find that ordp(2m) divides p − 1 but not p−1
2 . Since 2 ‖ p − 1, we have 2 ‖ ordp(2m). Therefore, we have

p ∈ Sm1 .
2) Case 1b: Let p ≡ 3 (mod 8) and let m be even. By Equation (7), we have

2m
p−1

2 ≡ (−1)m ≡ 1 (mod p).

Then ordp(2m) divides p−1
2 . Since p−1

2 is odd, by Theorem 4, we have p ∈ Sm0 .
3) Case 2a: Let p ≡ 5 (mod 8) and let m be odd. By Equation (7), we have

2m
p−1

2 ≡ −1 (mod p).

From this congruence, we find that ordp(2m) divides p − 1 but not p−1
2 . Since 4 ‖ p − 1, we have 4 ‖ ordp(2m). Therefore,

we have p ∈ Sm2 .
4) Case 2b: Let p ≡ 5 (mod 8) and m ≡ 2 (mod 4). By Equation (7), we have 2

p−1
2

m
2 ≡ −1 (mod p) because m

2 is odd.
Hence we have (2m)

p−1
4 ≡ −1 (mod p). Therefore, ordp(2m) divides p−1

2 but not p−1
4 . Since 2 ‖ p−1

2 , we have 2 ‖ ordp(2m).
Hence, we have p ∈ Sm1 .

5) Case 2c: Let p ≡ 5 (mod 8) and m ≡ 0 (mod 4). We have

2m
p−1

4 ≡ 1 (mod p),

for m
2 is even. Then ordp(2m) divides p−1

4 . Since p−1
4 is odd, we have p ∈ Sm0 .

6) Case 3: Let p ≡ 7 (mod 8). By Equation (7), we have

2m
p−1

2 ≡ 1m ≡ 1 (mod p),

for any m. Then ordp(2m) divides p−1
2 . Since p−1

2 is odd, we have p ∈ Sm0 .

Proposition 2 covers the cases for odd primes p ≡ 3, 5, or 7 (mod 8). For these cases, it is easy to determine the value of χ(p,m)
for any given m.

The values of χ(p,m) for primes p ≡ 1 (mod 8) and m = 1 are determined in [4, Theorem 6]. We quote the result here without
proof.

Proposition 3. Let p be a prime satisfying p ≡ 1 (mod 8) and let 2r ‖ (p− 1).
1) If r = 3 and p is represented by the quadratic form A2 + 64(A+ 2B)2 with variables A and B, then p ∈ S1

0 .
2) If r = 3 and p is represented by the quadratic form A2 + 256B2 with variables A and B, then p ∈ S1

1 .
3) If r ≥ 4 and p is represented by the quadratic form A2 + 64(A+ 2B)2 with variables A and B, then p ∈ S1

r−2.
4) If p is represented by the quadratic form A2 + 16(A+ 2B)2 with variables A and B, then p ∈ S1

r−1.
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It is stated in [4] that when m = 1, i.e. in the binary case, the smallest odd prime that is not covered by the cases in Propositions
2 and 3 is 337 and the density of the primes not covered is 1/32.

By Proposition 2, since the sets Smep ’s are given, it is easy to determine the value of χ(j,m) for any odd positive integer j with
no prime factor congruent to 1 modulo 8. Therefore, we obtain the following theorem from Theorem 4 and Proposition 2.

Theorem 5. Let j be an odd positive integer with no prime factor congruent to 1 modulo 8.
1) Let m be odd. Then χ(j,m) = 0 if and only if all the prime factors of j are congruent to 3 modulo 8 or all of them are

congruent to 5 modulo 8.
2) Let m ≡ 2 (mod 4). Then χ(j,m) = 0 if and only if all the prime factors of j are congruent to 5 modulo 8.
3) Let m ≡ 0 (mod 4). Then χ(j,m) = 1.

From Theorems 3 and 5, we immediately derive the following corollary.

Corollary 2. Let n = 2ν(n)n̄ as in (4). Suppose that n̄ has no prime factor congruent to 1 modulo 8.
1) Let m be odd. Then there is exactly one [n, n2 ]2m self-dual cyclic code if and only if all the prime factors of n̄ are congruent

to 3 modulo 8 or all of them are congruent to 5 modulo 8.
2) Let m ≡ 2 (mod 4). Then there is exactly one [n, n2 ]2m self-dual cyclic code if and only if all the prime factors of n̄ are

congruent to 5 modulo 8.
3) Let m ≡ 0 (mod 4). Then there are always at least two [n, n2 ]2m self-dual cyclic codes.

VI. DISTRIBUTION OF n WITH A UNIQUE [n, n2 ]2m SELF-DUAL CYCLIC CODE

Recall that the trivial self-dual cyclic code C̄ [n]2m is the [n, n2 ]2m self-dual cyclic code with generator polynomial x
n
2 + 1. In the

proof of Theorem 1, we know that, when n is even, the trivial self-dual cyclic code always exists. From Theorem 3, we know that,
given an even length n and the field F2m , exactly one of the following two cases happens:

1) If χ(n̄,m) = 0, then there is a unique [n, n2 ]2m self-dual cyclic code, i.e., the trivial self-dual cyclic code C̄ [n]2m .
2) If χ(n̄,m) = 1, then there is at least another [n, n2 ]2m self-dual cyclic code besides the trivial self-dual cyclic code C̄ [n]2m .
We define the first case as the unique case and the second one as the non-unique case. For a given field F2m , we next discuss the

distribution of the unique case as n varies.

Definition 8. Let Sm(y) be the number of unique cases with n̄ not exceeding y.

We give an asymptotic formula for Sm(y) for a given m.
The following theorem, quoted from [4, Theorems 2 and 5] without proof here, is a more general result concerning the function

Sm(y).

Theorem 6. Let a and b be two coprime positive integers. Let S denote the set of integers m > 1 such that m divides ak + bk for
some k ≥ 1. Let S(y) be the number of elements in S not exceeding y. Then, for an integer N > 1, there exist positive constants
d1, · · · , dN such that

S(y) =
y

log y
(d1 logδ1 y + d2 logδ2 y + . . .+ dN logδN y +O(logδN+1 y)),

where the constants d1, · · · , dN and δ1, · · · , δN+1 depend on a and b. Furthermore, the constants δ1, · · · , δN+1 are given as follows.
Put ψ = a/b. Let λ′ be the largest number such that ψ = u2λ

′

, where u is a rational number. If u = 2u2
1 with rational u1 and

λ′ = 0, then

δr =


7
24 , if r = 1 or 2,
8
24 , if r = 3,
1
24 ·

1
2r−4 , if r ≥ 4.

(8)

If u = 2u2
1 with rational u1 and λ′ = 1, then

δr =


7
12 , if r = 1,
8
24 , if r = 2,
1
24 ·

1
2r−3 , if r ≥ 3.

(9)

If u = 2u2
1 with rational u1 and λ′ ≥ 2, then

δr =

{
1− 1

3 ·
1

2λ′
, if r = 1,

1
3 ·

1
2λ′+r−1 , if r ≥ 2.

(10)

We apply the above theorem to our case.

Theorem 7. Let m be a positive integer and let λ be the integer such that 2λ ‖ m. Then, for an integer N > 1, there exist positive
constants d1, · · · , dN such that

Sm(y) =
y

log y
(d1log

δ1y + d2log
δ2y + . . .+ dN log

δN y +O(logδN+1y)),
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where the constants d1, · · · , dN and δ1, · · · , δN+1 depend on m. Furthermore, the constants δ1, · · · , δN+1 are given as in Theorem
6: if λ = 0, then they are given in Equation (8); if λ = 1, then they are given in Equation (9); if λ ≥ 2, then they are given in
Equation (10).

Proof: This theorem is just an application of Theorem 6 with a = 2m and b = 1. The function Sm(y) here is just the function
S(y) in Theorem 6.

Suppose that λ′ is the largest integer such that
2m = u2λ

′

, (11)

with rational u = v
w , where gcd(v, w) = 1. Now it remains to show that λ′ defined here is just the integer λ in the statement of the

theorem, and u can be expressed as 2u2
1 with rational u1. Then the result immediately follows from Theorem 6. From (11, we have

2mw2λ
′

= v2λ
′

.

Then 2m divides v2λ
′

and hence 2 divides v. Since gcd(v, w) = 1, w is not divisible by 2. Put v = 2iv1 with v1 odd. Then

2mw2λ
′

= 22λ
′
iv2λ

′

1 .

Comparing the powers of the prime 2 on both sides, we have the following identities

m = 2λ
′
i,

w = v1.

Since gcd(v1, w) = 1 for gcd(v, w) = 1, we have v1 = w = 1 and thus u = v = 2i. By Equation (11), the following holds:

2m = (2i)2λ
′

= 22λ
′
i.

We claim that the integer i is odd, for otherwise, we can write 2m = (2
i
2 )2λ

′+1

, contradicting the maximality of λ′. Therefore, the
integer λ defined in this theorem is the same as the integer λ′ defined in Theorem 6. Let u1 = 2

i−1
2 for i is odd. Then u = 2(u1)2.

This completes the proof.
This theorem implies that, for any fixed m, as n̄ grows, χ(n̄,m) = 1 for almost all n̄. It means that the non-unique case, i.e., the

case where there are at least two [n, n2 ]2m self-dual cyclic codes, occurs more frequently over the fixed field F2m as n runs over all
positive even integers.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have given a necessary and sufficient condition for the existence of self-dual cyclic codes of length n over Fq ,
namely, n is even and q = 2m with m a positive integer. Given n and m, a formula to enumerate [n, n2 ]2m self-dual cyclic codes
has been provided. Furthermore, when n has no prime factor congruent to 1 modulo 8, precise necessary and sufficient conditions
in terms of the prime factors of n have been given for the non-existence of [n, n2 ]2m self-dual cyclic codes other than the one with
generator polynomial x

n
2 + 1. Over a fixed finite field F2m , we also demonstrated that, as the length n grows, the cases where there

exist two or more [n, n2 ]2m self-dual cyclic codes occur more frequently (than the cases where there is a unique [n, n2 ]2m self-dual
cyclic code).

In this paper, we have restricted our investigations to the finite field case. Self-dual cyclic codes over finite rings are also interesting
and worth a study. The necessary and sufficient condition for the existence of such codes can be expected to be different from the
finite field case. For instance, the length-1 code {0, 2} is a self-dual cyclic code over Z4, but the length is not even. Other possible
generalizations include the use of dualities obtained through other inner products, such as the Hermitian inner product.

Another interesting open problem is to extend Proposition 2 to cover the primes congruent to 1 modulo 8 (for which only some
results in the binary case, i.e., m = 1, are known). With such an extension, the constraints on n in Corollary 2 can then be removed.
In other words, given any n and m, one can directly determine whether there is a unique [n, n2 ]2m self-dual cyclic code by simply
looking at the prime factors of n.

Apart from the problems mentioned above, there could be many other interesting problems associated with self-dual cyclic codes.
For instance, one can ask for which n and even q > 2 there exist q-ary “Type II” self-dual cyclic codes of length n. Note that there
are no binary “Type II” self-dual cyclic codes (see [8, Corollary 2]). After completion of our paper, we found that a portion of the
results in the current paper was obtained in [11].
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