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Abstract—This paper studies a cloud computing market where
a cloud provider rents a set of computing resources from
Windows Azure operated by Microsoft. The cloud provider can
integrate value-added services to the resources. Then, the services
can be sold to customers, and the cloud provider can earn
a profit. Moreover, the cloud provider could save much cost
and increase higher profit with the 6-month subscription plan
offered by Windows Azure. However, the maximization of profit
is not trivial to be achieved since the amount of the customers’
demand cannot be perfectly known in advance. Consequently, the
subscription plan could not be optimally purchased. To deal with
such a maximization problem, the paper proposes a stochastic
programming model with two-stage recourse. The numerical
studies show that the model can maximize the profit under the
customers’ demand uncertainty.

NOMENCLATURE

I Set of compute instances, i ∈ I
J Set of cloud services, j ∈ J
Ω Set of scenarios, ω ∈ Ω
F Monthly subscription fee ($ per base unit)
Ci On-demand price of instance i ($ per hour)
Pj Selling price for cloud service j ($ per hour)
αjω Customers’ demand (hours) for cloud service j under scenario ω
θi Equivalent ratio of compute instance i
πω Probability of scenario ω
L Length of subscription for one base unit (hours)
x Number of base units
yijω Number of hours utilized from base units for service j under

scenario ω
zijω Number of hours of compute instance i purchased with on-demand

price for service j under scenario ω

I. INTRODUCTION

Windows Azure is a cloud computing platform of Mi-
crosoft where cloud computing users can host applications [1],
[2]. Windows Azure provides different classes of compute
instances to meet users’ requirements. A compute instance
is comparable to a server bundled with a certain scalable
platform. In particular, Windows Azure deploys a specialized
operating system for the platform.

Windows Azure provides two purchasing options, namely
pay-as-you-go (i.e., on-demand option) and 6-month subscrip-
tion plan (i.e., subscription option).1 The on-demand option
can be purchased without any commitment. Thus, a compute
instance can be dynamically provisioned at any moment that
the instance is needed. In contrast, the subscription option
needs to be purchased in advance with a 6-month subscription

1The detail of Windows Azure mentioned in this paper is based on that
in [1] with the latest update on February 6, 2012.

term. However, with a cheaper price, the subscription option
can greatly reduce the total cost incurred to users for a long-
term computing usage.

In this paper, a cloud computing market is studied where a
cloud provider rents compute instances from Windows Azure.
Then, value-added services can be built on the rented compute
instances. The cloud provider can earn a profit by selling the
cloud services to customers. Cloud services could be video
streaming, online game, MapReduce platform, web/application
hosting, and financial analysis services. Thus, the cloud com-
puting model of the cloud provider can be software-as-a-
service (SaaS) and/or platform-as-a-service (PaaS) [2].

Although the cloud provider can increase the profit by
purchasing the subscription option, the optimal number of sub-
scribed compute instances is not trivial to be known. In other
words, to gain the maximum profit can be a major challenge.
The reason is that the customers’ demand is not precisely
known in advance. To deal with this demand uncertainty,
this paper proposes a profit maximization model based on
stochastic programming with two-stage recourse [6]. With the
uncertainty, the proposed model can be used to obtain the num-
ber of subscribed compute instances such that the expected
profit is maximized. The numerical studies are performed
to evaluate the model. The results show that the model can
effectively maximize the profit under the demand uncertainty.

II. RELATED WORK

In [3], a method based on integer programming was pro-
posed to rent resources located in cloud computing. An
algorithm to rent additional servers in cloud computing was
proposed in [4] to accommodate workloads in a local cluster.
In [5], an auto-scaling method was proposed and evaluated
in Windows Azure. The method applies integer programming
for resizing the number of instances purchased with the on-
demand option. The method did not consider the subscription
option which can significantly reduce the cost. The methods
in [3]–[5] cannot guarantee the optimal solution under de-
mand uncertainty.

To deal with the uncertainty, a stochastic programming
model [6] for renting resources in cloud computing was
studied in [7]. The objective of the model is to minimize the
expected resource provisioning costs incurred to customers.
In contrast, to mainly focus on a cloud provider’s perspective,
this paper applies stochastic programming to maximize the
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Fig. 1: System model of the cloud provider’s computational
service.

provider’s profit. In addition, this paper also proposes a system
model based on Windows Azure which is an efficient cloud
computing platform [8] for the cloud provider to build value-
added cloud services for customers.

III. PROPOSED PROFIT MAXIMIZATION MODEL

A. System Model and Assumption

The architectural system model of a cloud provider’s com-
putational service is depicted in Fig. 1. The model consists
of four layers, namely cloud service, instance manager, com-
pute instance, and Windows Azure. The top three layers are
manageable by the cloud provider whereas the bottom layer
is operated by Microsoft. The cloud service layer represents a
set of cloud services (i.e., set J ) offered by the cloud provider
to the customers. The cloud provider rents computational
resources from Windows Azure to operate the cloud services.
To simplify the model, it is assumed that only CPU time of
compute instances is the only one type of resource considered
in the model. Thus, costs incurred by other resources and
services (e.g., storage, service bus, caching, SQL Azure, the
Internet traffic for the data transfer, etc.) are ignored. It is
assumed that all compute instances are installed with a set of
software required by all cloud services.

To efficiently manage compute instances, the instance man-
ager layer offers main functions which are assumed to be
available, for example, distributed scheduling, load balancing,
accounting and billing, and monitoring functions. The compute
instance layer provides a pool of compute instances rented
from Windows Azure. Windows Azure layer supplies the
platform to host compute instances.

Windows Azure provides 5 classes of compute instances
(i.e., set I) as shown in Table I. Each type features different
(virtual) hardware specification and on-demand price. The 6-
month subscription and on-demand options are both consid-
ered in the model. Although the subscription option is the
6-month term, the model determines the option in a month-
by-month basis. Let the monthly subscription length (i.e., L)
be 750 hours [1]. It is assumed that Windows Azure does not
limit the number of hours that the cloud provider can purchase,
and the rented compute instances are always available to the
cloud provider.

The subscription option includes 750 hours of Small in-
stance, i.e., 1 base unit [1]. Users can increase the number
of base units. The monthly subscription is $71.99 per base

TABLE I: Compute instances offered by Windows Azure.
Instance Specification (CPU / RAM / storage) $ per hour θi

Extra Small 1 GHz / 768 MB / 20 GB 0.04 1
Small 1.6 GHz / 1.75 GB / 225 GB 0.12 1

Medium 2 x 1.6 GHz / 3.5 GB / 490 GB 0.24 2
Large 4 x 1.6 GHz / 7 GB / 1,000 GB 0.48 4

Extra Large 8 x 1.6 GHz / 14 GB/ 2,040 GB 0.96 8

unit (i.e., F ). The 750-hour size of a base unit can be
converted to the number of hours for any compute instances.
Windows Azure defines the equivalent ratio denoted by θi
for the conversion as presented in Table I. This equivalent
ratio is useful for selecting appropriate compute instances to
efficiently accommodate cloud services. In this model, for each
cloud service, the customers’ demand represents the number
of hours (i.e., αjω) which will spend in Small instance.

In Fig. 1, the instance broker (IB) is available in the compute
instance layer. IB is responsible for making a decision to
purchase compute instances. The main contribution in this
paper is to develop an optimization model for IB.

The decision of IB consists of 3 decision variables, i.e.,
x, yijω , and zijω. Variable x denotes the number of base
units of the subscription option which needs to be purchased
in advance. To deal with the demand uncertainty, variables
yijω and zijω are considered as recourse actions. According
to observed scenario ω ∈ Ω, the recourse actions state the
number of hours to be taken from base units (i.e., yijω) and
also the number of hours to be purchased with the on-demand
option (i.e., zijω). A scenario represents possible demand (i.e.,
αjω). Let Ωj denote the set of scenarios of demand for cloud
service j. A multivariate set of scenarios for every cloud
service can be obtained through the Cartesian product, namely
Ω =

∏
j∈J Ωj .

Finally, scenario ω ∈ Ω can be represented as a random
vector, i.e., ξ(ω) =

(
αij1ω, αij2ω, . . . , αi|J |ω

)
. It is assumed

that the discrete probability distribution of Ω associated with
respective probabilities (i.e., πω) is available in the model.

B. Stochastic Optimization Model

This paper proposes a stochastic programming model with
two-stage recourse [6] for the instance broker, namely

Maximize: E
[
Q[x, ω]

]
− F x (1)

subject to: x ∈ {0, 1, . . .} (2)
yijω, zijω ≥ 0,∀i ∈ I, j ∈ J , ω ∈ Ω (3)∑
i∈I

∑
j∈J

θiyijω ≤ Lx,∀ω ∈ Ω (4)

αjω =
∑
i∈I

θi
[
yijω + zijω

]
,

∀j ∈ J , ω ∈ Ω. (5)

In (1), the objective function is to maximize the cloud
provider’s profit. E[·] denotes the expected value of profits
incurred by every scenario ω ∈ Ω where function Q(x, ω)
denotes the maximization problem, given the value of variable
x and scenario ω, as defined as follows:

Q
[
x, ω

]
= max

yijω,zijω

∑
i∈I

∑
j∈J

[
Pj yijω + (Pj − Ci)zijω

]
. (6)
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Fig. 2: Impact of on-demand price.

Suppose Ω has finite support. That is, Ω has the finite
number of scenarios, and each scenario ω is described by
respective probability, i.e., 0 ≤ πω ≤ 1 and

∑
ω∈Ω πω = 1.

Then, the stochastic programming model in (1)-(5) can be
transformed into a deterministic equivalent model which is
a mixed integer linear programming model. That is, given
a probability distribution of Ω, E

[
Q[x, ω]

]
in (1) can be

redefined as follows:

E
[
Q[x, ω]

]
=

∑
i∈I

∑
j∈J

∑
ω∈Ω

πω

[
Pj yijω + (Pj − Ci)zijω

]
. (7)

The model consists of the following constraints. Constraints
in (2) and (3) indicate that the variables take the values
from the sets of non-negative integers and non-negative real
numbers, respectively. Constraint in (4) controls the amount
of utilizable hours of base units. Constraint in (5) states that
the number of hours offered by the cloud provider has to meet
the customers’ demand.

The proposed model can be implemented and efficiently
solved with a traditional optimization solver, e.g., GNU Linear
Programming Kit and IBM ILOG CPLEX Optimizer.

IV. PERFORMANCE EVALUATION

A. Parameter Setting

To evaluate the performance of the optimization model
derived in (1)-(5), the proposed model and other compared
models are implemented and solved by GAMS/CPLEX [9].

For experimental parameters, the actual prices to rent com-
pute instances in Windows Azure are applied. To simplify the
experiment, only Small instance is used in the evaluation. Two
cloud services are evaluated, namely J1 (e.g., web hosting
service) and J2 (e.g., application hosting service). The selling
prices for J1 and J2 are $0.20 and $0.40 per hour, respectively.
Let the demand (i.e., αjω) for the cloud service vary in the
interval [1000, 16000] hours, and 16 scenarios are considered
for each demand (i.e., |Ω| = 256 scenarios). The discrete
probability distributions of demand for J1 and J2 are assumed
to be uniform and exponential distributions, respectively.

B. Numerical Studies

1) Impact of on-demand prices: The impact of on-demand
prices on the decision of the proposed model is investigated.
It is assumed that the on-demand price can be later adjusted
by Microsoft without noticing the cloud provider in advance,

0 500 1000 1500 2000 2500 3000 3500 4000 4500

DET

STO

EXP

OOD

ODL

Average cost ($)

O
pt

im
iz

at
io

n 
m

od
el

 

 

Profit

On−demand

Oversubscription

Fig. 3: Cost comparison among different models.

while the subscription fee and selling prices of cloud services
are fixed. The on-demand price is varied in the interval [$0.10,
$0.21]. As shown in Fig. 2(a), the increment of on-demand
price results in subscribing more number of base units. Since
the on-demand price is more expensive, the model purchases
the fixed-price subscription option. In contrast, the higher on-
demand price clearly decreases the profit as shown in Fig. 2(b).
Note that the average profit mentioned in this experiment is
calculated by a developed simulation. That is, the simulation
generates a number of possible scenarios, and then an average
profit is obtained given the profit under generated scenarios.

2) Comparison among different models: Next, the differ-
ent profit maximization models are evaluated, namely the
proposed stochastic programming (STO) derived in (1)-(5),
deterministic-demand (DET), only-on-demand (OOD), on-
demand-less (ODL), and expected-value of uncertainty (EVU)
models. DET is a deterministic optimization model in which
the demand is assumed to be precisely known in advance.
OOD and ODL are considered as deterministic optimization
models as well. OOD can instantly apply the on-demand
option at the moment when a scenario is observed. Hence,
OOD does not require the subscription option. In contrast,
ODL solely determines the worst-case scenario to hedge
peak demand by applying the subscription option without
later purchasing the on-demand option. EVU is a well-known
optimization model based on Jensen’s inequality for dealing
with the uncertainty [12]. To address the demand uncertainty
issue, EVU uses the expected-value of demand of each cloud
service as the fixed demand. Then, a deterministic linear
programming model can be formulated and solved given the
expected-value of demand.

In Fig. 3, the average profit, on-demand cost (i.e., cost of
purchased on-demand option), and oversubscription cost (i.e.,
cost of unused hours of base units) incurred by each compared
model are presented. Again, the simulation is developed to
obtain the average costs given a set of generated possible
scenarios. Clearly, DET yields the best solution, since the
demand applied in DET is assumed to be perfectly known.
DET yields the highest profit; however, DET is not applicable
when the demand uncertainty is commonly involved. ODL
yields the least profit, since ODL oversubscribes base units
to completely avoid the on-demand option. Hence, the over-
subscription cost is the highest, and such a cost decreases the
profit margin. Since OOD solely purchases the more expensive



on-demand option, the yielded profit is poor. EVU performs
well in which both on-demand and oversubscription costs
greatly decrease. However, the profit of EVU (i.e., $3,938.17)
is still less than that of STO (i.e., $4,040.05) since EVU
considers only the expectation of demand. Theoretically, EVU
yields the worse solution than that of STO [12]. In particular,
STO takes the probability distribution of all scenarios into the
optimization model. STO yields the highest profit when the
demand uncertainty is regarded.

TABLE II: Cost comparison among different numbers of base
units.

# $Subscribe $On-demand $Over $Profit
4 $287.96 $2,206.28 $2.15 $3,951.07

12 $863.88 $1,549.33 $52.58 $4,032.11
15 $1,079.85 $1,325.43 $89.45 $4,040.04
16 $1,151.84 $1,253.43 $103.85 $4,040.05
17 $1,151.84 $1,184.09 $120.38 $4,037.39
20 $1,439.80 $984.65 $176.82 $4,020.86
30 $2,159.70 $440.61 $461.55 $3,845.00

As presented in Table II, other different solutions given
different numbers of base units (shown in the first column)
are compared with STO as well. A simulation is developed to
generate scenarios and evaluate costs incurred by purchasing
the fixed number of base units. Different average costs are
evaluated (as shown in the column headers), i.e., subscrip-
tion ($Subscribe), on-demand ($On-demand), oversubscription
($Over), and profit ($Profit) costs. In Table II, the subscription
of 16 base units (as highlighted) is the same solution as that
of STO (i.e., optimal solution). It is observed that a solution
of the number of base units close to 16 has the average costs
converging to that of STO.

Although the simulation (i.e., brute-force search) used in
this experiment can be applied to obtain the optimal number of
base units, the computational complexity of the simulation is
higher than that of STO solved by GAMS/CPLEX. That is, the
simulation performs several iterations to evaluate the numbers
of base units given a set of generated scenarios. With the
larger numbers of scenarios (i.e., |Ω|) and cloud services (i.e.,
|J |), the simulation could take a longer time to evaluate the
candidate numbers of base units. In terms of the computational
performance, STO performs well. For this parameter setting,
the total execution time for solving STO by GAMS/CPLEX is
less than one second, while the simulation takes longer than a
few ten seconds on the test machine with 2.93 GHz quad-core
processor and 4 GB of RAM. The small number of parameters
used in the experiment might be the main reason that the
computational time of STO is very small. The scalability of
STO given larger problem sizes will be investigated in the
future work.

V. CONCLUSION

The cloud computing market has been studied in this paper
where the cloud provider builds cloud services on Windows
Azure platform operated by Microsoft. To maximize the cloud
provider’s profit, the paper has considered the customers’
demand uncertainty by formulating and solving the stochastic

programming model with two-stage recourse. The results show
that the proposed model can maximize the profit under the
demand fluctuation. Other than Windows Azure, this optimiza-
tion model could be modified and applied to other similar
cloud computing platforms as well, e.g., Amazon EC2 [10]
and GoGrid [11].

This paper is the preliminary study of a trading mechanism
framework for (small and medium) cloud providers that sell
cloud services hosted in other large cloud providers’ plat-
forms. For the future work, the complete framework will be
proposed. That is, a stochastic programming with multi-stage
recourse [7] will be derived to maximize the profit for multiple
time stages, rather than the 2 stages addressed in this paper. In
addition, the game theory approaches addressed in [13] will be
applied to the framework to define appropriate selling prices
of cloud services which can maximize the profit based on
the supply-and-demand volume of cloud services. Finally, the
framework will be practically implemented and deployed in a
real cloud computing market.

ACKNOWLEDGMENT

This work was done in the Parallel and Distributed Comput-
ing Centre at the School of Computer Engineering, Nanyang
Technological University (NTU), Singapore. This work was
supported by the projects “User and Domain Driven Data
Analytics” and “Design and Analysis of Cloud Computing for
Data Value Chain: Operation Research Approach”, granted by
A*STAR Thematic Strategic Research Programme [14].

REFERENCES

[1] Windows Azure, http://www.windowsazure.com/
[2] B. P. Rimal, E. Choi, and I. Lumb, “A Taxonomy and Survey of Cloud

Computing Systems,” in Fifth Int. Joint Conference on INC, IMS and
IDC, pp. 44-51, Aug. 2009.

[3] R. Aoun, E. A. Doumith and M. Gagnaire, “Resource Provisioning
for Enriched Services in Cloud Environment,” in IEEE Second Int.
Conference on Cloud Computing Technology and Science, pp. 296-303,
2010.

[4] M. Mattess, C. Vecchiola, and R. Buyya, “Managing Peak Loads by
Leasing Cloud Infrastructure Services from a Spot Market,” in 12th IEEE
Int. Conference on High Performance Computing and Communications,
pp. 180-188, Sept. 2010.

[5] M. Mao, J. Li, and M. Humphrey, “Cloud Auto-scaling with Deadline and
Budget Constraints,” in IEEE/ACM Int. Conference on Grid Computing,
pp. 41-48, Oct. 2010.

[6] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming,
Springer-Verlag Newyork, Inc., 1997.

[7] S. Chaisiri, B. S. Lee, and D. Niyato, “Optimization of Resource
Provisioning Cost in Cloud Computing,” IEEE Transactions on Services
Computing, 2011.

[8] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey, “Early
Observations on the Performance of Windows Azure,” in Proc. of the
19th ACM Int. Sym. on High Performance Distributed Computing, 2010.

[9] GAMS Solvers, http://www.gams.com/solvers/index.htm
[10] Amazon EC2, http://aws.amazon.com/ec2/
[11] GoGrid, http://www.gogrid.com/
[12] J. L. Higle, “Chapter 1: Stochastic Programming: Optimization When

Uncertainty Matters,” Tutorials in Operations Research, INFORMS, 2005.
[13] D. Niyato, S. Chaisiri, and B. S. Lee, “Economic Analysis of Resource

Market in Cloud Computing Environment,” in IEEE Asia-Pacific Services
Computing Conference, pp. 156-162, Dec. 2009.

[14] Thematic Strategic Research Programme, http://www.a-star.
edu.sg/astar/Research/FundingOpportunities/GrantsSponsorships/
ThematicStrategicResearchProgramme/tabid/247/Default.aspx


