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ABSRACT 

Intelligent signal processing techniques are required for auto-calibration of sensors, and to take 

care of nonlinearity compensation and mitigation of the undesirable effects of environmental 

parameters on sensor output. This is required for accurate and reliable readout of the measurand, 

especially when the sensor is operating in harsh operating conditions. A novel computationally 

efficient Chebyshev neural network (CNN) model that effectively compensates for such non-

idealities, linearises and calibrates automatically is proposed. By taking an example of a 

capacitive pressure sensor, through extensive simulation studies it is shown that performance of 

the CNN-based sensor model is similar to that of a multilayer perceptron-based model, but the 

former has much lower computational requirement. The CNN model is capable of producing 

pressure readout with a full-scale error of only ±1.0% over a wide operating range of -50 to 

200°C. 

1. INTRODUCTION  

We begin by quoting Betts [1]: ‘Chances are, your health and happiness rely on sensors, those 

ubiquitous little devices that tell us if a fridge is too cold, a nuclear reactor’s safety systems are 

operating, or a factory production line is processing components correctly. But sensors have a 

dirty little secret: it’s all too easy for them be in perfect working order, reporting all is well when, 

in fact, your milk is turning into a frozen block, the reactor’s safety system is impotent, and that 

factory has filled a warehouse with useless and possibly dangerous products’. 

Sensors of various kinds are widely used to measure temperature, pressure, flow, humidity and 

so on, in industrial processes, automobiles, robotics, avionics and other systems to monitor and 

control system behaviour. In addition, precise, accurate and low-power sensors are also required 

in the recently emerging wireless sensor networks to be used in intelligent homes, habitat 

monitoring and war-field applications. Therefore it is highly important that the sensor’s output 

readout truly represents the physical quantity for which the sensor is designed. 

Usually, all the sensors exhibit some nonlinear response characteristics. Moreover, the sensor 

characteristics are influenced by the environmental conditions in which it operates. For example, 

consider a capacitive pressure sensor (CPS) fixed in a car, an aeroplane engine or an oil drill. 

The sensor’s output depends not only on its primary input, that is, the pressure, but also on the 

operating conditions, for example, temperature and humidity, because of the geometry of the 

sensor and property of the sensing material used. For example, the output voltage representing 

the applied pressure at 25°C is not the same as that at 150°C. Another associated problem is that 

the dependence of the sensor response characteristics on the disturbing parameters may not be 



linear. This further complicates the calibration of the sensor in order to obtain an accurate, 

precise and reliable readout. 

The digital technology revolution has transformed the design of the industrial sensors. An 

embedded processor in a sensor can perform various functions, for example, compensation for 

temperature, in addition to sensing, control and communication functionalities [2]. In order to 

obtain an accurate and precise readout from a sensor, the adverse effects of the environmental 

parameters and non-linear characteristics are required to be suitably compensated for. In this 

direction, several iterative and non-iterative signal processing techniques have been proposed [3–

11]. These techniques provide partial solutions to the complex problem under the assumptions 

that the variation in environmental parameters is small and that the influence of environmental 

parameters on the sensor characteristics is linear. Further, these solutions are not adequate for 

high-precision applications, because an exact mathematical model of a sensor showing the 

relationship between the measurand and its response and sensor’s dependency on the 

environmental parameters is not available. 

It has been shown that neural network (NN)-based approximations to measurement data 

perform better than those of classical methods, for example, interpolation and least mean square 

regression [12–16]. Application of NNs with superior performance for nonlinearity estimation in 

pressure sensor [17], compensation for environmental dependency and nonlinearities of sensor 

characteristics in pressure sensors [18–20] has been reported. Some other related successful 

applications of NNs in instrumentation and measurement may be found in [21–33]. 

Linearisation of sensor characteristics is another important issue as it makes sensor calibration 

easy. However, obtaining an exact linear characteristic is not an easy task, especially when the 

capacitive sensor is operated in harsh operating conditions with a wide variation in 

environmental parameters. The task becomes more complex when the disturbing parameters (e.g. 

temperature) influence the sensor characteristics nonlinearly. In this direction, a linearization 

technique using a simple multilayer perceptron (MLP) for a temperature sensor (a negative 

temperature coefficient resistor) has been reported [34], where a linearisation of 0.5% was 

obtained, for a small operating range of 60°C. Besides, the effect of disturbing environmental 

parameters was not considered in [34]. 

Most of the NN approaches, suggested so far for this application, are based on MLP. One 

major drawback of the MLP-based network is that it is computationally intensive and therefore 

involves a long time for training. In this article, we present a novel Chebyshev NN (CNN) that is 

computationally more efficient because of its single-layer architecture. The input signals first 

undergo a nonlinear transformation using Chebyschev polynomials and then applied to a single-

layer NN. Recently, we have shown that CNN is capable of identifying complex dynamical 

systems quite effectively [35]. The performance of a CNN-based CPS model with preliminary 

results has been reported in [36]. In this article, we have shown, by taking an example of a CPS, 

that the performance of the CNN-based model is similar to that of the MLP-based model; 

however, the former takes less time for training. Through extensive computer simulations for 

three forms of nonlinear dependencies, we have shown that the maximum full-scale (FS) error 

remains within ±1% under operating temperature ranging from -50 to 200°C. 

 



2. CPS AND SWITCHED CAPACITOR INTERFACE  

A CPS senses the applied pressure in the form of elastic deflection of its diaphragm. The 

capacitance of the CPS resulting from the applied pressure P is given in terms of normalised 

pressure 𝑃𝑁  by [5] 

𝐶 𝑃𝑁 = 𝐶0 + ∆𝐶 𝑃𝑁   (1)   

where 𝑃𝑁 = 𝑃/𝑃𝑚𝑎𝑥 , 𝐶0 is the offset capacitance, that is, the zero-pressure capacitance, ∆𝐶 𝑃𝑁   
the change in the capacitance because of applied pressure and  𝑃𝑚𝑎𝑥  the maximum allowed 

pressure. The change in the capacitance ∆𝐶 𝑃𝑁  is given by [5] 

∆𝐶 𝑃𝑁 = 𝐶0 ∙ 𝑃𝑁
1−𝜏

1−𝑃𝑁
  (2) 

where 𝜏 is a sensitivity parameter that depends on the physical geometry and material properties 

of the CPS. 

Since the CPS response characteristics, that is, its capacitance, depend on the applied pressure 

as well as on the environmental temperature, using (1), the capacitance of the CPS at any 

pressure P and temperature T may be defined as 

𝐶 𝑃𝑁 , 𝑇𝑁 = 𝐶0 𝑇0 𝑓1 𝑇𝑁 + ∆𝐶 𝑃𝑁 , 𝑇0 𝑓2 𝑇𝑁    (3) 

where the normalised temperature 𝑇𝑁 = (T–𝑇0)/( 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 ) and 𝑇0, 𝑇𝑚𝑖𝑛  and 𝑇𝑚𝑎𝑥  denote the 

reference room temperature, the minimum and the maximum allowed operating temperatures, 

respectively. The offset capacitance at 𝑇0 is denoted by 𝐶0 𝑇0 . The functions 𝑓1 𝑇𝑁  and 𝑓2 𝑇𝑁    
in (3) determine the influence of the temperature on the sensor characteristics and are given by 

𝑓𝑖 𝑇𝑁 = 1 + 𝜅𝑖1𝑇𝑁 + 𝜅𝑖2𝑇𝑁
2 + 𝜅𝑖3𝑇𝑁

3 (4) 

where i = 1 and 2. The coefficients, 𝜅𝑖𝑗 {i = 1, 2 and j = 1, 2 and 3}, determine the extent of 

nonlinear influence of the temperature on the sensor characteristics. Note that for j = 2 and 3, 

when 𝜅𝑖𝑗  = 0, the influence of the temperature on the CPS response characteristics is linear. 

Using (2), the change in capacitance ∆𝐶 𝑃𝑁 , 𝑇0  at 𝑇0 is given by  

∆𝐶(𝑃𝑁 , 𝑇0) = 𝐶0 𝑇0 ∙ 𝑃𝑁
1−𝜏

1−𝑃𝑁
 (5) 

The normalised capacitance 𝐶𝑁  at any normalised operating temperature 𝑇𝑁  may be expressed 

as 

𝐶𝑁 =
𝐶 𝑃𝑁 ,𝑇𝑁  

𝐶0 𝑇0 
 (6) 

From (3) and (4), this may be rewritten as 

𝐶𝑁 = 𝑓1 𝑇𝑁 + 𝛾𝑓2 𝑇𝑁  (7) 

where 𝛾  = 𝑃𝑁  ( 1 − 𝜏 )/(1 −𝑃𝑁 ). As 𝛾  = 0 when  𝑃𝑁  is zero, the normalised zero-pressure 

capacitance (i.e. the normalised offset capacitance) at 𝑇𝑁 is given by 



𝐶𝑁0 = 𝑓1 𝑇𝑁  (8) 

A switched capacitor interface (SCI) for the CPS is shown in Fig. 1, in which the CPS is 

denoted as C(P). The SCI output provides a voltage signal proportional to capacitance change in 

the CPS because of the applied pressure. The SCI output voltage is given by 

𝑉0 = 𝐾 ∙ 𝐶 𝑃  (9) 

where K = 𝑉𝑅/𝐶𝑠. By choosing proper values of the reference capacitor 𝐶𝑠 and reference voltage 

𝑉𝑅, the normalised SCI output 𝑉𝑁 may be obtained such that 

𝑉𝑁 = 𝐶𝑁 (10) 

It is important to note that the SCI output changes when the ambient temperature changes, even 

though the applied pressure is fixed, thus giving rise to wrong sensor readout. 

3. MLP- and CNN-BASED CPS MODEL 

 Here we describe the MLP- and CNN-based CPS models used to mitigate the adverse effects 

of the environmental parameters and to linearise the sensor characteristics. As an exact 

mathematical model describing the sensor operating in a harsh environment is not available, the 

NN-based approach is found to be quite effective. Our objective is to obtain a linearised sensor 

readout that is independent of nonlinear sensor characteristics and nonlinear effect of the 

environmental temperature. 

3.1 Multilayer perceptron 

Fig. 2 shows a schematic diagram of an MLP NN used in our study. A two-layer MLP 

architecture is specified by {I–J–K}, which has I neurons in the input layer, J neurons in the 

hidden layer and K neurons in the output layer. The MLP is trained using the popular 

backpropagation (BP) learning algorithm [37]. Let y(k) be the output of the MLP for a training 

input x(k), and d(k) be the desired output, at kth instant. The error at the output layer is found to 

be e(k)= d(k) – y(k). The weight updating procedure using this error is repeated until the mean 

square error of the network approaches a pre-specified minimum value. 

3.2 Chebyshev neural network 

The structure of a CNN is depicted in Fig. 3. It consists of a functional expansion block and a 

single-layer perceptron network. The main purpose of the functional expansion block is to 

increase the dimension of the input pattern so as to enhance its representation in a higher-

dimensional space. This enhanced pattern is then used for modelling of the sensor. Let us denote 

an m-dimensional input pattern vector at the kth instant by 

𝑋𝑘 =  𝑥1 𝑘 , 𝑥2 𝑘 , … , 𝑥𝑚 𝑘   (11) 

Each element of the input vector is expanded into several terms using the Chebyshev 

polynomials. The Chebyshev polynomials are a set of orthogonal polynomials obtained as the 

solution to the Chebyshev differential equation. The nth-order Chebyhev polynomial is denoted 

by 𝑇𝑛 (x), where -1<x <1. The first few Chebyshev polynomials are given by 



                           𝑇0 𝑥 = 1 

                           𝑇1 𝑥 = 𝑥 

                        𝑇2 𝑥 = 2𝑥2 − 1 (12) 

                            𝑇3 𝑥 = 4𝑥3 − 3𝑥 

                            𝑇4 𝑥 = 8𝑥4 − 8𝑥2 + 1 

The higher-order Chebyshev polynomials may be generated using a recursive formula given by 

                       𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛 𝑥 − 𝑇𝑛−1 𝑥  (13) 

Thus, using the Chebyshev polynomials, an m-dimensional input pattern is enhanced into an n-

dimensional (n>m) expanded pattern, which is then applied to a single-layer perceptron. In the 

CNN schematic shown in Fig. 3, m = 2 and n = 9 have been chosen. In addition, a few cross-

product terms are also included in the expanded pattern to improve the original pattern 

representation in the expanded pattern space. The advantage of CNN over MLP is that the 

Chebyshev polynomials are computationally more efficient and take much less time to train 

when compared with the MLP network. 

3.3 NN-based sensor model 

A schematic diagram of the NN-based CPS model is shown in Fig. 4. The ambient temperature 

and the SCI output are the inputs to the NN. Appropriate scale factors are used to keep these 

values within ±1.0. The desired output is the linearised normalised voltage. 

During the training phase, an input pattern from the training set is applied to the NN and its 

weights are updated using the BP algorithm. At the end of the training, the final weights are 

stored in an EEPROM. During the second phase, that is, the test phase, the stored final weights 

are loaded into the MLP. An input pattern from the test set is applied to the NN model and its 

output is computed. If the NN output and the target output match closely, then it may be said that 

the NN model has learnt the sensor characteristics satisfactorily. 

To illustrate the effectiveness of the NN model for mitigating the nonlinear dependency of 

temperature on sensor characteristics, three different forms of nonlinear functions denoted by 

NL1, NL2 and NL3 have been selected. A linear function denoted by NL0 is also used for 

comparison purposes. These nonlinear functions are generated by using a different set of 

coefficients 𝜅𝑖𝑗  in (4). In this study, the temperature information is assumed to be available. This 

can be obtained by using another temperature sensor. In this article, we have used two different 

NNs, that is, an MLP and a CNN to model the sensor and compare their performance. 

3.4 Computational complexity 

Here we present a comparison of computational complexity between MLP and CNN, where 

both the NNs are trained by the BP algorithm. Let us consider a two-layer MLP structure 

specified by I, J and K nodes (excluding the bias units) in the input, the hidden and the output 

layers, respectively. The CNN has D input nodes and K output nodes. Three basic computations, 

that is, addition, multiplication and computation of tanh(.), are involved for updating weights of 



the NNs. For the MLP, the increased computation burden is due to the error propagation for the 

calculation of square-error derivative of each node in the hidden layer. In one iteration, all the 

computations in the network take place in three phases: (i) forward calculation to find the 

activation value of all nodes of the entire network; (ii) back error propagation for the calculation 

of square-error derivatives and (iii) updating the weights of the whole network. 

The total number of weights to be updated in one iteration in the two-layer MLP is J( I + 1 ) + 

K  ( J + 1 ), whereas in the case of CNN, it is K(D + 1). It may be seen from Table 1 that as the 

hidden layer does not exist in the CNN, the computational complexity of CNN is much lower 

than the MLP structure. 

4 .SIMULATION STUDIES 

We carried out extensive simulation studies for the performance evaluation of the proposed 

MLP- and CNN-based CPS models. 

4.1 Preparation of data sets 

All the parameters of the CPS, such as the ambient temperature, the applied pressure and the 

SCI output voltage, used in the simulation study were suitably normalised to keep their values 

within ±1.0. The SCI output voltage (𝑉𝑁) was recorded at the reference temperature (𝑇0 =25°C) 

with different known values of normalised pressure (𝑃𝑁 ) chosen between 0.0 and 0.6 at an 

interval of 0.05. Thus, these 13 pairs of data ( 𝑃𝑁 against  𝑉𝑁 ) constitute the response 

characteristics of the CPS (the data set at 𝑇0). To study the influence of temperature on the CPS 

characteristics, three forms of nonlinear functions NL1, NL2 and NL3 and a linear form NL0 

were generated using (4) and selecting proper values of 𝜅𝑖𝑗 . The selected values of the 𝜅𝑖𝑗  are 

tabulated in Table 2. These values were selected randomly to provide different types of 

nonlinearities. 

With the knowledge of the data set at the reference temperature and the chosen values of 𝜅𝑖𝑗 , 

the response characteristics of the CPS for a specific ambient temperature were generated using 

(4). For temperature ranging from -50 to 200°C, at an increment of 10°C, 26 such data sets, each 

containing 13 data pairs, were generated using (4). These data sets were then divided into two 

groups: the training set and the test set. The training set, used for training the NNs, consists of 

only five data sets corresponding to -50, 10, 70, 130 and 190°C, and the remaining 21 data sets 

were used as the test set. 

The sensor characteristics (the upper curves) for the four forms of dependencies (NL0, NL1, 

NL2 and NL3) at different temperatures and the desired linear response (bottom straight line) are 

plotted in Fig. 5. It can be seen that the response characteristics of the sensor change nonlinearly 

over the temperature range. Besides, the change in the response characteristics differs 

substantially for different forms of nonlinear dependencies. However, it is important to note that, 

in order to have accurate and precise readout, the sensor should provide linear response 

characteristics in spite of changes in ambient temperature and nonlinear temperature dependency. 

4.2 Training and testing of MLP and CNN 

A two-layer MLP with {2–5–1} architecture was chosen in this modelling problem (Fig. 4). 

Thus, the number of nodes including the bias units in the input, hidden and the output layers is 3, 



6 and 1, respectively. This MLP contains only 21 weights. The two inputs to the MLP were the 

normalised temperature (𝑇𝑁) and the normalised SCI output voltage (𝑉𝑁). The linear normalised 

voltage 𝑉𝐿𝑖𝑛  was used as the target output for the MLP. 

Initially, all the weights of the MLP were set to random values within ±0.5. During training, 

one data set out of the five was chosen randomly. The learning parameter 𝛼 and the momentum 

factor 𝛽 used in the BP algorithm were selected as 0.3 and 0.5, respectively. Completion of 

weight adaptation for the 13 data pairs of all the five training sets constitutes one iteration. For 

effective learning, 50 000 iterations were made to train the MLP model. To improve the learning 

process of the NNs, the learning parameter 

 𝛼𝑖 = 𝛼𝑖−1  1 −
𝑖

𝑁𝑡
  (14) 

where i is the current iteration number and 𝑁𝑡  is the total number of iterations used (𝑁𝑡  = 50 000 

in this case). Using a Pentium 1.10 GHz machine, it took 12 s to train the MLP. 

In the case of CNN, the following parameters were selected. The two-dimensional input pattern 

was expanded to a 12-dimensional pattern by using Chebyshev polynomials (12). Here, both the 

𝑇𝑁 and 𝑃𝑁  were expanded by fourth-order Chebyshev polynomials. In addition, four cross-

product terms were included to make a 12-dimensional expanded pattern. Both the learning 

parameter and the momentum parameter were chosen as 0.5. The training was continued for 50 

000 iterations. For the five training sets, it took only 6.0 s to train the CNN, which is half of the 

time taken by an MLP. Note that the number of weights in the MLP and CNN was 21 and 12, 

respectively. 

5. RESULTS AND DISCUSSIONS 

On the basis of the results of the simulation studies, we provide here the performance 

evaluation of the MLP- and the CNN-based models for linearisation, auto-calibration and auto-

compensation for the CPS. 

5.1 Linear response characteristics 

The NN-based models were able to produce linear response characteristics. The results 

obtained through the simulation for the linear (NL0) and one nonlinear (NL1) temperature 

dependency are provided in Fig. 6, for the MLP- and the CNN-based sensor models. The 

response characteristics at different temperatures (-40, 100, 150, and 200°C) for both NL0 and 

NL1 are almost linear, in the case of both the networks. It may be noted that during the training 

phase, the NNs were not exposed to the sensor characteristics for these temperatures. The upper 

curve, which represents the sensor characteristics (SCI output) at the reference temperature (𝑇0 = 

25°C), is shown for the purpose of comparison. Similar observations were made for the 

nonlinear temperature dependencies NL2 and NL3 (data not shown). Thus, both the MLP and 

CNN are able to transfer SCI output voltage from the actual to the linearised values quite 

effectively over a wide range of temperature and for the linear as well as the three nonlinear 

dependencies. 

5.2 FS error 



The FS percent error is defined as 

FS error = 100 x 
𝑦 lin −𝑦est

𝑦fs
 (15) 

where 𝑦lin  and 𝑦est  denote the desired linearised sensor readout and the NN model output, 

respectively. As all the values are normalised to ±1.0, the 𝑦fs  is selected as 1.0. The FS percent 

error in the estimation of normalised response at different temperatures for the NL2 and NL3 at 

specific values of 𝑃𝑁  is plotted in Fig. 7 for the MLP- and the CNN-based models. It may be 

seen that the FS error remains within ±1.0% for a wide range of temperature from -50 to 200°C 

for NL2 and NL3. However, only at 200°C, the FS error is 1.5% for NL2. 

The FS errors between the estimated and desired responses at different values of temperature 

over the entire range of applied pressure are shown in Fig. 8. Here, again the FS error remains 

within ±1.0%, except in the case of temperature at 200°C when 𝑃𝑁  = 0.0. Similar observations 

were made for the linear (NL0) and nonlinear (NL1) temperature dependencies (data not shown). 

From Figs. 7 and 8, one can see that the FS error remains within ±1.0% for the linear (NL0) 

and the three nonlinear (NL1, NL2 and NL3) dependencies for both the MLP- and CNN-based 

models. However, in the case of an MLP-based model, only at 200°C, for lower values of 𝑃𝑁 , the 

FS error exceeds 1.0%, but remains within 1.5%. Whereas in the case of a CNN-based model, 

the FS error becomes 1.5% only at 200°C when 𝑃𝑁= 0.0. This shows the superiority of the CNN-

based model over the MLP. It may be noted that the data sets used for training the two networks 

were data sets corresponding to only five temperatures (-50, 10, 70, 130 and 190°C). As 200°C is 

beyond this range of training data, the FS error is slightly more when compared with those at 

other values of temperature.  

6. CONCLUSIONS 

Smart sensors should be capable of providing accurate readout, auto-calibration and auto-

compensation for the nonlinear influence of the environmental parameters on its characteristics. 

We have proposed a novel computationally efficient CNN-based technique to incorporate these 

capabilities in a CPS operating in a harsh environment in which the temperature can have wide 

variations. 

We have shown the effectiveness of the model in different forms of nonlinear influence of the 

ambient temperature on the pressure sensor characteristics. We have seen that the sensor 

characteristics change widely when the environmental temperature changes over a wide range 

from -50 to 200°C. Additionally, the surrounding temperature influences the sensor 

characteristics nonlinearly. In spite of these facts, the MLP- and the CNN-based models are able 

to provide an accurate estimate of the applied pressure. From the above-mentioned findings, it 

may be concluded that the performance of both the NN models for linearisation, and auto-

compensation is quite satisfactory for linear and nonlinear forms of temperature dependencies. 

The maximum FS error of the NN models for the estimation of pressure remains within ±1.0% 

for the linear and the three forms of nonlinear interactions. 

The proposed CNN-based model is found to be computationally more efficient than the MLP 

network as the former is a single-layer network. We have also shown that the CNN-based model 

performs better than the MLP-based model in terms of FS error and linearisation of sensor 



characteristics. Such NN-based models may be applied to other types of sensors to infuse 

intelligence in terms of auto-calibration and to mitigate the nonlinear dependency of their 

response characteristics on the environmental parameters. The proposed CPS model may be used 

for online applications. Once the CNN is trained, it captures the sensor characteristics and 

behaviour of the nonlinear environment and therefore is capable of producing linearised sensor 

output. In addition, it is possible to train the CNN in unknown operating conditions with a known 

set of training data. 
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