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Abstract 

   A simple method for evaluating chaotic advection in slug micromixing is reported in this 

paper. We consider a slug moving in a slit microchannel (w>> h) and flow field in a plane far 

from the boundary walls is modelled as a two-dimensional low-Reynolds-number flow (Stokes 

flow). Analytical solution for normalised velocity field in the slug is derived. The two-

dimensional analytical solution is compared with the two-dimensional slice from the three-

dimensional numerical solution of the slug velocity field. Boundary conditions mimicking the 

motion of the slugs in microchannel geometries, in Lagrangian frame of reference, is used to 

track the passive tracer particles using Lagrangian particle tracking method. Poincaré sections 

and dye advection patterns are used to analyse chaotic advection of passive tracer particles using 

statistical concepts such as ‘variance’, ‘Shannon entrophy’ and ‘complete spatial randomness’. 

Results for boundary conditions mimicking constant-velocity straight-channel flow, constant-

velocity normal-meandering channel flow are compared. A method for finding new channel 

geometries which enhance chaotic mixing is also proposed. 
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1. Introduction 

In microscale, momentum, mass and energy transport experience laminar and Stokes flow 

conditions (i.e., low-Reynolds number, Re<1) (Manz et al., 1990; Whitesides, 2006). 

Unavailability of turbulent conditions make mixing dependent on the diffusive properties 

of the species involved in the process (Günther et al., 2004). In micro-total-analysis systems 

(µ—TAS), species involved in the analysis are macromolecules and biological species with 

low mass diffusivities and hence have long mixing time in laminar flow conditions. They 

are comprehensively reviewed by Nguyen and Wu (2005), Hardt et al. (2005) and Teh et al. 

(2008). 

   Droplet and gas–liquid segmented flow are the two kinds of flow that have been 

investigated for passive micromixing of liquids as they are known to mix the components 

rapidly by internal recirculation (Song et al., 2003a, b; Bringer et al., 2004; Garstecki et al., 



2006a, b; Tanthapanichakoon et al., 2006; Günther et al., 2004, 2005). Laminar flow conditions, 

which is prevalent in continuous microchannel flows, can be observed in droplet 

micromixing (Teh et al., 2008). In droplet flows, the liquid inside the droplet generates two 

counter rotating vortices. In the case of gas–liquid segmented flow, the liquid-slug between 

two gas bubbles generates the counter rotating vortices in the Taylor flow regime (Fries et al., 

2008). 

From the available literature (Aref, 1984, 2002; Stone et al., 2004), it is well understood 

that chaotic advection can be produced whenever the kinematic equations of motion for 

passively advected particles give rise to a nonintegrable dynamical system. Understanding 

the passive advection of particles in the complex laminar flow is considered as a useful first 

step in describing the mixing process in chaotic advection driven microscale mixing. 

Channel modifications have been implemented to improve the chaotic advection by 

promoting internal circulation of liquids in the vortices in droplets and slug. When a droplet 

moves through a straight microchannel, recirculating flow of equal size is generated in each 

half of the droplet (Handique and Burns, 2001). Fluids within each half of the droplet are 

mixed, but the two halves remain unmixed and separated from each other. 

   To enhance internal mixing within droplets, modifications in the channel geometry, by 

employing turns and bends, are used to create chaotic advection to fold and stretch the 

content of the droplet (Song et al., 2003b; Teh et al., 2008). As the droplet traverses through 

a curved channel, the two halves of the droplet experience unequal recirculating flows. One half 

of the droplet is exposed to the inner arc of the winding channel, a shorter channel section, and 

thus a small recirculating flow is generated compared to the other half of the droplet which is 

exposed to a longer channel section. The irregular motion along the walls promoted chaos 

and crossing of fluid streams since the vortices of each half are assymetrical. The sharp turns 

also help to reorient the droplet, so that it becomes thoroughly mixed as it goes through a series 

of stretching, reorientation, and folding (Bringer et al., 2004). 

Many of the studies in microfluidics literature are application-driven experimental studies 

involving complex geometries with no theory (Shui et al., 2008). Very few researchers have 

tried to model the chaotic motion in slugs and droplets moving in microfluidic channels. 

Experimental scaling of the chaotic mixing in a droplet moving through a winding 

microfluidic channel has been done using baker’s transformation (Song et al., 2003a). 

However, the argument was too simple and does not provide the optimization of the channel 

geometry for rapid mixing through chaotic advection. A mathematical model to estimate the 

mixing time for slugs in a straight slit microchannel was proposed (Handique and Burns, 

2001). Although the model did estimate the time required for mixing, it did not provide any 

insight about chaotic motion in the slugs. The mixing characteristics inside a microfluidic 

slug using computational fluid dynamics was done by Tanthapanichakoon et al. (2006), 

where each slug was modelled as a single-phase flow domain in two-dimensional (2D) 

as well as in three-dimensional (3D) domain. Boundary conditions of the slug in Lagrangian 

frame of reference were used to simulate the mixing characteristics. They reported that the 

radially arranged reactants mix more rapidly than the axially arranged reactants and 

proposed a new dimensionless number to estimate mixing rates. However, they did not 

calculate chaotic advection of the flow inside the slugs. Since droplets and slugs produce 

similar vortices, similar inferences can be made from their flow fields when moving in 

various microchannel geometries and hence only the slug terminology will be used for 

convenience hereafter. 



In order to understand mixing in microfluidic slugs, we propose a simple method to 

characterize the chaotic flow: Analytical solution for the two-dimensional flow field is 

derived and the boundary conditions mimicking the flow of the slug in 

microchannel are used to get the velocity at every point of the 

flow domain. Velocity field obtained from the analytical model is used to track the passive 

tracer particles and construct Poincarė maps and dye advection pattern. To analyse the nature 

of chaotic advection, traditional tools such as ‘variance’, ‘Shannon entrophy’ and ‘complete 

spatial randomness’ are used. Based on the 2D model and the results obtained, a method to 

predict microchannel geometries which can produce chaotic advection in liquid-slug and 

droplet flows is proposed. 

 

2. Problem description 

   Microchannel flows are similar to Stokes flow problems because of the inherently laminar flow 

conditions. Gas–liquid segmented flow (often called as slug flow) can be described by Stokes 

equations, when the liquid-slug is considered as a single-phase flow in Lagrangian frame of 

reference, which model viscous fluids in macroscales and ordinary fluids in microscales. We 

consider the case where a slug fully occupies the channel cross-section and its cross-sectional 

shape is determined by that of the channel. The microchannel is considered as infinitely large in 

one of the three directions and therefore the flow in a plane far from the boundary walls, in the 

direction, is two-dimensional. Fig. 1 shows the model of a liquid-slug with moving wall 

boundary conditions in Lagrangian frame of reference in a straight rectangular microchannel. 

The continuous phase is assumed to wet the wall well and no-slip condition is applied on the top 

and the bottom of the slug. In the front and the rear, the slug is surrounded by an immiscible 

phase with negligible viscosity such as air and therefore no shear stress condition is assumed. 

Other assumptions made in this analysis are: no body force has any influence on the slug; the 

slug is approximately rectangular; the liquid in the slug is an incompressible Newtonian fluid. 

Two-dimensional flow field numerically simulated by Fluent (ANSYS, Inc., USA) is used to 

compare the analytical results in the next section. 

 

3. Modelling 

3.1. 2D analytical solution 

   Following the works of Shankar (2007) and Timoshenko (1951), the governing equation 

for Stokes flow in the slug can be simplified as a biharmonic equation. Using the finite 

Fourier transform (FFT) method, the dimensionless velocities in the x and z directions can be 

obtained as follows (for details see Appendix): 

 



 

   The constant coefficients are 

 

where 

 

3.2. 3D numerical simulation 

To verify the validity of the model described above, the analytical flow field is compared 

with the numerically simulated flow field using the commercial CFD software Fluent 6.3.26 

(ANSYS, Inc., USA). The dimensions of the slug taken for the simulation are 100 x 200 x 

50µm in x, y and z directions, respectively. Therefore, l: w: h of the slug is 2:4:1 and in x–z 

directions, the 2D plane in consideration is of the ratio 2:1. The front and rear end of the slug 

are assumed to be straight edges, as the effect of the edge curvatures is small 

(Tanthapanichakoon et al., 2006). Steady-state simulation condition was assumed. The 

number of meshes used for the simulation was 64000. The mesh independence was 

confirmed. The density and viscosity were set at 998.2 kg/m
3
 and 0.001 Pa s, respectively, as 

water is taken as the operating fluid. Since the Reynolds number is very low in the 

microfluidic slugs, the laminar flow model was used. The moving wall boundary conditions 

for all the four walls were set at 5 mm/s and for the front and the rear ends, no shear wall 

conditions were applied. Convergence criteria for x, y and z velocity values were set at 10
-5

. 

Slices of the three-dimensional numerical simulation of the flow field inside the slug is 

shown in Fig. 2. The contour slices are showing the flow field in the x–z planes from wall to 

wall in the Y-axis. 

 



3.3. Comparison 

   For comparing the analytical flow field with the numerically computed flow field, we take 

the flow field at the middle plane, which is far from the boundary walls. Therefore, 

numerical velocity flow field from the plane in the y-axis at y= 0.0001 m (100µm) was taken 

for comparison. 

   Flow field for both analytical and numerical solution is shown in Figs. 3(a) and (b), 

respectively. For the analytical velocity flow field, the moving wall velocity boundary 

conditions on the top (Utop) and the bottom (Ubottom) of the slug are both 5 mm/s and the 

aspect ratio of the slug is 2, which are same as used for numerical simulation. As seen in 

Figs. 3(a) and (b), both analytical and numerical flow field contours and the velocity vectors 

are similar. To make sure that they are of the same magnitude, velocity profiles at three 

different positions along x-axis are compared. Velocity profile plots of analytical and 

numerical flow fields at ,  positions of the slug are shown in Fig. 4. The continuous 

outer x-axis in Fig. 4 stands for the position on the slug, where the velocity profile is drawn 

and the three discrete inner x-axis stand for the magnitude of the velocity in that particular 

position of the slug. As seen in Fig. 4, both analytical and numerical velocity profiles are of 

the same magnitude with little variation in the center. Therefore, the 2D simplification of the 

flow field for the slug flow in slit microchannel is valid and can be used to analyse the 

chaotic advection by tracking passive tracer particles in the slug. 

 

4. Particle tracking 

   In this study, we use passive massless tracers to construct the particle trajectories in the 

flow domain using Lagrangian particle tracking method. The velocity expression is 

used for the integration, where x is the position vector, v is the velocity, t is the time, and the 

dot denotes a material derivative. Here, we use only the analytically known Eulerian velocity 

field, therefore the integration can be carried out by the standard fourth order Runge–Kutta 

method. Boundary conditions used for finding the analytical velocity field, which is used to 

track the particles in the slugs, are discussed in the next section. The constant integration 

time, Δt = 0.02 s, was found by running a few trials of computation for the range of boundary 

wall velocities used in this study. The choice of integration time Δt is dictated by (1) the 

accuracy of tracing the particle along the streamline in a non-chaotic flow field without 

moving out of it, i.e., the particle has to simply trace the streamline pattern, (2) the highest 

among the values, to avoid the need for huge computational resources. 

4.1. Boundary conditions 

   Analytical velocity flow fields, for tracking passive tracer particles, were found by using 

the boundary conditions which mimic the kind of motion the slug undergoes in 

microchannels. For straight microchannels, the slug experiences a constant velocity on the 

walls in Lagrangian frame of reference. Therefore a constant velocity of -5 mm/s was used in 

Eq. (1), along with the constant coefficients for finding the velocity flow field. Though the 

slug is moving in the positive x-direction, the velocity boundary condition is negative 

because the frame of reference is moving with the slug. For meandering microchannel, in the 

first half period, the outer wall moves at a higher speed (VR1) and inner wall moves at a 

lower speed (VR2). In the second half, the wall velocities reverse. Effect of change in the wall 



velocity reflects in the size of the vortices formed in the slug as shown in Fig. 5(a).  Boundary 

conditions mimicking the motion of the slug through the meandering channel and the straight 

channel for a single period are shown in Fig. 5(b). The difference between the wall velocities 

is dependent on the dimensions of the microchannel such as radius, width and the angular 

velocity of the slug. The outer radius, inner radius and width of the channel are 1000, 800 

and 200 µm, respectively. Angular velocity of the slug is ω= 1 rad/s. The inner and outer 

wall velocities were calculated from the relation, VS = (VR1 +VR2)/ 2, where VS is the straight 

channel wall velocity. 

 

5. Chaotic advection evaluation 

5.1. Poincaré map 

   Poincaré map, a Lagrangian tool constructed by recording the particle positions for long 

time, is used to evaluate the advective transport of fluid particles. The disposition of the 

particle positions in Poincarémap reveals the nature of the flow: chaotic nature of the flow 

field appears as randomly distributed; non-chaotic flow appears as islands or closed curves 

(Aref, 1984, 2002). Since we use massless tracer particles, when the flow is steady, the 

particle trajectories correspond to stream lines and hence no chaotic advection. Fig. 6(a) is 

the Poincaré map for straight channel velocity boundary condition, which shows that 

particles move in closed curves. 

   When the flow is unsteady and chaotic, stretching and folding of fluid elements occur and 

produces an exponential growth of the fluid interface and the particle positions are randomly 

distributed. In this study, Poincaré sections are obtained by following the motion of 20 

material points, which are put in a group at the location (1.4, 0.4) in a slug for the aspect 

ratio of 2, for the duration of 2000 periods. An impression of the poincaré sections that have 

been found for the straight micro channel and the meandering microchannel can been seen in 

Figs. 6(a) and (b), respectively. 

 

5.2. Construction of dye advection pattern maps 

   Advection pattern of massless passive tracers are obtained by tracking the positions of 

20,000 material points which are initially concentrated in a rectangular box of size 0.05 x 

0.05 centered at the point (1.45, 0.45). Blue and red colour particles are used to distinguish 

the upper and lower half particles in the rectangular box similar to the work by Kang and 

Kwon (2004) and it is useful to visually identify the globally chaotic flow. In this study, 40 

periods of meandering channel boundary conditions with 630 iterations per period are used to 

track the particles in the slug. Particle positions were recorded at the end of each period of 

tracking to see the particle advection patterns. Figs. 7(a–f) show the dye advection patterns 

for the slug of aspect ratio 2 for periods from 1 to 40 with interval of 8 periods. 

 

6. Results and discussion 

6.1. Characterizing of chaotic mixing 

   To calculate the mixing efficiency, we use the popular tools such as ‘variance index (Ivar)’, 

‘Shannon entrophy index (IS)’ and ‘complete spatial randomness (CSR)’. Variance as a 

mixing measure has been widely used to characterize the chaotic mixing along with Shannon 

entrophy index (Phelps and TuckerIII, 2006). Variance of the particle counts in the bins is 



calculated by dividing the whole flow domain into n x m grid of equal-size bins. The 

variance σ
2
 is calculated as  

 
where M is the number of bins and cj is the number of particles in bin j,  is the average 

number of particles per bin, , with N the total number of particles in the calculation. 

The variance decreases with the number of periods as mixing improves, and particles are 

distributed in the computational domain. Variance index, which varies from unity to zero and 

allows easy comparison of mixing calculations, is defined as 

 
where σ

2
 denotes the most segregated state which can be deduced from Eq. (8) as σ

2
 ≈N

2
/ 

M, when M >>1. Shannon entrophy, S, another measure used to analyse chaotic mixing 

widely, is defined as 

 

 

 

where pj is the probability that a particle will lie in bin j. With Lagrangian particle method, 

the probability is taken as the particle count in a bin divided by the total number of particles, 

or pj = cj/ N. Shannon entrophy index IS is defined as 

 
where Se is the condition of even distribution of particles and each bin has an equal 

probability 1/M and the corresponding entrophy is Se= ln M. This form of the normalization 

makes it easy to see the details as a mixture approaches uniformity, by plotting IS on a 

logarithmic scale. 

   Complete spatial randomness (CSR), which is the even distribution of material points 

through out the flow domain, is taken as the measure of complete mixing. This is an ideal 

state for a physical mixture. However, in Lagrangian particle tracking method, repeated 

iterations of a globally chaotic flow do not result in an even distribution of the particles, but 

rather one in which each particle is equally likely to lie in any bin. 

   According to the binomial probability mass function (PMF) of the bin counts, for M >>1 

and N >>1 the binomial PMF asymptotes to the Poisson PMF, 

 
with a variance of σ

2
CSR= N/M and this gives the CSR limit for variance index Ivar,CSR=1/N and 

for the entrophy index the limit is IS,CSR= M/2N ln(M). Once a random distribution of particles 

throughout the flow is achieved, the limiting values of variance and Shannon entrophy index 

are reached. CSR is a fundamental numerical limit for any Lagrangian particle calculation and 

no further distribution of particle can be attained. Details of the above discussion on (Ivar), (IS) 

and CSR is referred to the work by Phelps and TuckerIII (2006). 

   As seen in Fig. 6(a), Poincaré map constructed for straight channel shows that the particles in 

the slug move along with streamlines. This is because of the velocity flow field for constant 

wall velocity boundary on the slug that produces two vortices with symmetrical recirculation 

along the channel centerline. In a simple non-chaotic recirculating flow field, particles can 



move from one half to the other can happen only through diffusion. And the particles used for 

particle tracking in this study are passive massless tracers with zero diffusivity and therefore 

they simply follow the flow field. 

   Poincaré map for meandering channel flow is seen in Fig. 6(b) and the particles are evenly 

distributed throughout the domain. Using the traditional approach of visually analyzing 

Poincaré sections shows that there are no islands and can be classified as globally chaotic 

flow. Total number of particles in the Poincaré map is 40,000 which exceeds the requirement 

of sufficient number particle positions, n > MIn(M)=5348, for evaluating Poincaré maps, 

(Phelps and TuckerIII,2006), where the number of bins M=800. Fig.8 shows the ‘variance 

index’ and ‘Shannon entropy index’ for the dye advection patterns, as seen in Fig. 7. 

computed for the slug from velocity flow field obtained for the meandering channel flow. 

Both mixing measures show that the mixing is complete and approach the state of ’complete 

spatial randomness’. Therefore, it is clear that the meandering channel geometry is useful in 

chaotic mixing due to its ability to create assymetrical vortices. 

 

6.2. Predicting a channel geometry for chaotic mixing 

   As described above in Section 4.1, wall velocity boundary conditions applied on the walls of 

the slug is determined by the channel geometry in which the slug is moving as seen in Fig. 5. 

Therefore, the two-dimensional model in Section 3 can be used along with the boundary 

conditions for a particular channel geometry to identify the channel geometry which enhances 

chaotic mixing in the slug, by tracking particles in the velocity As described above in Section 

4.1, wall velocity boundary conditions applied on the walls of the slug is determined by the 

channel geometry in which the slug is moving as seen in Fig. 5. Therefore, the two-dimensional 

model in Section 3 can be used along with the boundary conditions for a particular channel 

geometry to identify the channel geometry which enhances chaotic mixing in the slug, by 

tracking particles in the velocity 

 

7. Conclusions 

   We have proposed a simple 2D analytical model for evaluating and predicting chaotic 

advection in slug flow in high aspect ratio microchannels. The velocity flow field of the 2D 

analytical equations was validated against a 2D slice of the 3D numerical velocity flow field and 

it showed that the 2D model is good enough to represent the flow field in the center of the 

droplet and slugs flowing in high aspect ratio channels. Boundary conditions mimicking the 

motion of the slugs in straight channel and meandering channels have been applied to get the 

velocity flow fields in the slugs. 

   Lagrangian particle tracking has been used to compute Poincaré maps and dye advection 

patterns of passive tracer particles. Poincaré maps and dye advection patterns were analysed 

using the statistical tools such as ‘variance index’, ‘Shannon entrophy index’ and ‘complete 

spatial randomness’. The analysis shows that the slug flow in high aspect ratio meandering 

channel flow could produce chaotic advection because of the change in the size of the vortices 

due to the curvature of the channel. A method of applying corresponding boundary conditions 

for a channel geometry has been proposed, to find a new channel goemetries and motion of the 

slugs and droplets, which could produce chaotic advection. 
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Appendix A 

 

   For the Stokes flow in the slug, the governing equation is biharmonic 

 
where φ is the stream function, which is defined as 

 
This definition of φ satisfies the continuity equation automatically. The stream function is 

constant on the boundaries. Here, we set it to be zero. 

 
The two ends of the slug are considered as free surfaces, because the viscous of the air is 

neglected. The boundary conditions at these two ends are, respectively, 

 
The velocities at the outer and the inner sides walls are –S’ and –S respectively 

 
 

A.1. Nondimensionalization 

   Using the height of the channel h and the velocity of the wall Vs to nondimensionalize x,z,φ 

 
   The dimensionless governing equation is 

 
and the dimensionless boundary conditions are, respectively, 

 
where β=L/ h is the aspect ratio; ŋ =S’/ Vs and ξ=S/ Vs are dimensionless velocities at the walls 

of the channel. 

 

A.2. Analytical solution 

   Using the finite Fourier transform (FFT) method, the solution of the biharmonic equation can 

be written as 

 



which is the Fourier transform of , where αn= nπ/ β. According to the boundary conditions 

(A.9), the solution can be written in a simpler format 

 
Using the FFT method, the dimensionless stream function φ can be determined as 

 
Therefore, the dimensionless velocity components in the directions are, respectively, 

 
The constant coefficients can be determined from the boundary conditions Eqs. (A.8) and (A.10), 

 
Where 
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List of Figures 

 

Fig. 1 3D model of the slug in a slit microchannel simplified into 2D model with internal 

recirculating flow with appropriate boundary conditions on moving walls and no 

shear stress conditions on front and rear edge. The slug is moving in positive x-

direction and the wall velocities are in negative x-direction. (a) High aspect ratio 

channel with w >> h. (b) Vortices in the x–z planes far from the side boundary 

walls. 

Fig. 2 2D slices of 3D flow field in the slug model at different Y planes  

Fig. 3 Velocity field inside the slug: (a) analytical result and (b) numerical result at the 

middle plane (y= 0.0001 m). 

Fig. 4 Comparison between analytical and numerical results of the velocity profile at 

different x positions (Velocity values in the inner x-axis and position of the 

velocity profile in the outer x-axis). 

Fig. 5 (a) Schematic of vortices in a slug moving in a meandering microchannel. (b) 

Boundary conditions for the slug moving in a straight channel and meandering 

Fig. 6 Poincaré map for (a) slug flow in straight microchannel and (b) slug flow in 

meandering channel. 

Fig. 7 (a-f) Dye advection pattern for the slug aspect ratio of 2 for 40 periods in the 

interval of 8 periods. 

Fig. 8 (a) Variance index Ivar and (b) Shannon entrophy index of periods N for the dye 

advection pattern in Fig. 7. 
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