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Abstract

Background: It is believed that combined interventions may be more effective than individual interventions in mitigating
epidemic. However there is a lack of quantitative studies on performance of the combination of individual interventions
under different temporal settings.

Methodology/Principal Findings: To better understand the problem, we develop an individual-based simulation model
running on top of contact networks based on real-life contact data in Singapore. We model and evaluate the spread of
influenza epidemic with intervention strategies of workforce shift and its combination with school closure, and examine the
impacts of temporal factors, namely the trigger threshold and the duration of an intervention. By comparing simulation
results for intervention scenarios with different temporal factors, we find that combined interventions do not always
outperform individual interventions and are more effective only when the duration is longer than 6 weeks or school closure
is triggered at the 5% threshold; combined interventions may be more effective if school closure starts first when the
duration is less than 4 weeks or workforce shift starts first when the duration is longer than 4 weeks.

Conclusions/Significance: We therefore conclude that identifying the appropriate timing configuration is crucial for
achieving optimal or near optimal performance in mitigating the spread of influenza epidemic. The results of this study are
useful to policy makers in deliberating and planning individual and combined interventions.
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Introduction

Past influenza pandemics and the recent H1N1 pandemic alert

people the unpredictability and potentially overwhelming impacts

of influenza outbreaks. While it is certain that the next pandemic

will arrive in human societies, it is almost impossible to predict the

virus type, transmission manner, and attack and mortality rates

etc. Such unpredictability seriously challenges the public health

system. Supplies of vaccine and pharmaceuticals may not be

available or may be in shortage for a few months or even longer

while a substantial number of infected cases has been reported.

Under such critical circumstances, non-pharmaceutical interven-

tions are usually considered in the first place, aiming at mitigating

the spread and lowering the attack rate and fatality.

Workplaces and schools are both crucial community structures

in epidemic control and mitigation planning. High contact rate

and long contact duration in workplaces and schools may promote

the transmission among workforce and school population.

However, closure of workplaces causes significant disruption to

economic activities and social functioning. Therefore a large-scale

of workplace closure has seldom been implemented in the history

of infectious disease control. In order to reduce contacts in

workplace during epidemic, policy makers may seek alternative

interventions, such as workforce shift. In workforce shift

intervention, a portion (work team) of workforce is scheduled

away from workplaces for a certain time span and then return by

shifting with others. Workforce shift has been planned in real-life

epidemic control. UK influenza contingency plan suggests 25% of

employees taking 5–8 days off to enhance social distancing [1]; in

the Singapore guideline of infectious disease control for workplace,

dividing employees into work teams with minimum contacts

between teams by shift system is suggested [2]. To our best

knowledge, there are no studies on evaluating policies similar to

workforce shift for influenza mitigation. We therefore investigate

how effective team-based rotational workforce shift is.

Compared to workplace closure, school closure had been

practiced more frequently and also widely evaluated in epidemic

and pandemic control [3–6]. In a recent article [7], multiple
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aspects of school closure were reviewed, and it concluded that

there are still many uncertainties on mitigation benefits of school

closure as a public health policy. Historical school closure

implementation data in real-world epidemic mitigation also

showed contradictory conclusions, e.g., the encouraging results

achieved in Israel [8] and the less encouraging ones in Hong Kong

[9].

As workforce shift and school closure target different portions of

the population, the combination of the two strategies may achieve

better mitigation for influenza epidemic. On the other hand,

however, as mass social distancing strategies, they may cause

considerable economic and social costs. Any decision on

intervention combination should be cautiously deliberated. This

calls for quantitative evaluations on the effectiveness of combined

intervention strategies.

Combined interventions for influenza epidemic have been

evaluated widely in the literature. Germann et al [10], Carret et al

[11] and Milne et al [3] assumed that combined interventions are

implemented before the outbreak of epidemic and lasted until the

end. Halder et al. [4] evaluated combined interventions with

limited durations. Longni et al [12] and Ferguson et al [5] studied

how different effectiveness levels and coverage of interventions

could impact the attack rate and peak incidence. Halloran et al

[13] and Rizzo et al [14] simulated the epidemic by implementing

multiple strategies simultaneously at different time points with

their own fixed durations. Duerr et al [15] tested the combination

of two interventions in which one starts at the beginning of

epidemic and the other may start at different time but always last

until the end of the epidemic.

In this study, we evaluate a series of scenarios under workforce

shift and its combination with school closure, with different trigger

thresholds and durations. To our best knowledge, this is the first

study evaluating combination effects of workforce shift and school

closure for influenza mitigation. In comparison with the timing

configuration in other studies, our study is different: 1) trigger

thresholds of individual interventions can be configured in the

combination independently; and 2) the duration of the combined

interventions can be varied. Through simulation evaluations, we aim

to provide a more comprehensive view on the impacts of temporal

factors on social distancing interventions for influenza epidemic,

helping to answer three key questions: a) do combined interventions always

outperform single interventions? b) how do trigger threshold and duration affect the

effectiveness of combined interventions? c) does the implementation sequence in a

combined intervention make a difference in its effectiveness?

Methods

Considering the importance of social structure in infectious

disease spread, network-based models [1,16,17] have been com-

monly used for exploring the effectiveness of interventions in a

heterogeneous-structured population for assisting policy makers to

make proper decisions. In this work, we use a contact-network-based

simulation model to carry out the evaluations based on Singapore’s

social structure. Specifically, we adopt an agent-based simulation

model running on top of a social contact network. The network

represents the statistical properties of interpersonal contacts which

may lead to disease transmission in the specific community structure

in Singapore. We evaluate workforce shift and its combination with

school closure respectively, via extensive simulations with different

trigger thresholds and implementation durations.

Contact Network Construction
To address infectious disease spread with the consideration of

the heterogeneity in social interactions, the most expressive

approach is to form a structure of ‘‘network’’ by taking all

individuals as vertices (or nodes) and their social connections as

edges. We can further specify that an individual’s social

connections are the set of people with whom the individual may

contact during the period when he or she is infectious. Thus, the

disease transmission among the population can be simulated as the

probabilistic propagation of viruses via the connecting edges in the

contact network.

Generating a contact network representing for all individuals’

contacts is complicated. To simplify the problem, we adopt a

divide-and-conquer approach based on community structures of a

typical society since social contacts most extensively take place in

such community structures. For example, students contact with

their peers at the schools; working adults contact with their

colleagues at the workplaces; patients contact with healthcare

workers and other patients at the hospitals, etc. We firstly

determine the six types of community structures that are

commonly reviewed in the literature [3,17,18] - households, hospitals,

schools, workplaces, shopping places and public transport. Then we

generate the community structures according to the statistics of

them.

To lower the computational cost, the contact network is only

comprised of 10% of Singapore population: age structure,

household size distribution, characteristics of the modeled

community structures have been retained proportionally in the

simulated population to keep the epidemic trend consistent with

that in the whole population. The sizes of communities in the

network are obtained proportionally to the statistical numbers in

the whole Singapore society. Specifically, a list of households is

firstly generated based on the household size distribution.

Subsequently, 35 schools are created proportionally according to

the total number of students and school size distribution. Then

each school is sub-divided into classes based on class size

distribution. After that, students are assigned to schools and

classes following the ‘‘enrollment in the nearby schools’’ policy,

i.e., the students living nearby have a higher chance to be enrolled

into the same school or class. Students in the same class may have

more contacts (class contacts) and than those between students

from the same school but different classes (school contacts), as

shown in Figure 1. Similarly, 3 hospitals are constructed with sub-

divisions – ‘‘wards’’ (i.e., sections in a hospital for accommodating

hospitalized patients) based on hospital and ward size distribution

(in term of number of beds) and bed occupation rate.

Furthermore, ,5,300 workplaces (equivalent to companies) are

constructed based on the number of working adults, number of

companies, and company size distribution, with no further sub-

divisions; 10 shopping malls are created according to the survey

data including the population size going for shopping, shopping

frequency and daily traffic of malls, with no sub-divisions. Finally,

a single structure of public transport is created as a single-layer

giant component which includes all the commuters in the

population.

Once the above community structures are constructed,

individuals selected from the population pool are filled into each

structure. The selection criteria are a set of rules defining the

eligibility for a community structure. For example, age-based

criteria can be used to define the enrollment to schools. Note that

while an individual typically can be selected to join multiple

different communities, some community enrollments are exclusive

to each other. For example, an individual selected to be a patient

staying in hospital should not participate in any of the school,

workplace, shopping mall and public transport communities.

However, his/her contacts within household may still remain as

the visits from family members maintain such contacts. After

Temporal Factors in Combined Interventions
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assigning the subpopulation to a community structure, a local

contact network is created by connecting the individuals of the

subpopulation with the interpersonal contacts following a Poisson

degree distribution [17] where the mean contact degrees are

obtained from our social contact survey [18]. All the local contact

networks are finally integrated into a global network.

The whole network generated in this study is comprised of

,480000 vertices and ,7.6 mil edges from 100,000 simulated

households. Within the population, 11% are students, 61% are

working adults, 0.2% stay in hospital, 22% visit shopping malls

regularly and 34% use public transport on daily basis [19]. The

social contact survey among the public of Singapore was

conducted in 2008 with a survey form containing 45 questions.

There are totally 1040 pieces of valid survey data collected. The

extracted average numbers of contacts in different social locations

are summarized in Figure 1 with the assumption that every

household is fully connected [18].

Note that the contact network constructed in this study is

unweighted. According to Newman [1], a disease will propagate

equivalently in the population as a whole if all individual

transmission probabilities are equal to the average transmission

probability. By using the average transmission probability to

replace each individual one, we simplify the transmission function

incurred during the infection.

Intervention Policies
Intervention polices are implemented to mitigate the transmis-

sion of disease. There are two categories of intervention:

pharmaceutical and non-pharmaceutical interventions. Pharma-

ceutical interventions are mainly associated with vaccines and anti-

viral drugs; and non-pharmaceutical interventions include isola-

tion/quarantine, social distancing, etc. As vaccine production and

anti-viral stockpiling often require substantial time after a

pandemic occurs, non-pharmaceutical interventions are necessary

to delay and dampen the pandemic before pharmaceuticals

become available [20]. Workforce shift and school closure are the

examples of social distancing interventions and will be evaluated in

our work.

1) Workforce Shift. In many countries, working adults

occupy the largest portion of the population, and make close

contacts with their co-workers in their daily activities. Closing

workplaces has significant economic and social costs; so it is one of

the least favorable choices that policy makers may consider.

Another social distancing measure is workplace non-attendance, in

which each worker has a 50% chance each day to choose either

staying at home or attending to work. This policy is hard to

implement as random and voluntary attendance of workers may

cause chaos in the workplace.

Although workplace closure is seldom implemented in practice,

policy makers do consider and suggest alternative workplace

control, like workforce shift, for mitigating disease spread when

necessary. In this study, we evaluate the workforce shift policy.

Specifically, we assume that 1) each company or institution splits

its employees into two work teams and implements 7-day rotation

among the teams; 2) workforce shift is implemented immediately

after the trigger threshold is reached; 3) for home-staying team

members, all their contacts taking place in work places are

removed from the contact network during the shifting period; and

4) workforce shift operation does not increase the contacts in other

community structures.

2) School Closure. School closure is a typical social

distancing policy for mitigating the spread of infectious diseases

among the student population. Generally, there are different types

of school closure: 1) class closure, i.e., a class is closed if there are

diagnosed cases; 2) individual school closure, i.e., a school is closed

if there is a certain number of diagnosed cases, and 3) all-school

closure, i.e., all schools are closed simultaneously if a threshold

number of cases are diagnosed. All three types of school closure

had been implemented in the real-world interventions in countries

like Australia, UK, USA, and Japan to mitigate the spread of

pandemic influenza [1,16,17].

In a previous study [18], all-school closure had been evaluated

based on the same Singapore society setting with the consideration

of different trigger thresholds and implementation durations. It

was found that, in a cost-cautious situation where short

intervention is preferred, school closure of 2-week should be

implemented at a higher threshold (a later time); if reducing the

epidemic size is the top priority, it is wise to implement a longer

school closure (more than 6 weeks) as early as reasonable. In this

paper, we evaluate combined workforce shift and school closure

strategy.

Models for Disease Spread and Intervention
Figure 2 describes the host progression in the process of

infectivity development of influenza illness within the host

person. Any susceptible person has a chance (transmission

Figure 1. Mean numbers of contacts at different types of community structures (class contacts refer to the contacts within the same
class; school contacts refer to the contacts with the same school but different classes. A ward is a residential section in a hospital for serving
hospitalized patients; ward contacts refer to the contacts between the patients in the same wards; and hospital contacts refer to the contacts between the
patients in the same hospital but different wards).
doi:10.1371/journal.pone.0032203.g001
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probability) to be infected for every infectious contact s/he has.

If the person (denoted as p) is infected, p is exposed but has no

infectivity or any symptom yet. After the latent period, p

becomes infectious (incubation period is assumed to be equal to

latent period in the model). Specifically, p has a chance

(symptomatic rate) to develop the clinical symptoms of influenza

and turn into symptomatic infectious, or turn into asymptomatic

infectious if without any symptoms. After the infectious period,

p is finally removed, i.e. either recovered from influenza or

dead.

Note that in our model, the probability of becoming infected

goes up when a person is in contact with more infectious people,

despite of the locations where the contacts occur. In lack of data

about the infectivity regarding contact duration, we have assumed

an unweighted contact network that propagates the disease with

the average transmission probability along every edge of the

network.

The focus of this study is on investigating the effectiveness of

intervention polices under different scenarios. Specifically, we

parameterize an intervention policy by six parameters: trigger

threshold, duration, target, control level, compliance rate and shift length:

N Trigger threshold is a percentage of diagnosed (symptomatic)

cases in the overall population, which is used to determine the

starting time of intervention. For example, trigger = 0.1%

means that an intervention will be implemented when 0.1% of

the population is diagnosed as symptomatic cases of influenza.

N Duration refers to how long an intervention will be implemented.

N Target specifies what type of contacts is targeted by an

intervention, such as school contacts, workplace contacts etc.

N Control level is used to differentiate the interventions performed

at the different levels of a community structure, e.g. school-

level closure and class-level closure.

N Compliance rate refers to the percentage of contacts that is

removed by an intervention. As compliance rate is often

affected by other interventions (e.g. workplace absenteeism

may improve compliance rate during the school closure as

adults will stay at home to take care of their children), we

assume the 100% compliance rate for all-school closure to

simplify our simulation scenarios.

N Shift length refers to the time span between team rotations.

Results

The evaluation results of uncontrolled epidemic in the contact

network serve as the baseline results. Different mitigation scenarios

with different trigger thresholds and implementation durations are

simulated based on the individual-based contact network simula-

tion model. We then evaluate and compare the impacts of

different temporal factors on the effectiveness of mitigation

methods.

Experiment Settings
The basic reproductive number, R0, is defined as the average

number of secondary infections produced by a randomly selected

infected person in a fully susceptible population [21]. Previous

estimates of R0 in the past pandemic influenza were in the range of

1.5–2.3 [5,22–25]. Unless otherwise specified, we assume R0 = 1.9

in our simulations, and adopt 66.7% symptomatic rate [26], 1-day

latent period and 1.5-day mean infectious period [22], which are

the same as those in a previous study [18]. By using Longini’s

approach [12], we approximate R0 = 1.9 empirically by tuning the

base transmission probability. Specifically, we assume a scenario in

which only a single individual is randomly infected where

everyone else is susceptible yet not able to further transmit the

disease, and count the number of secondary infections. The

process is repeated for 10,000 times and R0&1.9 is then obtained

as the average number of secondary infections. We found when

the base transmission probability is 0.04, the empirical tests give

the best approximation to R0&1.9 (95% Confident Interval (CI)

1.871–1.924), which yields the mean generation time of 2.5 days

(95% CI, 2.489–2.508). The transmission probability is doubled to

be 0.08 if the person is symptomatic infectious and meanwhile,

half of his/her contacts are randomly removed due to self-isolation

or self-shielding. Note that, in case of a new strain of influenza

pandemic with unknown R0, the transmission probability in the

network simulations can be tuned with assumed latent and

infectious periods and symptomatic rate to get estimation of the

new R0 by fitting to the reported epidemic curve.

In this study, we focus on examining the impacts of trigger

threshold and duration length of interventions on the effectiveness

of mitigating the influenza epidemic. The test scenarios are

tabulated in Table 1. Each of those scenarios, including the

baseline case, is simulated for 200 days and iterated for 100 times.

All the results described in the following section are the average

values of 100 simulation runs.

Every simulation starts at day 0 with 10 infectious persons

seeded into a susceptible population without prior immunity to the

influenza virus. In our experiments, there are four trigger

thresholds and five implementation durations available to choose

for an intervention scenario. Hence there are totally 100 scenarios:

20 scenarios for workforce shift and 80 scenarios for the combined

workforce shift and school closure (We assume that the individual

Figure 2. Dynamics of influenza progression within host individuals.
doi:10.1371/journal.pone.0032203.g002
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interventions in each combination scenario share the same length

of implementation duration.).

The effectiveness of interventions is examined by evaluating

attack rate (AR), peak incidence (PI), and peak day (PD). Attack

rate refers to the cumulative proportion of symptomatic cases of

influenza infection in the overall population; peak incidence refers

to the highest number of the daily incidence of symptomatic cases;

peak day refers to the day when the peak incidence happens. In

the public health perspective, attack rate indicates the size of

epidemic and the overall burden on the public health system due

to an epidemic; and peak incidence and peak day display the

challenge to an effective response to patient surges in public health

system.

Influenza Spread without Intervention
Figure 3 shows the average epidemic curves of 100 simulation

runs for the case with no intervention. The epidemic reaches its

peak at day 26 and fades out on day 73. The total attack rate (AR) is

44.47% (95% CI, 44.45%–44.48%); peak incidence (PI) is 42.45

per 1000 people (95% CI, 41.72–43.17). This result is comparable

with 43.5% attack rate found in [10]. It is noted that the trigger

thresholds {0.02%, 0.25%, 1.5%, 5%} are reached at day {7, 13,

17, 20} respectively.

Impact of Workforce Shift
As shown in Figure 4, the attack rates under workforce shift are in

range from 36.51% to 44.21%, a 0.59% to 17.90% reduction

compared to the baseline. The lowest attack rate takes place when

the 10-week workforce shift is triggered at 0.02%. Consistent with

the observation in school closure’s results [18], the difference of

attack rates at different thresholds but the same duration declines

when the threshold increases. But the magnitude of the difference is

larger for workforce shift compared to that for school closure. An

extra 8.58% of the overall population can be saved from infections

by choosing the appropriate trigger threshold for 2-week workforce

shift, in comparison to 2.33% for 2-week school closure [18].

Figure 5 shows that workforce shift has the remarkable impact

of suppressing the peak incidence of influenza epidemic. The peak

incidences under workforce shift range from 29.87 to 42.27 per

1000 people, a 0.04% to 29.63% reduction compared to the

baseline. The lowest peak incidence occurs when the 2-week

workforce shift is triggered at 1.5%. It is noted that 4 weeks are

sufficiently long for reducing the peak incidence as no additional

reduction is gained by extending the intervention.

Figure 6 shows that workforce shift has a mixed impact on peak

day. Consistent with peak day results for school closure, varying

duration makes no effect on peak day; and trigger threshold is the

dominant factor deciding peak day. When trigger threshold rises

from 0.02% to 5%, a consistent decline of peak days is observed. It

could be explained that when workforce shift is implemented at a

higher threshold, a larger number of the population has been

infected and more potential transmissions will be blocked.

Therefore, it sooner reaches the cutoff point at which the disease

is unable to sustain the growth trend of incidences, so the peak

would occur earlier. On the other hand, when workforce shift is

implemented at a lower threshold, there are fewer infectious cases

within the population and the amount of susceptible contacts left is

still tolerable to maintain the chain of infections. Therefore, the

daily incidence could be still growing but at a lower pace,

consequently leading to a later peak day. Figure 7 shows divergent

impact of workforce shift on peak day. 6-week workforce shift

triggered at 5% advances the peak incidence by 1 day compared to

the baseline; on the other hand, 6-week workforce shift triggered at

0.02% reaches the peak incidence 1 day later than the baseline.

Impact of Combined Workforce Shift and School Closure
We then examine the combined intervention of workforce shift

together with all-school closure. We are interested in the

Table 1. Intervention scenario description.

Parameters School Closure Workforce Shift

Trigger Threshold 0.02%, 0.25%, 1.5%, 5% 0.02%, 0.25%, 1.5%, 5%

Duration 2,4,6,8,10 weeks 2,4,6,8,10 weeks

Target school contacts workplace contacts

Control Level Schools workplaces

Compliance Rate 100% 100%

Shift length NA 7 days

doi:10.1371/journal.pone.0032203.t001

Figure 3. Average attack rate and daily incidence of baseline simulation in 100 runs (R0 = 1.9).
doi:10.1371/journal.pone.0032203.g003
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effectiveness of the combined intervention as well as the impact of

the temporal sequence of individual interventions in a combina-

tion.

Figure 8 A–E show that the lowest attack rate (AR) under the

combined intervention is 31.17%, achieved when workforce shift

and school closure are both triggered at 0.25% and lasted for 10

weeks. In the single interventions, the lowest AR is 40.42% for all-

school closure and 36.51% for workforce shift, both happen at 10-

week duration and 0.02% trigger threshold. 8.01% of population

can be further saved from the infection by applying the combined

intervention compared to the single interventions.

Figure 8 F–J show that the lowest peak incidence (PI) occurs

when 10-week workforce shift and school closure are triggered at

5% and 0.02% respectively. Compared with the lowest PI from

single interventions (30.75 from school closure and 29.87 from

workforce shift), the combined intervention is able to further

reduce PI to 14.27.

Figure 8 K–O show that the combined intervention can delay

the peak day (PD) by 14 days compared to the baseline. It is much

longer than PD delay in individual interventions, i.e. 5-day delay

by school closure and 2-day delay by workforce shift.

In the followings, we summarize our results in an attempt to

answer the three questions asked in the earlier section:

(a) Do combined interventions always outperform single

interventions? It is commonly believed that combined inter-

ventions will outperform single interventions. But we notice some

cases in which combined interventions lead to higher attack rates

than single interventions at the same trigger threshold and

duration. The worst case is observed when the 4-week workforce

shift and school closure are both triggered at 0.02%. If we apply

only workforce shift at 0.02% threshold with a 4-week duration

(Scenario A – single intervention), the AR is 38.25%; on the other

hand, AR from the combined intervention (Scenario B –

Combined intervention) is 43.12%, which is 4.87% higher.

Figure 9 further describes what happens in Scenarios A and B. On

day 7, the trigger threshold (t = 0.02%) is reached and the epidemic

curve of the combined intervention grows much slower than the

single intervention because more contacts have been removed and

chance of infection is lower. On day 35, the interventions in both

scenarios end and the removed contacts are restored. Because the

growth of infected cases is much slower in Scenario B, there is more

susceptible left in the population. Specifically, on day 35, 49.65%

and 85.88% of population are susceptible in Scenarios A and B

respectively. This nearly doubled size of susceptible population

allows more disease-causing contacts and higher chance of

infection in Scenario B compared to those in Scenario A, leading to

the divergent developments of the epidemic after day 35 – the

incidence continues to decline and gradually fades out in Scenario A;

and oppositely in Scenario B, the incidence number grows

exponentially until day 40 and a large number of infections take

place after the intervention.

It is observed that 11 out of 16 combined scenarios of 2-week

intervention underperform 2-week single interventions; 7 of 16

scenarios of 4-week interventions and 1 out of 16 scenarios in 6-

week interventions lead to similar observation. Apparently

combined interventions with a longer duration (. = 6 weeks) are

less prone to underperform, meaning that combined interventions

Figure 5. Peak incidence with workforce shift (per 1000
people).
doi:10.1371/journal.pone.0032203.g005

Figure 6. Peak attack day with workforce shift.
doi:10.1371/journal.pone.0032203.g006

Figure 7. Daily symptomatic incidences from day 1 to 52, from
baseline v.s. 6-week workforce shift triggered at 1.5% and 5%
respectively.
doi:10.1371/journal.pone.0032203.g007

Figure 4. Attack rates with workforce shift.
doi:10.1371/journal.pone.0032203.g004
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have to be maintained long enough to prevent the rapid spread of

influenza after the intervention period.

b) How do trigger and duration affect the effectiveness of

combined interventions? The performance of combined

interventions can be affected by both trigger and duration.

When the duration increases, AR and PI decline consistently.

When trigger threshold rises, AR and PI drop if the duration is

shorter than d weeks (d = 8 for AR; d = 4 for PI); if the duration is

longer than d weeks, AR and PI increase instead. In Figure 8 E

and G, convex curves clearly show the existence of the above

trends. For the peak incidence time, the PD drops when the

triggers rises with d. = 4weeks. It also shows that a longer

duration of intervention (.4 weeks) does not bring in any further

delay of the peak incidence time.

c) Does the implementation sequence in a combined

intervention make a difference in its effectiveness? The

temporal implementation sequence of individual interventions

within the combined strategy may also affect the outcome of

intervention. The maximal differences of the attack rates among

sixteen threshold combinations are {6.13%, 8.24%, 3.47%,

3.21%, 2.59%} with {2, 4, 6, 8, 10}-week durations

respectively. When duration is less than or equal to 6 weeks, the

performance of the synchronized interventions (two individual

interventions start from the same threshold) improves when the

trigger rises. With longer control durations, the trend is not

retained anymore. Comparing to the asynchronized combinations

(individual interventions start at different thresholds) with the same

duration, the relative performance of synchronized interventions

turns from ‘‘underperformance’’ to ‘‘outperformance’’ when their

triggers rise from 0.025% to 5% subject to the condition that the

duration is within 8 weeks. When the duration is longer than 8

weeks, synchronized interventions underperform in most of the

scenarios and hence it is wise to start them at different thresholds

in the implementation.

For asynchronized combinations, the sequential order of

implementing single interventions can affect the AR as well. We

term two combined strategies with swapped trigger thresholds of

the two individual interventions as a pair of symmetric strategies.

The maximal differences in attack rates between a pair of

symmetric strategies are {2.13%, 1.31%, 1.55%, 2.73%, 1.66%}

for {2, 4, 6, 8, 10}-week durations respectively. It is observed that

school closure should be implemented later when duration is less

than 4 weeks; and workforce shift should start later when duration

is longer than 4 weeks.

Sensitivity Test on Values of R0

The results of temporal effects in the combined interventions of

school closure and workforce shift are based on R0 = 1.9. To

examine if our conclusions hold for other R0 values, we tested on

different cases where R0 = 1.5 and 2.3. Similar to Figure 9,

Figures 10 and 11 show the effectiveness of the combined

interventions at different pairs of thresholds and durations for

R0 = 1.5 and 2.3 respectively.

The results are consistent with our findings based on R0 = 1.9.

Specifically, the worst combination happens when both school

closure and workforce shift are implemented at 0.02% for 2 weeks.

It yields 36.61% attack rate, 25.71 peak incidence (per 1000

people) on day 28 for R0 = 1.5; 48.52% attack rate, 53.88 peak

Figure 8. Total attack rate, peak daily incidence and peak attack day with hybrid control (R0 = 1.9; x-axis shows school closure’s
triggers, colored bar indicates workforce shift’s triggers; in each row, duration = 2/4/6/8/10 weeks from left to right).
doi:10.1371/journal.pone.0032203.g008
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incidence (per 1000 people) on day 28 for R0 = 2.3. The majority

of single interventions, either school closure or workforce shift,

show significant impact, except for 2-week school closure or

workplace shift at 0.02% threshold.

In Figure 10 & 11, we also can observe the significant impact by

adjusting temporal settings of the combined interventions. When

R0 = 1.5, attach rate ranges from 36.90% down to 22.97% (37.8%

reduction); peak incidence (per 1000 people) ranges from 27.20 to

6.12 (77.5% reduction); and peak day varies from 28 days to 76

days (171.4% increase). When R0 = 2.3, attach rate is in range

from 48.67% down to 37.21% (23.5% reduction), peak incidence

from 55.43 down to 27.73 (50.0% reduction), and peak day from

22 days to 31 days (40.9% increase). The observations suggest

stronger impact of temporal factors for a lower value of R0.

For asynchronized combinations, the maximal differences in

attack rates between a pair of symmetric strategies are {2.88%,

2.26%, 4.03%, 4.68%, 4.86%} for {2, 4, 6, 8, 10}-week durations

where R0 = 1.5, and {3.49%, 1.69%, 2.14%, 0.85%, 0.9%} where

R0 = 2.3. Again the observation is that when R0 is lower, switching

the order in a combined intervention could make more significant

difference. It is also interesting that the difference is particularly

significant when duration is short (2 weeks) for all the three values

of R0.

Study on Weekend Effect
So far we have been adopting only the contact patterns during

weekdays in our study. In urban life, however, social contact

patterns may be significantly different during weekends. For

example, the contacts in shopping malls may increase while

contacts within workplace/schools may decrease. Such changes

are terms as weekend effect in the context, which recurs for 2 days

(Saturday and Sunday) in every week.

We conduct simulation to evaluate the impact of weekend

effect. Specifically, we assume that school contacts are reduced by

50% and workplace contacts by 70% during the weekends

compared to those during weekdays, and meanwhile shopping

mall contacts are increased by 35.79% according to our survey

data. Numerical experiments are then repeated at R0 = 1.9 with

the same configurations as listed in Table 1 for evaluating

combined workforce shift and school closure. Our simulations are

assumed to start on Monday; and when workforce shift

intervention or school closure intervention is exercised, the

population involved in the intervention will follow intervention

arrangement regardless of weekday or weekend.

Figure 12 shows the spread dynamic after introducing weekend

effect. Compared to the experiments shown in Figure 8 without

considering weekend effect, there exist similar patterns while

Figure 9. Comparison on daily incidence (A) and attack rate (B): red line denotes 6-week workforce shift (Wp) triggered at 0.02%;
green line denotes 6-week school closure + workforce shift (Sc+Wp) triggered at 0.02%.
doi:10.1371/journal.pone.0032203.g009
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varying thresholds and durations of the combined interventions.

Meanwhile, however, we can observe the impact of weekend

effect: the baseline attack rate under the weekend effect falls by

3.21% compared to the original one; peak incidence is only of a

0.18% difference; and peak day postpones by 1 day. Such results

may be interpreted: the total removal of contacts from schools and

workplaces is more than the contacts increased in shopping malls

in the weekends.

When comparing the individual scenarios of the combined

interventions, we find that the impact of weekend effect diminishes

gradually with the increase in duration of interventions. This may

be due to the enforcement on the control effect by the

interventions from weekdays to weekends, i.e., weekend effect

may be overridden by the control. For example, a part of weekend

effect – 50% removal of school contacts in weekends may be

overridden by school closure intervention and the 100% removal

would happen during the whole period of school control.

Therefore, the shorter the inventions are, the more notable the

weekend effect is. The most notable decline in attack rate under

the weekend effect is spotted in the 2-week intervention scenarios

with the average reduction of 3.44% compared to the baseline of

weekend effect.

Discussion

Using an individual-based simulation model based on the social

community structure of Singapore, we investigate the effectiveness

of workforce shift and its combination with school closure as

means to mitigate the spread of influenza. Specifically, the impacts

of interventions have been investigated through evaluating the

total attack rate and daily incidence as well as the delay of peak

incidence time quantitatively.

Both workforce shift and school closure are social distancing

measures that aim to reduce disease-causing contacts between

individuals so as to reduce consequent secondary infections. As the

production of vaccine and stockpiling of anti-viral drugs usually

take considerable time, the shortage of pharmaceuticals has ever

been the challenge in the preparedness planning for pandemic

influenza and might not be ready at the time of influenza

outbreak.

Our simulation results show that both workforce shift and

school closure are able to lower attack rate and daily incidence as

well as delaying the epidemic in most intervention scenarios. Such

social distancing through enforcement from administration is

necessary to mitigate the diffusion of influenza virus among the

communities, especially when a large number of asymptomatic

cases exist.

Our experiments provide guidance on choices of trigger

threshold and length of duration for implementing school closure,

workforce shift and their combination intervention measures.

These results will be relevant to future contingency plan for

influenza pandemic, which is estimated to be more pathogenic and

might have higher case fatality rates than that shown in 2009

H1N1 pandemic flu [4]. We find that the durations of 8 weeks and

6 weeks are sufficiently long for workforce shift and school closure

respectively. Short interventions should be implemented after a

longer delay since outbreak; in contrast, long interventions should

start as early as reasonable. The cutoff values between long and

Figure 10. Total attack rate, peak daily incidence and peak attack day with hybrid control (R0 = 1.5; x-axis shows school closure’s
triggers, colored bar indicates workforce shift’s triggers; in each row, duration = 2/4/6/8/10 weeks from left to right).
doi:10.1371/journal.pone.0032203.g010
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short duration are 6-week for school closure and 4-week for

workforce shift, if lowering the attack rate is the priority.

Comparing the effect of workforce shift with school closure, we

observe that workforce shift is generally more impactful. One of

the main reasons is because of the difference in the number of

people that can be affected by school and workplace interventions.

In our contact network, school closure removes the school contacts

from ,53,000 people; workforce shift affects ,148,000 people at

any time during the intervention. So there is around 2.8 times

more population controlled in the workforce shift.

Furthermore, we examine combined interventions as temporal

combinations of single policies. We fix the duration shared by

single policies in combination for simplicity; but allow different

trigger thresholds so that the two policies may be implemented

either one after another or at the same time. Our results show that

the combined interventions do not always outperform the single

interventions while varying trigger threshold and duration. It is

shown that short closures (less than 6 weeks) are more prone to

underperformance compared to that of the workforce shift only.

Secondly, we observe that switching the order of single policies in

combination can make a difference in the effect of intervention.

Planning multiple interventions in the appropriate order is able to

strengthen the mitigation to the spread of epidemic without

significant additional cost.

Among all choices of combined interventions examined, the

near-optimal policy happens when all workforce shift and school

closure are both implemented at the 0.25% trigger threshold and

lasted for 10 weeks (31.17% attack rate; peak incidence of 17.42

per 1,000 people at day 33).

Enforcing a social distancing policy always associates with

considerable cost, on both economic and social aspects. For

example, the major cost of school closure comes from absenteeism

of working parents who have to stay home to take care of their

children. A UK study [27] estimated 16% of UK workforce as the

main carers of dependent children and likely to be absent due to

school closure. This percentage could further climb to 30% if

counting healthcare workers only, meaning more absenteeism

could happen in public healthcare system which has been already

stressful during an epidemic. Besides, there are also problems

about social justice, ethical issues etc as the social consequence of

school closure [7]. On the other hand, workplace distancing

measures like workforce closure might lead to an abrupt shortage

of manpower, lower productivity and inevitable economic loss. As

an alternative to workplace closure and uncontrolled absenteeism,

workforce shift might be an option for disease containments.

Nowadays, accessible infrastructure for telecommunication is

widely available at many workplaces and homes. Tele-working

has become feasible and can be equipped in advance along with

the planned workforce shift. It makes workforce shift with longer

duration more acceptable. The planned workforce shift would

help companies and other institutions to minimize the impact of

mass absenteeism and sustain the usual business and production as

much as possible.

In lack of information about the compliance rate of school

closure, we have assumed a 100% compliance rate in all relevant

intervention scenarios in this study. However, in a real-world

school closure, the student compliance rate for social distancing

may be at a lower value. The compliance rate of students for social

Figure 11. Total attack rate, peak daily incidence and peak attack day with hybrid control (R0 = 2.3; x-axis shows school closure’s
triggers, colored bar indicates workforce shift’s triggers; in each row, duration = 2/4/6/8/10 weeks from left to right).
doi:10.1371/journal.pone.0032203.g011
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distancing would be increased when implementing workforce shift

together with school closure. We ignore the variation of

compliance rate for not complicating the analysis on the combined

interventions. A higher compliance rate is definitely preferred in

real-world interventions and needs the coordination among

education agency, health agency and communities to achieve.

Considering the network dynamics in weekends, we study the

disease spread under the weekend effect. As schools and many

workplaces are closed during the weekends, the contacts between

schoolmates or between colleagues may be partially removed

(Schoolmates or colleagues may hang out together during the off

days) [28] but the shopping mall contacts may increase. In our

experiments of the weekend dynamics, we find that the weekend

effect does not bring significant variation to the baseline epidemic

curve compared to that of the original setting without considering

the weekend effect. It is worth noting however that due to the lack

of real-world data, we have made assumptions on the reduction

degrees of school/workplace contacts during weekends. In our

future work, we will keep collecting real-world dynamic contact

parameters of Singapore, and further evaluate the temporal effect

of social distancing in dynamic settings.

The evaluation of intervention scenarios in this study is based on

Singapore’s social structure. The results presented here should be

interpreted with the following caveats in mind. First, the Singapore

community is not a closed system. There are millions of visitors

arriving in Singapore (e.g., a peak of 10 million visitors in 2007).

Singapore has a population size of around 4.9 million. The large

volumes of visitors flowing into the country implicitly indicate that

the influence of imported cases should be considered when planning

intervention strategies. However, the influence of visitors is not

considered in our research as we focus on investigating and

comparing the effectiveness of the individual and combined

intervention scenarios. We note that it is desirable to further analyze

the influence of visitors on the disease spread in the community for

combating future pandemic. Further, Singapore is a highly

urbanized city and its population density is among the top in the

world, which will definitely lead to high contact numbers in different

community structures. The best intervention scenario in terms of

control timing may vary when the social structure is drastically

different from the one studied in this paper, as the heterogeneity of

social structure is a significant factor affecting disease spread and

consequently affecting mitigation planning strategies as well.

Conclusion
Though the combined intervention strategy outperforms its

individual strategies in most cases, it is found that combined

intervention strategies underperform its individual intervention

strategies under inappropriate timing configurations. Our results

suggest that trigger threshold and duration are critical to the

effectiveness of the combined intervention, specifically, for lowering

attack rate and daily incidence as well as having a longer peak delay.

Our studies also show that the implementation order of individual

interventions in the combination could affect the effectiveness of

combined interventions as well. Exploring correct timing configu-

ration is therefore crucial to achieving optimal or near optimal effect

of mitigation for influenza epidemic. Such an evaluation is

recommended for assisting policy makers in influenza preparedness

planning with their specific situation and constraints.

Figure 12. Total attack rate, peak daily incidence and peak attack day under hybrid control with the weekend effect (R0 = 1.9; x-axis
shows school closure’s triggers, colored bar indicates workforce shift’s triggers; in each row, duration = 2/4/6/8/10 weeks from left
to right).
doi:10.1371/journal.pone.0032203.g012
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