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Abstract 

A multilayer artificial neural network (ANN) is proposed for modeling of a capacitive 

pressure sensor (CPS). When the ambient temperature changes over a wide range, the 

nonlinear response characteristics of a CPS change significantly. In many practical 

conditions, the effect of temperature on the change in the CPS characteristics may be 

nonlinear. The proposed ANN model can provide correct readout of the applied pressure 

under such conditions. A novel scheme for estimation of the ambient temperature from 

the sensor characteristics itself is proposed. A second ANN is utilized to estimate the 

ambient temperature from the knowledge of the offset capacitance, i.e., the zero-pressure 

capacitance. A microcontroller unit (MCU)-based implementation scheme for this model 

is also considered. Simulation results show that this model can estimate the pressure with 

a maximum error of  2% over a wide variation of temperature from  50°C to 150°C. 

Keywords: Smart pressure sensor; Artificial neural networks 

 

1. Introduction 

Capacitive pressure sensors (CPSs) are widely used because they have higher 

sensitivity and lower power dissipation than other pressure sensors. However, some of 

the difficulties associated with the CPS are: (i) its response characteristics are highly 

nonlinear, (ii) its change in capacitance is small compared to the offset capacitance, and 

(iii) its response characteristics change substantially when variation of operating 

temperature is large. Therefore, in a dynamic environment in which the ambient 

temperature undergoes large variation, the CPS needs appropriate compensation to 
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mitigate the adverse effects of the temperature besides corrections to its nonlinear 

characteristics. 

Under such conditions, several signal processing techniques have been proposed for a 

CPS to obtain correct readout of the applied pressure [ 1–4 ]. These techniques include 

both iterative and non-iterative algorithms, and involve complex signal processing for the 

modeling of the CPS. They offer satisfactory performance unless the temperature 

variation is large and the influence of the temperature on the sensor characteristics is 

nonlinear. 

Recently, artificial neural networks (ANNs) have emerged as a powerful learning 

technique to perform complex tasks in a dynamic environment. These networks are 

endowed with certain unique characteristics: the capability of universal approximation, 

the ability to learn from and to adapt to their environment, and the ability to cope with 

weak assumptions about the underlying physical phenomenon responsible for generation 

of input data. Another important property of the ANNs is its fault tolerance capability, 

because of which, graceful degradation of performance takes place if the network is 

partially damaged. Because of these characteristics, there have been numerous successful 

applications of ANNs in various fields of science, engineering and industry [ 5 ] 

including instrumentation and measurement [ 6,7 ] in general, and CPSs in particular [ 8–

11 ]. 

Some of the applications of the ANNs in the field of instrumentation and 

measurement have been proposed [ 6,7 ]. To estimate the nonlinearity and for direct 

digital readout of a CPS, a simple functional link ANN (FLANN) has been employed 

[ 8 ]. A multilayer perceptron (MLP) has been proposed to model a CPS for estimation of 

applied pressure with a maximum of 1% full scale (FS) error over a temperature range 

from  20°C to 70°C [ 9 ]. A computationally efficient ANN has been proposed for 

modeling of a CPS operated under a wide variation of temperature to obtain accurate 

pressure readout with satisfactory performance [ 10 ]. However, in these papers, the 

effect of temperature on the sensor characteristics was assumed to be linear. An MLP-

based compensation scheme for systematic uncertainities of the sensors subject to 

combined influence parameters using a second sensor has been proposed [ 11 ]. 

In the present paper, we propose a novel ANN-based model for a CPS operated under 

dynamic environment to provide accurate readout of the applied pressure. An MLP is 

proposed to model the CPS operated under temperature variations from  50°C to 150°C. 

In agreement with practice, we have assumed that the temperature influences the sensor 

response characteristics nonlinearly. Next, a new scheme of estimation of the ambient 

temperature from the sensor characteristics itself, using a second MLP, is proposed. 

Through extensive simulation studies, good performance of this model is demonstrated. 

A microcontroller unit (MCU)-based scheme for implementation of the CPS model is 

also proposed. 

 

2. Capacitive pressure sensor and switched capacitor interface 



 

 

A CPS senses the applied pressure in the form of elastic deflection of its diaphragm. 

The capacitance of a CPS resulting from the applied pressure, P at the ambient 

temperature, T is given by: 

 

where         is the change in capacitance and       is the offset capacitance, i.e., 

the zero-pressure capacitance, both at the ambient temperature T. The above 

capacitance may be expressed in terms of capacitances at the ambient temperature,    

as: 

 

where,    is the offset capacitance and           is the change in capacitance, both at 

the reference temperature. The functions       and      , which are nonlinear func-

tions of temperature, determine the effect of temperature on the sensor characteristics 

[ 2 ]. This model provides sufficient accuracy in determining the influence of temper-

ature on the sensor response characteristics. 

When pressure is applied to the CPS, its change in capacitance at the reference 

temperature,    is given by: 

 

where   is the desensitivity parameter,    is the normalized applied pressure given by 

        ⁄ , and      is the maximum permissible applied pressure. The parameters   

and      depend on geometrical structure and dimensions of the CPS. Since           

becomes very large as    approaches 1, in practice, the value of    is normally kept 

within about 0.8. 

In this study, in confirmation with practical conditions, we have considered that the 

ambient temperature influences the CPS characteristics nonlinearly. The nonlinear 

functions involved are      ,     and   and may be expressed as: 

 

where 

 

             ⁄  and     ,     and  , and    ,  , and 3, are the coefficients which 

determine the extent of nonlinear influence of the temperature on the sensor 

characteristics. Note that when        for     and 3, the influence of the temperature 

on the CPS response characteristics is linear.      is the maximum permissible 

temperature at which the sensor may be operated. 

Let the normalized temperature,    be given by         ⁄ . The normalized 

capacitance,    may be expressed as: 



 

 

 

Using Eqs. (2) and (3), this may be rewritten as: 

 

where                  . Because of requirement of the ANN modeling, the    

in Eq. (7 ) is divided by a factor of 2, so as to keep its maximum value within 1. 

If the applied pressure is zero, then   becomes zero. Therefore, the normalized zero-

pressure capacitance, i.e., the normalized offset capacitance is given by: 

 

A switched capacitor interface (SCI) for the CPS is shown in Fig. 1. The CPS is 

represented by     . The SCI output provides a voltage signal proportional to the 

capacitance change in the CPS due to applied pressure. The SCI operation can be 

controlled by a reset signal  . When  ̅    (logic 1),      charges to the reference 

voltage    while the capacitor    is discharged to ground. Whereas, when    , the 

total charge        stored in the      is transferred to    producing an output voltage 

given by: 

 

where       ⁄ . It may be noted that if ambient temperature changes, then the SCI 

output also changes, although the applied pressure remains the same. By choosing proper 

values of    and   , the normalized SCI output    may be obtained in such a way that 

 

The unnormalized and normalized SCI output for zero applied pressure are denoted by 

    and    , respectively. Therefore, if     , then        . 

 

3. The multilayer perceptron and backpropagation algorithm 

The multilayer perceptron is a feedforward network in which there may be one or 

more hidden layers besides one input and one output layer. Each layer may contain one or 

more nonlinear processing units called as a ‘neuron’, or a ‘node’. All layers, except the 

output layer, contain a bias or threshold node whose output is set to a fixed value of 1. All 

the nodes of a lower layer are connected to all the nodes of an upper layer through links 

called weights. The backpropagation (BP) algorithm, a generalized steepest descent 

algorithm, is the most popular learning technique used to train the MLP. The weights of 

the MLP are updated by using the BP algorithm during the training phase. The 

knowledge acquired by the network after learning is stored in its weights in a distributed 

manner. The MLP and the BP algorithm are briefly discussed below. For the details one 

may refer to [ 5 ]. 



 

 

Consider an L-layer MLP as shown in Fig. 2. In this network, the number of nodes in 

the input and output layers are    and   , respectively. The number of nodes in the 

hidden layers is denoted by Nl where              . The architecture of an L-layer 

MLP is denoted by     Nl-   -        . During training phase, an input pattern and its 

corresponding desired or target pattern is applied to the network. At the kth instance, let 

the input pattern applied to the MLP be denoted by        , where           . No 

computation takes place in the input layer of the MLP and hence, the node output for this 

layer is given by   
   

      . The node outputs for other layers at the kth instance are 

given by: 

 

for            , and             , where, 

 

  
     

 is the ith node output of the      th layer,    
   

 is the connection weight from the 

jth node of      th layer to ith layer of lth layer, and   
   

 is the bias unit whose output 

is set to 1. The most popular nonlinear function      is given by 

 

Let the output of the MLP, and the target output at the kth instant be represented by 

        and        , where           , respectively. Then,         
   

. The error at 

the kth instant is given by 

 

Thus, the sum of square errors produced by the MLP is given by 

 

The BP algorithm attempts to minimize the cost function     . recursively by updating 

the weights of the network. The algorithm for weight update at the kth instant is given by: 

 

where, 

 



 

 

 

The BP algorithm is a generalized form of steepest descent algorithm that attempts to find 

optimum weights to minimize the chosen cost function [ 5 ]. The partial derivative of the 

hyperbolic tangent function with respect S is denoted by      . The so-called learning 

rate and the momentum rate are denoted by   and  , respectively, and their values should 

lie between 0 and 1. 

 

4. The MLP-based CPS model 

In certain systems, such as missiles, aircrafts, and chemical and process industries, the 

CPS may be operated in a dynamic environment in which the temperature variation may 

be quite large. Further, the influence of temperature on the CPS characteristics is often 

nonlinear. To cope with these conditions, we propose an ANN-based model to take care 

of a large variation of temperature ranging from  50ºC to 150ºC. 

The proposed scheme of the ANN-based CPS model for estimation of applied 

pressure is shown in Fig. 3. This is analogous to the channel equalization scheme used in 

a digital communication receiver to cancel the adverse effects of the channel on the data 

being transmitted [ 5 ]. To obtain direct digital readout of the applied pressure, an inverse 

model of the CPS may be used to compensate adverse effects of the nonlinear 

characteristics, and its variations due to change in temperature. For this purpose, an ANN 

is utilized to obtain the inverse model of the CPS. 

In this ANN-based CPS model, all the signals used for training and testing are 

suitably scaled by appropriate scale factors (SFs) to keep their range within ±1.0. The 

model operates in two phases: the training phase and the test phase. In the training phase, 

the ANNs used in the model are trained to learn the sensor characteristics and the 

environment. The pressure-ANN (P-ANN) is used for learning the sensor response 

characteristics and their nonlinear temperature interaction, whereas the temperature-ANN 

(T-ANN) is used for learning the variations of the temperature in the environment. 

Several data-sets are needed to train the ANNs. An input pattern and its 

corresponding desired, or target pattern constitute one pair of data in the data-set. The 

available data-sets are segregated into two parts. The first part, called as training-set, is 

used for training of the ANNs, and the other part called the test-set, is used for testing of 

the model to verify its effectiveness. 

During the training phase, an input pattern from the training-set is applied to the ANN. 

Then, the output of the ANN is computed. This output is compared with the 

corresponding target pattern. The error obtained from this comparison is then used to 

update the weights of the ANN using the BP algorithm described in Section 3. This train-

ing procedure continues till the error reaches a preset minimum value. Next, the final 



 

 

weights are stored in an EPROM which are used during testing and actual use of the 

sensor model. 

During the second phase, i.e., the test phase, the stored final weights are loaded into 

the ANNs. An input pattern from the test-set is applied to the ANN model and its output 

is computed. If the ANN output and the target pattern match closely, then it may be said 

that the ANN model has learned the sensor characteristics satisfactorily. 

4.1. Training phase — pressure 

In the first stage, the MLP is used to learn the CPS response characteristics. The 

scheme for this is shown in Fig. 3 (a). In this case, the inputs to the P-ANN consist of the 

normalized temperature (  ) and the normalized SCI output (  ). The desired (or the 

target) output for the network is the normalized applied pressure (PN). One data-set for a 

specific temperature is obtained by recording the SCI output (VN) for different values of 

applied pressure, covering the operating range of the sensor at that temperature. Next, at 

different temperature values, covering the full operating range, data-sets are generated. 

The P-ANN is trained by taking the patterns from the training-set, and its weights are 

updated by using the BP algorithm. After training, the weights of the ANN are frozen and 

stored in an EPROM. In what follows, the final weights are denoted by WP. 

4.2. Training phase — temperature 

The scheme of estimation of the ambient temperature by using another MLP from the 

knowledge of sensor characteristics itself is shown in Fig. 3 (b). From Eq. (8), it may be 

seen that CN0 contains temperature information. However, since the influence of the 

temperature on the CPS characteristics is considered to be nonlinear, the temperature 

information cannot be obtained from the knowledge of CN0 using this equation directly. 

The MLP may be trained by inputting the values of CN0, i.e., the values of VN0. The 

desired or target output is the normalized temperature values, TN. Using the BP algorithm, 

the weights of the T-ANN are updated. After the training is complete, the final weights 

are stored in an EPROM. In what follows, the final weights are denoted by WT. 

4.3. Test phase — the complete model 

The complete scheme of the MLP-based model is shown in Fig. 3 (c). This model can 

estimate the applied pressure accurately independent of temperature variation and its 

nonlinear interaction with the CPS characteristics. During test-phase, and actual use, the 

weights WP and WT, stored in the EPROM are loaded into the P-ANN and T-ANN, 

respectively. The P-ANN has learned the inverse characteristics of the CPS at different 

values of temperature, and this knowledge has been stored in its weights in a distributive 

manner. The T-ANN has learned about the changes in the environment. The temperature 

information needed for the P-ANN is obtained from the T-ANN. The T-ANN gets its 

input from the value of VN0, i.e., from the normalized SCI output at zero applied pressure. 

Next, the input patterns from the test-set are applied, and the model output (  ̂ ) is 

computed. If the model output matches closely with the actual applied pressure (PN), then 

it may be said that the ANN has learned the CPS characteristics correctly. Then, the 

model can be used in practice to estimate the pressure and to obtain its readout. 



 

 

5. Simulation studies 

We have carried out extensive simulation studies to evaluate the performance of the 

proposed ANN-based CPS model. In the following we describe the details of the 

simulation study. 

5.1. Preparation of data-sets 

All the parameters of the CPS, such as, ambient temperature, applied pressure, and 

the SCI output voltage, used in the simulation study were suitably normalized so as to 

keep their values within ±1.0. Appropriate scale factors (SFs) were chosen for this 

purpose. Several data-sets are needed for training as well as for testing of the ANN model. 

These data-sets were generated as follows. The SCI output voltage (VN) was recorded 

(refer Eq. (10)) at the reference temperature (25ºC) at different known values of 

normalized pressure (PN) chosen between 0.0 and 0.6 at an interval of 0.05. Thus, these 

13 pairs of data (PN and VN) constitute one data-set at the reference temperature. To study 

the influence of temperature on the CPS characteristics, we have considered three forms 

of nonlinearities denoted by NL1, NL2, and NL3, and the linear form denoted by NL0 

(refer Eq. (4)). These are simulated by choosing proper values of     in Eq. (5). The 

corresponding values of     are tabulated in Table 1. 

Next, with the knowledge of the data-set at reference temperature, and the chosen 

values of    , and using Eq. (7), the response characteristics of the CPS for a specific 

ambient temperature were generated. Each of these response characteristics consists of 13 

pairs of data (PN and VN), and corresponds to a data-set at that temperature. For a 

temperature range from  50ºC to 150ºC, at an increment of 10ºC, 21 data-sets, each 

containing 13 data pairs were generated. Next, these data-sets were divided into two 

groups: the training-set and the test-set. The training-set, used for training of the ANNs, 

consists of five data-sets corresponding to  50ºC, 0ºC, 50ºC, 100ºC, and 150ºC, and the 

remaining 16 data-sets constitute the test-set. 

The response characteristics of the CPS for different values of temperature are shown 

in Fig. 4. It may be observed from this figure that wide variation in the sensor 

characteristics occurs when the ambient temperature changes from  50ºC to 150ºC. 

Further, the response characteristics change differently for different forms of chosen 

nonlinearities. 

5.2. Training and testing of the P-ANN 

A 2-layer MLP with 2-5-1 architecture was chosen in this modeling problem (see Fig. 

3(a)). The two inputs to the MLP were the normalized temperature (TN) and the 

normalized SCI output voltage (VN). The desired output of the MLP was the normalized 

pressure (PN). 

Initially, all the weights of the P-ANN were set to some random values within ±0.5. 

During training, the five data-sets were chosen randomly. Further, the individual patterns 

of each set were also selected in a random manner. After application of one input pattern, 

the P-ANN produces an output  ̂ , which was compared with the which was compared 



 

 

with the target pattern to obtain an error value. This error was used to update the weights 

of the MLP by using the BP algorithm discussed in Section 3. The values of the learning 

parameter  , and the momentum factor  , of Eq. ( 16) were chosen as 0.5 and 0.7, 

respectively. Next, another pattern was applied, and this process continues till the mean 

square error between the desired and the P-ANN output reaches a minimum value. 

Completion of weight adaptation for the 13 data pairs of all the five training-sets 

constitute one iteration. For effective learning, 30,000 iterations were made to train the 

MLP model. In the end, the final weights of the P-ANN (WP) were stored for later use for 

performance evaluation and actual use of the model. This procedure was repeated for the 

linear as well as three chosen nonlinear forms of temperature interaction with CPS 

characteristics (NL0, and NL1–NL3). The four sets of the final weights of the P-ANN 

model are provided in Table 2. 

The performance evaluation of the model was carried out by loading the final stored 

weights into the MLP. It may be noted that, during testing, and actual use of the CPS 

model, there is no updating of the weights. The inputs are applied to the model, and the 

ANN estimates the applied pressure from the knowledge of the stored weights loaded 

into it. For testing purpose, the SCI output voltage was simulated with a range starting 

from 0.35 to 0.80 with an increment of 0.001, and then applied to the model along with 

the temperature information. To evaluate the effectiveness of the model, the ANN output 

( ̂ ) was computed and then compared with the true values of applied pressure (PN). 

5.3. Training and testing of the T-ANN 

The T-ANN is used for the estimation of the ambient temperature from the known 

values of CN0 corresponding to different temperatures. For the chosen values of     (see 

Table 1), the variation of CN0 with the change in temperature for the linear (NL0) and the 

three forms of nonlinear interactions (NL1–NL3) is shown in Fig. 5. The T-ANN is 

employed to learn these nonlinear functions for estimation of ambient temperature. 

An MLP with 1-5-1 architecture was chosen for this purpose. During training, the 

values of CN0 corresponding to  50°C, 0°C, 50°C, 100°C and 150°C were chosen as 

training-set (the same set was used for training the P-ANN). The input and target output 

of the T-ANN were the values of CN0 and TN, respectively (see Fig. 3 (b)). 

After application of the input and the corresponding target output to the T-ANN, its 

weights were updated using the BP algorithm. Since the MLP has to learn the nonlinear 

functions from only five observations, sufficiently large iterations were chosen for 

complete training. Both the values of   and   were chosen as 0.7. The updating of the 

weights were continued up to 100,000 iterations. The four sets of final weights, WT 

corresponding to the linear and the three nonlinear forms of interactions are tabulated in 

Table 3. 

The testing of the T-ANN was carried out after loading the stored weights into the 

network. The value of CN0 was varied from 0.35 to 0.60 with an increment of 0.001 and 

fed to the MLP. The output of the T-ANN and the true value of the normalized 

temperature were compared to verify the performance of the model. 



 

 

6. Results and discussion 

Here, we provide the performance results of the simulation study for estimating the 

applied pressure and the ambient temperature. 

6.1. Estimation of pressure 

True and estimated pressures at different values of temperature taken from test-set for 

the linear and the three nonlinear forms, i.e., NL0, and NL1–NL3, respectively, are 

plotted in Fig. 6. Here, different symbols represent true normalized pressure whereas, the 

dotted lines denote the estimated pressure. Similar plots for temperature values taken 

from training-set are shown in Fig. 7. It may be noted that the P-ANN has not seen the 

sensor characteristics for the values of temperature taken from the training-set. From 

these two figures, it may be observed that, the MLP is capable of estimating the applied 

pressure quite accurately for the full range of applied pressure from 0.0 to 0.6. Even, it is 

capable of predicting the applied pressure for the range beyond 0.6, although the network 

was not trained for this range of PN. 

The plots of the true versus and the estimated pressure at different values of 

temperature taken from test-set for NL0 and NL1–NL3 are shown in Fig. 8. The linearity 

of estimation in the case of NL0 is quite good. In the cases of nonlinear interactions, 

NL1–NL3, the linearity will be satisfactory for most applications. 

The full scale percent error was computed as hundred times the difference between 

the true and estimated pressure. For the whole range of applied pressure from 0.0 to 0.6, 

the maximum FS error for the linear form, NL0 remains within ±1.0%; whereas, in the 

nonlinear forms, the maximum FS error remains within ±2.0%. For the whole 

temperature range from  50°C to 150°C, at specific values of applied pressure (i.e., PN = 

0.1,0.3, and 0.5 ), the values FS error were plotted for NL0 and NL1–NL3 in Fig. 9. It 

may be seen that for the whole range of temperature variation, the maximum FS error in 

the case of the linear and the three nonlinear forms of interaction, remains within ±1% 

and ±2%, respectively. 

From the above findings, it may be concluded that the performance of the MLP 

model for estimation of pressure is excellent in the linear form of interaction and it is 

quite satisfactory for the three forms of nonlinear interaction of temperature on the CPS 

characteristics. 

6.2. Estimation of temperature 

Plots of the estimated and the true temperature as a function of the normalized 

capacitance for the linear (NL0) and three nonlinear forms (NL1–NL3) are shown in Fig. 

10. Here, the ‘dots’ represent the true temperature and the ‘dotted line’ represents the 

estimated temperature. Close agreement between the two values is quite evident from 

these plots. The absolute errors in estimation of temperature for the four cases are plotted 

in Fig. 11. For the whole range of temperature variation from  50°C to 150°C, the 

maximum error of estimation remains within ±2°C for both NL0 and NL3. Whereas, for 

NL1 and NL2, it remains within ±5°C and ±3°C, respectively. From these observations, 

effective performance of the T-ANN is quite evident. 



 

 

7. An implementation scheme 

Due to rapid decrease in unit cost and fast increase in on-chip capabilities, the MCUs 

have been found quite suitable for use in a various intelligent systems. Currently 

available MCUs can be configured with all the required RAM/ROM/EEROM as well as 

serial interface and multiple channel A/D conversion support chips. 

To estimate the ambient temperature from the sensor characteristics itself, we 

propose the following scheme. The training of the ANNs are carried out off-line and their 

corresponding weights are stored in the EEROM of the MCU. 

In practical use of a CPS there is only one measured signal, i.e., VN. Therefore 

appropriate arrangements are to be made to obtain the signals separately for estimation of 

temperature and pressure. The on-line estimation of pressure using this ANN-based 

scheme consists of a measurement cycle. Each of the measurement cycle consists of a t_ 

est and a p_est cycle. In the t_est cycle the ambient temperature is estimated whereas, in 

the p_est cycle the applied pressure is estimated. During t_est cycle, provision is made to 

separate out the CPS from the applied pressure, and then the zero-pressure capacitance 

(VN0) is measured. From the knowledge of (VN0), the ambient temperature can be 

estimated using T-ANN (see Fig. 3 (c)). Next, during the p_est cycle, the pressure is 

applied to the CPS, and VN is measured. Now, using this measured value and the 

estimated temperature, the pressure is estimated using Fig. 3 (c). Appropriate control and 

logic circuits are to be implemented in the MCU for this measurement scheme. 

A scheme of implementation of the MLP-based CPS model using an MCU is 

depicted in Fig. 12. The SCI converts the change in capacitance of the CPS due to applied 

pressure into an equivalent voltage level. This analog SCI voltage is passed through an 

ADC. The digital temperature information is similarly obtained from the knowledge of 

CN0. 

During the training-phase, the CPS is operated under controlled temperature and the 

data pairs so collected can be stored in the memories of the MCU. These training data can 

be fed to a PC connected to the MCU during training of the MLP-based model. After 

completion of training, the weights of the MLP are stored in the EEROM of the MCU. 

With the available hardware, such as adders and multipliers of the MCU, the MLP-based 

model can be implemented in the MCU. The digital readout of the applied pressure can 

be displayed through the data bus.  

 

8. Conclusions 

We have proposed a novel and effective ANN-based scheme for modeling a 

capacitive pressure sensor operated in a dynamic environment. When the ambient 

temperature changes over a wide range, the nonlinear response characteristics of the CPS 

undergo change in a complex manner. A switched capacitor interface circuit is proposed 

to convert the CPS output in terms of a voltage signal. At different ambient temperatures, 

few data points from the sensor characteristics were obtained. These data were then used 

to train the MLP model using the back propagation algorithm. The training of ANNs may 



 

 

be carried out off-line and the final ANN weights can be stored in an EPROM. After 

training, the MLP model is capable of estimating the applied pressure accurately 

irrespective of nonlinear characteristics of the CPS and its nonlinear dependence on 

temperature. 

Using a second MLP, we have presented a novel scheme for estimating the ambient 

temperature from the knowledge of the sensor characteristics itself. The values of offset 

capacitance, at different ambient temperature were used to train this MLP. This MLP is 

capable of estimating the ambient temperature quite accurately. During practical use of 

the CPS, first, the ambient temperature is to be estimated. This is made by feeding the 

value of the offset capacitance to the second MLP. Next, the estimated temperature along 

with the output of the CPS is fed to the first MLP model to estimate the applied pressure. 

The on-line estimation of the applied pressure is carried out in a measurement cycle 

which consists of a t_est cycle and a p_est cycle for estimation of the ambient tempera-

ture and the applied pressure, respectively. Appropriate logic and control circuits may be 

implemented in the MCU to carry out the measurement cycle. 

We have considered different forms of nonlinear interaction of temperature on the 

sensor characteristics with a temperature range from  50°C to 150°C. The accuracy of 

the ANN model for estimation of pressure remains within ±2% (FS). The maximum 

absolute error in estimation of temperature remains within ±5°C. The proposed MLP-

based model can be easily implemented using a microcontroller unit. Such ANN-based 

models may be applied to incorporate intelligence in other fields of instrumentation and 

measurement. 

 

9. Acronyms used 

 

A/D  Analogue to digital 

ADC  Analogue to digital converter 

ANN  Artificial neural network 

BP  Backpropagation 

CPS  Capacitive pressure sensor 

EEROM Electrically erasable read only memory 

EPROM Electrically programmable read only memory 

FS  Full scale 

MCU  Micro-controller unit 

MLP  Multilayer perceptron 



 

 

P-ANN Pressure-ANN 

RAM  Random access memory 

ROM  Read only memory 

SCI  Switched capacitor interface 

SF  Scale factor 

T-ANN Temperature-ANN 
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