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We derive an explicit analytic expression for the time development of a generalized class of quan-
tum distribution functions, which include as special cases the Wigner, the normal, and the antinor-
mal distributions. We find that the simplest result is obtained in the case of the Wigner distribution.

I. INTRODUCTION

Quantum-mechanical distribution functions provide a
framework for the treatment of quantum-mechanical
problems in terms of classical concepts, and they have en-
joyed wide usage in practically every subfield of quantum
physics.! The initial work on this subject is the paper of
Wigner,> who introduced a function of position and
momentum coordinates. Our considerations here will be
restricted to one dimension since it will be clear that they
can be generalized to the multidimensional case con-
sidered by Wigner. Thus we will denote the Wigner dis-
tribution function by Py (q,p), where ¢ and p are the posi-
tion and momentum coordinates, respectively.

Many authors have considered other distribution func-
tions, the most commonly used being those of Glauber?
and Sudarshan* (the normal distribution P,) and Husimi®
(the antinormal distribution P,). The former has been
used extensively in quantum optics. In addition, a more
general class of distribution functions, P, say, has been
introduced by Cahill and Glauber.$

In many problems we require a knowledge of the time
dependence of the distribution function. For example,
dissipative processes frequently appear in many problems
of quantum optics. The fluctuation-dissipation theorem
establishes the relation between dissipation and the fluc-
tuations of the system in equilibrium’ and it is this rela-
tion that makes the time development of the distribution
function of the system of paramount interest.

In Sec. II we consider the Wigner distribution function,
with emphasis on how it may be written in terms of
characteristic functions.* The time dependence of Py is
the simplest among all the distribution functions that we
are aware of. In particular, Py has the unique property
that, in the field-free case, the equation of motion is the
classical one.? By contrast, the corresponding result for
P, contains additional # terms which are not of quantum
origin,'® and similarly for P,, as recently pointed out.!!
In this paper we consider, in particular, the time depen-
dence of P, and P, in the case where a potential is
present. This is achieved by introducing, in Sec. III, the
Y o functions,® which are characterized by a parameter s,
with s =0, 41, —1, corresponding to the Wigner, normal,
and antinormal distributions, respectively. Next we derive
a relation between P, and Py,. Using the latter result and
the known time dependence of Py, we derive, in Sec. IV,
the time dependence of P,. The simplest result is ob-
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tained for s=0, i.e., the Wigner distribution function has
the simplest time dependence. In Sec. V, we present a dis-
cussion of our results.

II. THE WIGNER DISTRIBUTION FUNCTION

For simplicity, we treat a system in a pure state ¥(q)
since the case of a mixture does not present any additional
essential complications. Then, the Wigner distribution
function is given by?

Pylg.p)=(ah)~" [ [9(g +)]*vig —y)e®Pdy . (1)
If we now introduce the characteristic function
Cylo,7)=(¥ | exp[(i /ANcG+7P)] | ¥) , 2)

where the carets denote operators, then it follows®? that
Py, is the Fourier transform of Cy, i.e.,

PW(q’P)=(2ﬂ‘ﬁ)_2f fdadTexp[—(i/ﬁ)(gq +7p)]
XCwlo,7) . (3)

Next we introduce the framework of creation and an-
nihilation operators by defining, as usual,

G== L 4iL |, (4a)
219 po
pt=1|L _; 2|, (4b)
2 | qo DPo
where
qo=(#/2mw)'"? (5a)
and
Po=(m#w/2)\?=mawqy=(%/2q,) . (5b)
In addition, we define
a=1|L 42 ; (6a)
2190 po
at=1|L ;2 |, (6b)
2 {qo Po
and
n=(oqo—itpy)/#, (7a)
2187 ©1984 The American Physical Society
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n*=(oqo+itpo)/# , (7o)
from which it follows that

# Y og+1p)=né+n*a’ (8a)
and

#iNog +7p)=na+n*a* . (8b)
Hence

Cylo,m)=(P|expli(mad+n*a "] | v)

=Cp(n,m*) . ©

Substituting this result in Eq. (3), and using Eq. (8b) and
the fact [see Eq. (7)] that do dr=7%dndn*, it follows that

Pylgp) =)~ [ [ dndy®expl—i(na+n*a*)]
X CW(TI;T]* )
=#"1Py(a,a*) . (10)

In summary, Py (a,a*) may be considered as the Fourier
transform of Cy (7,n*), the latter being defined explicitly
in Eq. (9). As we shall see in Sec. III, this is a convenient
starting point for obtaining a generalized distribution
function P,—we simply generalize the characteristic
function first and define P, as the Fourier transform of
the generalized characteristic function C,.

For later purposes, it is convenient to write here the
time dependence of Py,. It may be decomposed into two
parts:?

0Py 0Py O,Py
a o | o
the first part resulting from the (i%/2m)d%/dq? the

second from the potential energy V /i# part of the expres-
sion for 31 /3dt. Also it has been shown that?

’ (11)

Pwlg,p)  (p/m)dPy(q,p)
ar dg ’

i.e., the field-free case corresponds to the classical result.
In addition

(12)

' v (g) 8Pwlap)
dg* ap*

avPW(qu) 1 #
ar “% Al

2i

, (13)

where the summation over A is to be extended over all odd
positive integers.

III. A GENERAL CLASS OF DISTRIBUTION
FUNCTIONS

A generalized distribution function P,(g,p,s), where s is
a parameter, is defined by replacing Cy (7,7*) in Eq. (10)
by C,(n,7*), defined as follows:$

Cen,n*)=(¢ | expl s [0 |2 +ina+n*aN]|¥) . (14)

It follows that for s=0 we get the Wigner (or as ofttimes
called, the symmetric) characteristic function Cy, given in
Eq. (9). Also, making use of the Baker-Hausdorff
theorem:
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exp(;d\)exp(l/?\)zexp( %[2,1/3\] )exp(//f+l'?\) (15)
provided [A4,[4,B81]=[B,[4,8]1]1=0, and the fact that

[@,G "]=1, it follows that

Ca(n,m*)= (9| explin@)explin*a™t) | ¢) (16)
and

Ca(n,*)=( | explin*a Nexpling) | ) , (17)
where C, and C, are the so-called antinormal and normal
characteristic functions, corresponding to taking s =—1

and s=1, respectively.

We now turn to a determination of the relation between
P, and Py. For this purpose, it is convenient to express
P, in terms of p and g. First, we note that Eq. (7) implies
that

|| *=%"(0%q5+7P3) - (18)
Hence, using Egs. (9), (14), and (18), it follows that
Ce(m,m*)=expl 357~ H0’q5+7p5)1Cwl0,7)
=Cylo,7) . (19)

Thus P,(g,p) may be obtained from the expression for
Py (q,p) given in Eq. (3) by simply replacing Cy(o,7) by
Cg(o,7) given in Eq. (19). Noting that o? and 7* inside
the integrand may be replaced by —#%9?/dg?%) and
—#%(3%/9p?) outside the integral sign, it follows that

s 232 s 5 &
Py(g,p)=exp —Eqéaﬁ—?%—— Py(q,p) . (20)

op?

This is a basic result giving the relation between the gen-
eralized distribution function P, and the Wigner distribu-
tion function Py. For the case where s==x1 (corre-
sponding to the normal and antinormal distributions,
respectively) this result has been presented already
(without proof) by one of us.!! For the specific choices of
s=0, 1, and —1, integral relations between Py, P,, and
P, are given by Cahill and Glauber® and also by Agarwal
and Wolf.!? It is also noteworthy that P, as defined
above is identical to the Husimi distribution function,!?
but since this is not obvious and since we have seen no
proof in the literature, we derive this result in Appendix
A

IV. TIME DEPENDENCE OF THE GENERAL CLASS
OF DISTRIBUTION FUNCTIONS

It is convenient to define the following operators which
act on functions in phase space:

S 2 82
C= —=q0—= | , 21
P | =5 403 3 21)

S 2 62

D=exp |—2p2-L-
exp |~ 3P0y (22)

Thus Eq. (20) may be written in either of the following
forms:

P,=CDPy, (23a)
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and

Py=C~'D-'p, . (23b)

Also, we note that C and D commute with each other and
they are independent of time. Hence

d d

-— P

atP =CD— 3 bW - (24)
Our goal is to write the right-hand side of Eq. (24) in
terms of P,, as distinct from Py. Using Egs. (12) and
(23), and noting that C commutes with p, it immediately
follows that

akPg 1 BPW
=& _ _ - |CDp—=—
ot m 4 dq
——L |copc-1p- g]
m
1 oP
=—— |Dpp~1—£ 25
m P dq @3)

We now write an important identity, which is proved in
Appendix B, viz.,

2189
akPg 1 2 i) an
& _ 2
ar P — Poap 3q (28)

Thus, only for s=0 does the field-free time dependence
coincide with the classical result. For s#0 we get addi-
tional # terms which are not of quantum origin. As a
check, we note that for s = —1 (the Husimi distribution),
Eq (28) agrees with Eq. (16) of Ref. 10, if we note that

pi=#/2a, where a= ﬁ/ma) is a quantity appearing in
Ref. 10.

We next derive the extra contribution due to the pres-
ence of a potential. Making use of Egs. (13) and (23) it
follows that

9,P,(q,p) _ DavPW(q’P)
a at
_eps L[ A |7 2 rig €D Py
- ZN 2i A A
Y i dq ap
Ao 3P, (g,p)
2_1_ n Ca Viq) C_1 g Z’P )
x M g ap

(29)

Hf (p) 2 (—s)~ kpgu—k) To proceed further we again make use of Eq. (26), but
Df(p)D~'= 2 a now with the variable p replaced b Next we choos
P ap;l. P 2kk |(‘u —2k)! P replac Yy q. we choose
L o  S@-PLE
apy—Zk ’
. : so that
where [p/2] is u/2 for p even and (u—1)/2 for p odd, —k2pk)
and where f(p) is an arbitrary function of p containing, 6 3'V(g) 1 2 rtrY (q) B2 (—s) ™ gp
in general, derivatives of arbitrary order. In the case dqg* _“20 dghtr 2 2Kk —2k)!
where f(p)=p, only the p=0 and 1 terms contribute so
that am—k
X a2 (30)
—1_ 29
DpD™"= |p —spo op @n Substituting this result in Eq. (29) and noting that, since A
' is odd, we can replace (%/2i)*~! by (i#/2)*~1, it follows
and hence that
|
3, Py(q.p) o, (122 (A 1gfH R (—s )k grtuy(g) gt gu-2
3 =223 A+k—1 PRI AT Atp a—w beap) 31
t n p=0k=0 2 Mk Np—2k)! dq ap* 9q

and we recall that A assumes all odd—and only odd—
values from 1 to infinity. This is our desired result which,
when combined with Eq. (28), gives the time dependence
of the generalized distribution functions. Again we have
a check on the correctness of this result since for s =—1
it reduces to Eq. (29) of Ref. 10, if we note that g3 =a/2
where a=#/mo is a quantity appearing in Ref. 10. For
s=0, the only contribution is for =k =0 and then Eq.
(31) reduces to the result given in Eq. (13). We conclude
that, in general, the time dependence of the Wigner distri-
bution is simpler in structure than that of any other distri-
bution function, and that in the field-free case it is the
only distribution function whose time dependence corre-

[

sponds to the classical case.

Generalization to the case of several dimensions is
achieved in the following manner: the indices k,A,u must
be replaced by as many sets of indices k,,A,,u, as there
are space (or momentum) dimensions and the summations
extended over all these indices. The restrictions are then
that the sum of all the A must be odd and that all the
wn —2k, must be non-negative, as are also all k,,u,,A,.

V. DISCUSSION OF OUR RESULTS

There is a vast array of problems in many different
branches of physics (see, for example, Refs. 14 and 15) in-
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volving a potential which is a function of coordinates
only. For such problems, we conclude that the optimum
classical-quantum correspondence is that given by
Wigner,? since the corresponding quantum distribution
function has the simplest time dependence, as we have
shown above.

On the other hand, in the areas of quantum optics and
synergetics one often encounters momentum-dependent
forces (which, for example, arise from & 5T and 46
terms in the interaction Hamiltonian for the two coupled
modes of a parametric amplifier'$) or fluctuating forces
which cannot be represented by a potential. In such cases
it is clear that other criteria must be brought to bear on
the question of choosing the optimum distribution func-
tion to be used in solving a particular problem, but a com-
plete investigation of such a question remains in the fu-
ture.

In quantum optics, the Glauber>-Sudarshan* P distribu-
tion (which is identical to P,) has been widely used, but it
has also been recognized that the corresponding Fokker-
Planck equations often have nonpositive definite diffusion
coefficients, particularly in the case of phenomena involv-
ing nonclassical effects, such as photon antibunching.
For such nonclassical photon fields, P, does not exist as a
well-behaved function and so, in order to avoid such prob-

lems, Drummond and Gardiner!’ introduced a class of
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generalized P representations. These functions have
found wide application in the area of quantum optics.
However, it should also be pointed out that the Wigner
function is never singular and it also has been used exten-
sively in this area, a recent example being the investiga-
tions of Lugiato et al.,'® for which the Wigner function
was found to be more preferable than the Glauber-
Sudarshan distribution. However, in the case of disper-
sive bistability and two-photon absorption, Walls and Mil-
burn!® concluded that the generalized P representation of
Drummond and Gardiner is preferable to the 'use of the
Wigner function because the latter gives rise to equations
containing third-order derivatives. Thus a question arises
as to why the generalized P representation is clearly the
best choice for certain applications. Further investiga-
tions of this question are clearly warranted.

Note added in proof. Some other manifestations of the
relationships between the quantum distribution functions
discussed above as well as some others, have recently been
considered.?’
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APPENDIX A: PROOF OF THE EQUIVALENCE BETWEEN THE ANTINORMAL AND HUSIMI
. DISTRIBUTION FUNCTIONS

Husimi’s distribution function, P, say, is a smoothed Wigner function and it is everywhere non-negative. It is defined

as follows:>1°

Pgp)=am = [~ [ Pyig',p)expl —(q'—q)/alexpl —alp'—p) /%)’ dp’

where a =%/mwo. Using a Taylor expansion we can write

o am +"Pw(q,P) (g'—q)™(p'—p)"
PW(q',P')= 2 — - q q 'P' P .
mn=0  9¢"0p min!

We substitute Eq. (A2) into Eq. (A1) to get

= 3"t"Py(q,p) 1
Py(q,p)=(m#)"!
gp)=(mhi)~" 3 22"

m,n =0

mln!

A1)

(A2)

I expl—(a'—qr/alg’—qy"dg’ [~ expl—alp'—p)*/#)p'~p)dp’ .

It is clear that only terms with even m and n contribute. Thus carrying out the integrations we obtain

Plap)=(mh)-! 3 & L R 4L
s(g.p)=(mh) ,,,,,,2=0 2 Lo+l 45
a 3  # P

=exp |+ n 8q2 + 4 ap2 Py .

Since g3 =a/2 and p3 =#*/2a we conclude that

P, (q,p)="P,(q,p) , (A5)

i.e., the Husimi and antinormal distributions are
equivalent.

It may be of interest to prove Eq. (A5) in a different

(A3)
aZm +2nPW(q,p)
anmaPZn
(A4)
T
way. By setting s = —1 in Eq. (19) one gets
C,(o,7)=exp | — E—;—Z-(azq(z)—kfzp%) Cylo,r)
=f(o,7)Cy(0o,7), (A6)
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where

flo,7)=exp —L(Uzq%—{—fzp%) . (A7)

2?2

We note that P,(q,p) is the Fourier inverse of C,(o,7).
Explicitly,
C,lo,7)=F(P,(q,p)) (A8)
and
P,(q,p)=F ~C,(0,7)), (A9)

where % and % ~! denote Fourier transform and Fourier
inverse, respectively. The convolution theorem states that
if

Substituting Eq. (A13) into Eq. (A12) gives Eq. (AS5) im-
mediately.

APPENDIX B: PROOF OF EQ. (26)

We denote the left-hand side of Eq. (26) by A4 and the
right-hand side by B and we denote —2sp3 by B. Thus

_ B ¥ B ¥
A =exp 4 3p? f(plexp 4 3,7 (B1)
and
w (/2] —k o2k
p=3 &1 i 3 (B2)

i p* o 2PkNp—2k) apHr—k

glg,p)=F"Yf(a,7)) (A10) Since the direct proof of 4 =B is difficult, we first obtain
the differential equation satisfied by 4 and B, with B as a
and variable. Thus
g1
then dB 4 | 9p? ap?
Ff (0,7)Cpla,7)] and
= [ [ela—a'.p—pPwiqg'.p)dg'dp’ . (A12) dB _ i f(p) W) (u_k)pr—F—1 ek
In our case aB = ap* Sy 2PkNp—2k) dpr—2k
g(g.p)=F""[f(0,7)] (B4)
2
=(7#) " lexp —-q—z———g—z (A13)  Furthermore
o 200
J
2 2 w Ap+l [1/2] —k w—2k +1 w  Ap+2 (/2] —k n—2k
- ”Q?B_Ba—z =2 2 j;(f’) +lﬁ“ . k1 T 2 g Ji(zp) +2Bﬂ 2 2k ¢
4 dp ap p—o Op* k=0 2*T kNu—2k) op*~ p—o Op* k=0 2¢TkNu—2k) op*
(BS)

We now carry out some manipulations on the right-hand side of Eq. (B4). First, we split each term into two parts by
writing u —k =(u—2k)+k. Then in the first term we change the variable from u to u + 1 and in the second term from
p tou + 2. Also, in the second term, it is clear that the k=0 term does not contribute. Thus

dB _ i ay+lf(p) [(p+1)/2] Bu—k a;t—2k+1 N ay+2f([?) [(+2)/2] By—k+1 ay——2k+2
d _”=9 aprtl o PHkNp—2k) prAL G gprtt (2 2PNk —1)Np—2k +2)! dpr A+
. (B6)

Also, the upper limit of the k summation, in the first
term, i.e., [(x+1)/2], may be replaced by [ /2] since
when u is even the two terms are the same, and when y is
odd the extra term k =(u-+1)/2 gives no contribution,
again because of the (u—2k)! term in the denominator.
Thus the first term on the right-hand sides of Egs. (B5)
and (B6) are the same.

In the second term on the right-hand side of Eq. (B6)
we change the variable from & to k +1 to get

m—k ay—Zk

oo au+2f(P) [1/2]
2 k=0 2“+2k!(,u—2k)! ap“—Zk '

Jpht?

p+1=0

However, the (u—2k)! term in the denominator ensures
that we may start the 4 summation at u=0. Thus the
second terms—in addition to the first terms—on the
right-hand sides of Egs. (B5) and (B6) are the same.

We conclude that 4 and B satisfy the same first-order
differential equation. In addition, when =0,

A(B=0)=B(B=0)=f(p) . (B7)
Thus
A=B (B8)

for any . Substituting —2sp3 for 8 we obtain Eq. (26).
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