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Abstract

The probabilistic responses of the maximum displacement and displacement ductility factor for a reinforced concrete
(RC) flexural member against potential blast loadings are evaluated through a nonlinear dynamic analysis of its equivalent
single-degree-of-freedom (SDOF) system. Monte-Carlo simulation is used in the analysis. Some differences are observed
between the actual responses of the RC member and those of the equivalent SDOF system due to the complex behaviours
of reinforced concrete structural members under blast conditions. Two non-dimensional indices are defined to quantify the
differences and their expressions are generated through a large amount of numerical and statistical analyses. The approach
of utilizing the indices into a probabilistic response assessment of RC flexural members accounting for different kinds of
uncertainties is illustrated via four numerical examples which are verified through nonlinear dynamic finite element anal-
ysis. It is concluded that the probabilistic response of RC flexural members obtained from the developed approach have a
similar distribution with those from probabilistic nonlinear finite element analysis.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Equivalent SDOF system; Non-dimensional indices; Maximum displacement; Displacement ductility factor; Monte-Carlo
simulation

1. Introduction and background

Information on the probabilistic responses of the maximum displacement and displacement ductility factor
is of critical importance for the reliable design or analysis of reinforced concrete (RC) flexural members that
might be affected by blast loadings [1–3]. The probabilistic analysis based on a combination of nonlinear
dynamic finite element analysis of structural members under blast conditions and Monte-Carlo simulation
is computationally considerably more expensive due to the significant geometric and material nonlinearity
of RC members [4–6]. Therefore, a simple and efficient way for probabilistic evaluation of the blast responses
for RC members is necessary.
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The maximum displacement and displacement ductility responses of RC flexural members under blast load-
ings that are simplified into triangular pulses can be determined in an approximate way by transforming the
continuous members into equivalent single-degree-of-freedom (SDOF) systems by taking these responses of
equivalent systems to be equal to those of the members [7]. However, considering the complicated material
behaviours of the concrete and reinforcement under blast conditions, some differences do exist between the
actual responses ðyrc

m and lrcÞ of a RC structural member and those ðyeq
m and leqÞ of the equivalent SDOF sys-

tem as indicated in Fig. 1. But if the indices quantifying the above differences can be obtained, they will pro-
vide a simpler way to the estimation of the deformation response of the RC flexural member under the blast
conditions from those of the equivalent SDOF system and without performing nonlinear finite element
analysis.

This paper aims to present a simple approach for the development of response surfaces for yrc
m and lrc of

RC flexural members against blast loadings. For this purpose, the distribution of two non-dimensional indices
quantifying the differences between the responses of RC members and those of equivalent SDOF systems are

Nomenclature

d effective depth of the RC member measured from the extreme compression fiber to the centroid
tensile reinforcement

Edc dynamic Young’s modulus of elasticity for concrete
Eds dynamic Young’s modulus of elasticity for steel
Eey ; Eel mean values of ey and el, respectively
ey, el nominal random variables
F blast load from idealized triangular pulse
fdc strength of concrete in compression in dynamic conditions
fdv dynamic stirrup yield strength
fds strength of flexural steel in dynamic conditions
i impulse
KLE, KME transformation load and mass factor, respectively
l length of the member
Pr pressure
R standoff distance
td load duration
W explosive charge mass expressed in kg of TNT
yeq

e elastic displacement response of the equivalent SDOF system of the designed RC member due to
blast loading

yrc
e elastic displacement response of the designed RC member at the significant point due to blast

loading
yeq

m maximum displacement response of the equivalent SDOF system of the designed RC member
due to blast loading

yrc
m maximum displacement response of the designed RC member at the significant point due to blast

loading
yt target displacement
frc

y non-dimensional displacement index
frc
l non-dimensional displacement ductility index

leq displacement ductility response of the equivalent SDOF system of the designed RC member un-
der the given blast loading

lrc displacement ductility response of the designed RC member at the significant point due to blast
loading

lt target displacement ductility ratio
q longitudinal tension reinforcement ratio
rey ; rel standard deviations
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firstly derived through extensive numerical studies and fitting. The utilization of these two indices for the prob-
abilistic response assessment of yrc

m and lrc is further addressed by the combination of the Monte-Carlo sim-
ulation. As an illustration, the blast responses of four flexural members with different kinds of support
conditions are probabilistically evaluated and numerically verified by comparing the results with those from
probabilistically nonlinear finite element analysis.

2. Response differences between RC flexural members and equivalent SDOF systems

2.1. Definition of the non-dimensional indices quantifying the differences

To obtain a consistent measurement of the degree of the differences between the actual responses
ðyrc

m and lrcÞ for the flexural member under a certain blast loading and the their respective equivalent SDOF
system ðyeq

m and leqÞ, two non-dimensional indices are defined as

1rc
y ¼

yeq
m � yrc

m

yeq
m

ð1Þ

1rc
l ¼

leq � lrc

leq
ð2Þ

where 1rc
y is the non-dimensional displacement index standing for the difference between yrc

m and yeq
m ; 1rc

l is the
non-dimensional displacement ductility index representing the difference between lrc and leq. Eqs. (1) and (2)
describe the basic relationships between ðyrc

m; l
rcÞ; ðyeq

m ; l
eqÞ and ð1rc

y ; 1
rc
l Þ. With 1rc

y and 1rc
l initially known, val-

ues of yrc
m and lrc can be obtained from yeq

m and leq. However, depending on these two equations to estimate
1rc

y and 1rc
l seems to have few advantages since yrc

m and lrc have to be firstly computed. This entails explosion
testing or numerical finite element analysis of the RC members under blast conditions, which would be sure to
be costly or involve intensive computational effort. Therefore, simple alternative formulae for the determina-
tion of 1rc

y and 1rc
l rather than Eqs. (1) and (2) need to be developed.

2.2. Symbolical expressions of the non-dimensional indices

By controlling the responses of the equivalent SDOF system ðyeq
m and leqÞ to be exactly equal to their

respective design performance targets (yt and lt), the design solution of effective depth (d) and longitudinal
reinforcement ratio (q) for a RC flexural member can be specifically gained with the given basic variables
including the peak reflected pressure (Pr) and duration of blast loadings (td), the support condition, the length
(l) and the properties of concrete and reinforcement under the dynamic conditions (fdc, Ec, fds, Ed, and fdv)
[13]. Accordingly, the actual responses ðyrc

m and lrcÞ of the specifically designed member under the given blast
loading can be specifically determined with the nonlinear finite element analysis. Considering the complicated

Reinforced concrete
       member

eq
my

eq
eyrc

ey

rc
my

R R

y

Equivalent SDOF system

Fig. 1. Response differences between the RC flexural member and the equivalent SDOF system ðwhere lrc ¼ yrc
m=yrc

e and leq ¼ yeq
m =yeq

e Þ.
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behaviours of a RC member under the blast condition, some discrepancies occur between the actual responses
ðyrc

m and lrcÞ and the design performance targets (yt and lt), which also represent the differences between the
responses of the designed RC member and those of the equivalent SDOF system as shown in Fig. 2. The
responses ðyrc

m and lrcÞ of the designed member can be determined and then substituted into Eqs. (1) and
(2), respectively, to produce 1rc

y and 1rc
l to be the symbolical functions of these variables as

1rc
y ¼ 1rc

y ðP r; td; yt; lt; l; SC; fdc;Ec; fds;Es; fdv; d; qÞ ð3Þ
1rc

l ¼ 1rc
l ðP r; td; yt; lt; l; SC; fdc;Ec; fds;Es; fdv; d; qÞ ð4Þ

2.3. Analytical procedures

Establishing the explicit expressions of Eqs. (3) and (4) is almost impractical since RC members will exhibit
a significantly complicated geometric and material nonlinearity under most blast conditions. A curve fitting
technique with a large amount of reliable data for 1rc

y and 1rc
l , which are determined according to Eqs. (1)

and (2) with yrc
m and lrc obtained from nonlinear dynamic finite element analyses of the designed members,

is executed together with the statistical analyses so as to find the simplified explicit expressions of Eqs. (3)
and (4). The procedure is listed as follows:

(1) Select the type of support conditions for the RC members to be designed.
(2) Sample the design variable vector of {Pr, td,yt,lt, l, fdc,Ec, fds,Es, fdv} 0, where 2000 samples are randomly

taken to ensure the accuracy of the statistical analysis.
(3) Design the member with each sample of the design variable vector to obtain d, q and further q 0, qv and

bw of a ratio of d.
(4) Repeat step (3) until 2000 sampled design cases are accomplished.
(5) Select 500 design cases with q ranging from 0.31% to 2.2%.
(6) Perform numerical analysis on the selected 500 design cases to find yrc

m and lrc with ABAQUS [18].
(7) Compute 1rc

y and 1rc
l of the 500 design cases with Eqs. (1) and (2).

(8) Plot the distributions of 1rc
y and 1rc

l versus these basic design variables.
(9) Carry out the curve fitting of the distributions of 1rc

y and 1rc
l followed by statistical analyses.

(10) Recommend the simplified formulae to estimate 1rc
y and 1rc

l .
(11) Change the type of SCs of the members and repeat the above steps.

2.3.1. Random selection of basic variables
In order to perform the curve fitting of the distributions of 1rc

y and 1rc
l to find their simplified formulae, the

design variables involved in the second step of the above procedure are randomly sampled within their con-
cerned ranges and is discussed as follows.

Target displacement 
and displacement 

ductility ( ty  and tμ )

t
eq
m yy = d and of RC 

flexural member to 
be designed 

Numerical analysis of 
designed member under 
the given blast loading

rc
my  and rcμ

rc
y  and rc

μ

t
eq μμ =

Design parameters: rP , dt , l , dcf , cE , dsf , sE , dvf

Target displacement 
and displacement 

ductility ( ty  and t )

t
eq
m yy = d and r of RC 

flexural member to 
be designed 

Numerical analysis of 
designed member under 
the given blast loading

rc
my  and rc

rc
yζ  and rcζ

t
eq =

Design parameters: rP , dt , l , dcf , cE , dsf , sE , dvf

Fig. 2. The procedure to find 1rc
y and 1rc

l .
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The blast loadings that can be reasonably idealized into triangular pulses are basically dependent on the
explosive mass expressed in kg of TNT (W) and the standoff distance (R) for external explosions [9,10]. There-
fore, the random selections of W and R rather than Pr and td is executed in their respective ranges from 50 kg
to 1000 kg equivalent TNT and from 4 m to 15 m standoff distance for the blast resistant design in the follow-
ing analysis. This provides a significantly wide range of blast incidents from the most severe loadings produced
by 1000 kg TNT at 4 m distance (a scaled distance Z = 0.4 m/kg1/3) to the slightest loadings by 50 kg TNT at
15 m distance (Z = 4.1 m/kg1/3). For the more severe blast situations, the design of the structural system with
the alternate load path in redistributing loadings seems to be more reasonable and economic. In this case the
structural members immediately opposite the blast are allowed to fail, while in the situations of the lighter
blasts, the blast loadings become less critical in the structural design. From W and R, the blast loadings of
reflected pressure (Pr) and impulse (i) can be obtained with CONWEP [9] which has been developed based
on TM5-855-1 [10] and generally used in the blast-resistant design, while the loadings durations (td) are
approximately obtained with 2i/Pr.

The determination of the reasonable design targets of yt and lt should account for possible blast intensities
within the blast resistant design of a particular RC member. Hence, the random selection of design targets (yt

and lt) is executed in their different ranges according to the various scopes of the blast impulses as shown in
Table 1. Some overlaps are allowed for the ranges of yt and lt considering that there is no strict watershed for
them at a particular impulse within the design. The maximum allowable yt and lt are taken, respectively, to be
larger than the limit of 4� for non-laced RC members as recommended in current design guidance [1–3,10–12].
This is to cover the possibility of the actual responses of the designed members in blast conditions being
located on the conservative side when compared with their respective performance targets of yt and lt.

The parameter of l is selected in a range from 4.5 m to 9.0 m for the RC members with two ends constrained
while from 2.5 m to 4.5 m for members with one end free, thus covering the most typical cases for RC struc-
tures. Due to strain rate effects, the parameters of material properties of concrete and reinforcement under
the dynamic conditions are implemented with the possible ranges listed in Table 2. Since the structural members
exist in the context of structural systems, their real support conditions are complex and generally depend on the
connection with the adjacent members as well as the construction requirements. However, in the blast resistant
design they are generally idealized into one of the four types as listed in Table 3. Considering that RC members
should be designed to resist the negative deflection or rebound of the members subsequent to its maximum posi-
tive deflection and that the possibility of the explosion occurring in the two opposite sides of the members to be
designed, the area of compression reinforcement employed is equal to that of the tensile reinforcement area.

Based on the ranges of the variables discussed above, their random samplings are executed by assuming
them equally frequent or equally likely to occur. This ensures the likehood of a more general curve fitting
of 1rc

y and 1rc
l which can incorporate the effects of these variables as adequately as possible.

Table 1
Various design targets

Impulse (kPa ms) 6103 103–104 104–2 · 104 2 · 104–3 · 104 P3 · 104

ht (�) 1–1.8 1.4–3.2 2.8–3.6 3.2–4.0 3.4–4.8
lt 3.0–8.5 4.5–10.5 5.5–12.5 6.0–14.5 7.0–16.5

*yt = l tan(ht)/2 for the member with two ends constrained.
*yt = l tan(ht) for member with one end free.

Table 2
Various material properties

Variable Range

fc
* (MPa) 30.0–40.0

Ec (GPa) 25.5–30.5
fs

** (MPa) 460.0–560.0
Es (GPa) 190.0–210.0
fv

** (MPa) 250.0–300.0

* fdc = 1.19 · fc.
** fds = 1.17 · fs, fdv = 1.17 · fv.
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2.3.2. Nonlinear finite element models

The sixth step of the above analytical procedure (the numerical analysis on the designed members to find
yrc

m and lrc) is executed with the program ABAQUS [18]. The failure of RC members under blast conditions is
characterized by concrete crushing accompanied by concrete cracking, thus the smeared cracking model for
concrete is utilized. In this model, cracking appears when the maximum principal tensile stresses reach a fail-
ure surface. To simulate the softening effect of the concrete in tension, a bilinear tension stress–strain curve is
used after cracking as shown in Fig. 3, where the failure strain ecr

u is taken as 10�3. The selection of this value is
based on the assumption that the strain softening after failure reduces the stress linearly to zero at a total
strain of about 10 times the strain at failure of concrete in tension, which is typically 10�4 in the standard con-
cretes [8]. The tensile strength ft is determined from the compressive strength fc as [19]

ft ¼ 0:30f 2=3
c ð5Þ

In the case of concrete in compression, concrete is simulated with an elastic–plastic mode and the elastic stress
state is limited by a yield surface. Once yielding had occurred, an associated flow rule with isotropic hardening
is used. The yield surface is determined in terms of the first two stress invariants

f ¼ q�
ffiffiffi
3
p

a0p �
ffiffiffi
3
p

rcðepl
uniaxialÞ ð6Þ

where p is the effective pressure, q is Mises equivalent deviatoric stress, and a0 is a constant, which is chosen
from the ratio of the ultimate stress reached in biaxial compression to the ultimate stress reached in uniaxial
compression. rcðepl

uniaxialÞ is the hardening (and softening) parameter that is defined from the uniaxial compres-
sion data of the concrete as a function of the plastic strain [19]. The stiffness used in the analysis for unloaded
concrete in tension and compression is also given in Fig. 3. When the cracked concrete is unloaded, the secant
unloading modulus is utilized as stiffness so that the strain across the crack is reduced linearly to zero as the
stress approaches zero. If the load is removed at some point after inelastic straining has occurred for the con-
crete in compression, the unloading response is softer than that of the initial elastic response, but this effect is
ignored in this model. Thus initial elastic stiffness is used when the concrete in compression is unloaded.

The Von-Mises yield criterion is used to describe the constitutive behaviour of the reinforcement. The stress
and strain relationship of reinforcement is shown in Fig. 3, where the reinforcement is modelled with an elasto-
plastic curve. The strain hardening of reinforcement is not considered in this analysis since it is hard to define
under the blast conditions due to a lack of sufficient experimental data plus the ultimate strain value is often
not reported in the current literatures due to the difficulty of determining exactly when the peak stress occurs
as well as the confusion between ultimate strain and rupture strain.

Considering that both the concrete and reinforcement exhibit increased strengths under higher loading
rates, the expressions of dynamic increase factors (DIFs) by Malvar and Crawford [20,21] are adopted. These

Table 3
Various support conditions

Type Support Condition

Simply-supported

qu

Fixed/free

qu

Fixed/roller-supported

qu

Fixed/fixed

qu
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expressions are derived from the literature review of the extensive test data concerning the effects of strain rate
on the strength of concrete and reinforcement. For the concrete compressive strength, DIF is given as

DIF ¼ ð_e=_esÞ1:026as ; _e 6 30 s�1

csð_e=_esÞ1=3
; _e > 30 s�1

(
ð7Þ

where _e is the strain rate in the range of 30 · 10�6–300 s�1; _es ¼ 30� 10�6 s�1 (static strain rate);
logcs = 6.156 as � 2; as = 1/(5 + 9 fc/fco); fco = 10 MPa; fc is the static compressive strength of concrete.
For the concrete in tension, the formula is:

DIF ¼ ð_e=_esÞd; _e 6 1:0 s�1

bð_e=_esÞ1=3
; _e > 1:0 s�1

(
ð8Þ

(a)  Concrete in compression and tension 

(b)  Reinforcement 

Stress

Strain 

Failure point  

Tension softening  

 ft

εu
cr 

Failure point in compression  

Start of inelastic behaviour 

Unload/reload response 

Idealized (elastic)  
unload/reload response 

Strain 

Stress 

Stress 

Strain 

 fds

 fds

Es

Fig. 3. Material modelling.
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where _e is the strain rate in the range of 10�6–160 s�1; _es ¼ 10�6 s�1; logb = 6d � 2; d = 1/(1 + 8 fc/fco);
fco = 10 MPa. The DIF formula for the yield stress of reinforcement is:

DIF ¼ ð_e=10�4Þa ð9Þ
where a = afs and afs = 0.074 � 0.04fs/414. This formula is valid for reinforcement with yield stresses between
290 and 710 MPa and for strain rates between 10�4 and 225 s�1. To integrate Eqs. (7)–(9) into the analysis, the
user subroutine USDFLD in ABAQUS is used which allows the user to define the field variable at a material
point as a function of any of the available material point quantities. Thus by taking the strain rate as a field
variable, the strain rate-dependent material properties can be introduced in the analysis since such properties
can be easily defined as functions of strain rate with Eqs. (7)–(9). Timoshenko beam elements are assigned to
model the members while the rebar option is utilized to place each reinforcement at its exact location while
perfect bond is assumed between the reinforcement and the concrete.

774.2mm2

1290.3mm2

3658mm 

38
1m

m
 

152mm 

2 t (ms)

F (N/mm)

85 

28 

Fig. 4. The details of the simply-supported beam tested by Seabold [22].

0 5 10 15 20 25 30
0

5

10

15

20

25

30

M
id

-s
pa

n 
de

fle
ct

io
n 

of
 b

ea
m

 (
m

m
)

Time (ms)

 Numerical analysis
 Experimental results

0 5 10 15 20 25 30

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
el

oc
ity

 a
t m

id
-s

pa
n 

of
 b

ea
m

Time (ms)

 Numerical analysis
 Experimental results

0 2 4 6 8 10 12 14

-2.5x10-3

-2.0x10-3

-1.5x10-3

-1.0x10-3

-5.0x10-4

0.0

S
tr

ai
n 

at
 m

id
-s

pa
n 

of
 b

ea
m Time (ms)

 Top compressive strain-numerical
          analysis of concrete at beam mid-span

 Top compressive strain-experimental 
          analysis of concrete at beam mid-span

0 2 4 6 8 10

-1.5x10-3

-1.0x10-3

-5.0x10-4

0.0

5.0x10-4

1.0x10-3

1.5x10-3

2.0x10-3

2.5x10-3

 Compressive steel-numerical analysis
 Compressive steel-experimental 

 Tensile steel-numerical analysis
 Tensile steel-experimental

S
tr

ai
n 

Time (ms)

Fig. 5. Verification of finite element models showing comparison between the numerical and experimental results.
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The verification of the finite element models as mentioned above is carried out by implementing it into the
analysis of a simply supported RC beam subjected to blast loadings tested by Seabold [22] as shown in Fig. 4.
The computed and experimental displacement–time history at mid-span is shown for a comparison in Fig. 5. It
can be observed that the peak experimental response of 28.5 mm was recorded at the time of 19.5 ms, which
closely agreed with the analytical results for which the computed peak displacement of 28.8 mm is reached at
the time of 19.2 ms. The recorded permanent deformation of the RC beam was 20.8 mm and it also matched
well with the predicted deflection of 21.7 mm. In addition, the analytical and experimental results of the mid-
span velocity history, the top compressive strain history of concrete, plus the strain history of the main rein-
forcement of the beam are also compared in Fig. 5. It is demonstrated that the numerical analysis has a good
agreement with the observed experimental behaviours and thus the numerical model has the ability to simulate
the failure process of concrete and reinforcement.

2.4. Distributions of the non-dimensional indices

Based on the above analytical procedure, the distributions of 1rc
y and 1rc

l for the designed RC members ver-
sus q under various support conditions are obtained in Figs. 6–9. It can be observed that the distributions of
1rc

y are generally concentrated in the strips that are much narrower and closer to the X-axis as compared to
those of 1rc

l especially in the situation of the first three types of support conditions. This indicates that the dis-
crepancies between yrc

m and yeq
m are much smaller than those of lrc with leq. This result is reasonable since lrc is

determined by not only yrc
m but also the elastic displacement of yrc

e of the member. As a continuous RC member
is converted into an equivalent SDOF system with its resistance function simplified by a bilinear curve, the
elastic displacement of the member in a blast incident is significantly underestimated, which leads to the rel-
atively large positive values of 1rc

l .
The convergent distributions of 1rc

y and 1rc
l with respect to q under any support condition as shown in Figs.

6–9 indicate that the importance of parameter q, which can be conceptually accounted for from two aspects.
In the calculation of the longitudinal reinforcement ratio (q) from the ultimate strength Rm, the contribution
of concrete to Rm is ignored within the design. For the members with a small value of q where the concrete
becomes predominant in resisting external force, this lack of attention will lead to a significantly conservative
design and therefore higher conservative values for 1rc

y and 1rc
l . With an increase in q, the contribution of con-

crete to Rm becomes smaller and so does the conservative degree of design. It also agrees quite well with the
trend of 1rc

l with respect to q under all support conditions and 1rc
y to q under the fourth support conditions. The

second reason that makes q important to 1rc
y and 1rc

l , is related to the calculation of the stiffness of RC mem-
bers. The stiffness calculated are influenced by a coefficient determined by q from the empirical data fitting
curve, applied to obtain the cross-sectional moment of inertia along RC members.
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Fig. 6. Distributions of non-dimensional indices with longitudinal reinforcement ratio for simply supported members.
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The support condition of a structural member also plays an important role in producing 1rc
y and 1rc

l , which
is demonstrated by the trends of 1rc

y and 1rc
l with q under various support conditions. Comparing Figs. 6–8

with Fig. 9 indicates that both 1rc
y and 1rc

l for fixed/fixed members are generally larger than those of members
under other support conditions with the same q. This difference is induced by the application of the unreason-
able transformation factors KLE and KME in the design of fixed/fixed members. Fig. 10 shows the transforma-
tion of this type of continuous RC member into the equivalent SDOF system can be divided into three stages
with different values of transformation factors at each stage: the elastic stage with no plastic hinges, the elas-
tic–plastic stage when two plastic hinges occurs at the two ends of the member and the purely plastic stage
where a third plastic hinge appears in the mid-span. In the second stage, transformation factors are taken with
the same values as those for a simply supported member. However, the responses of a member with two ends
pinned (plastic hinges formed at both ends) will be surely smaller than those of a simply supported member.
This means the responses of fixed/fixed members are overestimated during the design thus leading to relatively
larger 1rc

y and 1rc
l .

The variables other than q and support conditions have some minor effects, which make the values of
1rc

y and 1rc
l slightly scattered as q and support condition are certain. Although these effects of other variables

are not significant, they are also incorporated in the recommended formulae while considering all variable
effects.
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Fig. 7. Distributions of non-dimensional indices with longitudinal reinforcement ratio for fixed/free members.
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Fig. 8. Distributions of non-dimensional indices with longitudinal reinforcement ratio for fixed/roller-supported members.
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2.5. Formulae for the non-dimensional indices

In order to obtain the simplified expressions of Eqs. (3) and (4), the relevant variables are divided into two
groups: the important variables of q and support condition, and the secondary variables including Pr, td, yt, lt,
and d. To incorporate the influences of q and support condition into the expressions, the nonlinear curve fit-
tings of 1rc

y and 1rc
l versus q for various support conditions as plotted in Figs. 6–9, are carried out where the

functions are expressed as f(q,SC) and g(q,SC), respectively. The effects of the secondary variables are dealt
with by introducing the two nominal random variables of ey and el that are assumed to represent the deviation
of frc

y and frc
l around the fitting curves. As a consequence, Eqs. (3) and (4) are simplified into

where  ( ) 25.0)( plasticMplasticelastoMelasticMME KKKK −−−− +×+= , ( ) 25.0)( plasticLplasticelastoLelasticLLE KKKK −−−− +×+=

           LE
c

e K
l

IE
k

3
α= , dblKM wdenMEe ρ=
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(c)

)41.0,53.0( == −− elasticMelasticL KK
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Fig. 10. Stages of fixed/fixed members in the determination of transformation factors [7,11,12].
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Fig. 9. Distributions of non-dimensional indices with longitudinal reinforcement ratio for fixed/fixed members.
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1rc
y ¼ f ðq; SCÞ þ ey ð10Þ

1rc
l ¼ gðq; SCÞ þ el ð11Þ

Fig. 11. The distributions of ey and el for RC members with different support conditions.
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A quadratic function is selected for the curve fitting given by

f ðq; SCÞ and gðq; SCÞ ¼ a1 þ a2qþ a3q
2 ð12Þ

With the result functions of f(q,SC) and g(q,SC), the nominal random variables of ey and el can be obtained
with

ey ¼ frc
y � f ðq; SCÞ ð13Þ

el ¼ frc
l � gðq; SCÞ ð14Þ

For members with various support conditions, the results of the parameters a1, a2 and a3 are listed in Table 4
while the histograms of ey and el are shown in Fig. 11. It is demonstrated that ey and el follow normal dis-
tribution with the mean values ðEey and EelÞ of ey and el, respectively, approximate to zero. The standard
deviations ðrey and relÞ of ey and el, respectively, observed are relatively minor thus indicating the limited ef-
fect of the variables other than q and support condition.

3. Response evaluation depending on formulae of indices

The importance of applying frc
y and frc

l is that they provide a simpler way to predicting of the responses
ðyrc

m andlrcÞ for RC flexural member under a possible blast loading without carrying out nonlinear finite ele-
ment analysis. Substituting Eqs. (10) and (11) into Eqs. (1) and (2), respectively, and rearranging the terms, the
response surface of yrc

m and lrc are obtained as

yrc
m ¼ yeq

m ð1� f ðq; SCÞ � eyÞ ð15Þ
lrc ¼ leqð1� gðq; SCÞ � elÞ ð16Þ

Table 4
Results of the nonlinear curve fitting

SC a1 a2 a3

erc
y

Simply-supported �0.10369 �2.20114 160.30932
Fixed/free �0.01712 0.80877 66.84997
Fixed/roller-supported 0.01276 �1.67032 100.93644
Fixed/fixed 0.55459 �34.63653 735.20353

erc
l

Simply-supported 0.80257 �50.10919 675.55356
Fixed/free 0.83085 �47.05548 911.90338
Fixed/roller-supported 0.84443 �45.30174 800.57689
Fixed/fixed 0.99826 �18.99113 �354.75711
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Fig. 12. COVs for yrc
m and lrc produced by the random effect of ey and el.
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Table 5
Details of four RC flexural members

Example SC l (m) d (mm) q(q 0) (%) fdc (MPa) fds (MPa) Ec (GPa) Es (GPa)

I Simply-supported 5.0 450 0.70 36 520 28 210
II Fixed/free 4.0 400 1.60 40 506 30 200
III Fixed/roller-supported 4.5 350 2.00 40 550 30 200
IV Fixed/fixed 6.0 300 1.00 36 520 28 210

Table 6
Random variables for the members

Variables Distribution COV Lower and upper limit

fdc Normal 0.08
fds 0.08
Ec 0.15
Es 0.15
As 0.05
d 0.05
l 0.05
W Uniform 50–500 kg
R 5–15 m
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Fig. 13. Probabilistic results of the simply supported RC member (Example I).
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According to Eqs. (15) and (16), yrc
m and lrc of the member under a blast loading can be estimated from the

corresponding yeq
m and leq, which are computationally simple and straightforward. By converting the contin-

uous member into an equivalent SDOF system [7], these parameters including equivalent mass (m), equivalent
force (F1), equivalent initial stiffness (ke), equivalent ultimate strength (Rm), natural period (T), elastic dis-
placement ðyeq

e ¼ Rm=keÞ, and elastic energy ðEel ¼ ky2
e=2Þ can be obtained. Accordingly, yeq

m and leq are effort-
lessly solved with

yeq
m ¼

Emax

key
eq
e
þ yeq

e

2
and leq ¼ yeq

m

yeq
e

ð17Þ

where Emax is computed with the non-dimensional energy factor (C = Emax/Eel) found from the energy spectra
according to the ratios td/T and F1/Rm [13]. The combination of Eqs. (15)–(17) with the probabilistic methods
such as the Monte-Carlo simulation provides a simpler probabilistic solution for yrc

m and lrc of RC flexural
members in blast conditions taking different uncertainties into account.

However, it should be pointed out that unlike the situation where the responses of yrc
m and lrc can be more

accurately determined through nonlinear finite element analysis, Eqs. (15) and (16) only provide an approx-
imate way to predict yrc

m and lrc from the respective yeq
m and leq since ey and el are two uncertain nominal ran-

dom variables following normal distribution. Considering the random effects of ey and el, the coefficients of
variation (COV) for yrc

m and lrc are obtained as

COVðyrc
mÞ ¼

rey

1� f ðq; SCÞ ð18Þ

COVðlrcÞ ¼
rel

1� gðq; SCÞ ð19Þ
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Fig. 14. Probabilistic results of the fixed/free RC member (Example II).
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The COVs for yrc
m and lrc have no relationship with their respective yeq

m and leq and they tend to change with q
and support condition of the member as shown in Fig. 12. It is shown that the maximum COVs of yrc

m for the
simply supported, fixed/roller-supported and fixed/free members are generally less than 0.03, representing a
significant concentration of yrc

m around their mean values. The COVs of lrc for these types of members rang
from 0.05 to 0.18 and rise gradually with the decline inq. For the fixed/fixed members, the predicted yrc

m is also
concentrated around its mean values with the maximum COV less than 0.08, however, the lrc predicted from
Eq. (16) has some deviation when q is less than 1.0%.

4. Numerical illustration and verification

For illustration, yrc
m and lrc of four RC flexural members with different support conditions, whose details

are shown in Table 5, are probabilistically evaluated using response surface with Eqs. (15) and (16) together
with Monte-Carlo simulation [14]. The verifications of numerical results obtained are further performed as
compared to the probabilistically nonlinear finite element analytical outcomes.

The uncertainties of different variables including fds, fdc, Es, Ec, As, d, and l are considered in the probabi-
listic response assessment of these members. Their means values are taken as those employed in Table 5 while
their COVs are listed in Table 6 [15–17]. The blast loading brings out the most uncertainty to the structural
responses. However, to date not enough information is available on the random properties of blast loadings
applied to a structure in its lifetime. In this example it is assumed that W and R follows uniform distributions
with the ranges as shown in Table 6. The parameters of ey and el are two additional independent random vari-
ables that link yrc

m and lrc with the respective yeq
m and leq. Their distributions can be found in Fig. 11 with the

zeros of mean values and the corresponding standard deviations at various support conditions.
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Fig. 15. Probabilistic results of the fixed/roller-supported RC member (Example III).
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The probabilistic response assessment of the four RC members involving the uncertainty of the above vari-
ables is accomplished through Monte-Carlo simulation. The choice of Monte-Carlo simulation for this situ-
ation is justified because the approach to predict yrc

m and lrc using the response surface with Eqs. (15) and (16)
is very simple. As a consequence, the simulation sample size can be selected relatively widely so as to achieve
an accurate estimation without consuming much computational time and work. The probability density func-
tions (PDFs) of yrc

m and lrc for these concerned members and the corresponding cumulative distribution func-
tions (CDFs) are computed and shown in Figs. 13–16. To verify the numerical results obtained, the
probabilistic nonlinear finite element analyses of these examples are also performed and compared with the
probabilistic analysis as shown in Figs. 13–16. Summarizing the results, it can be seen that the PDFs and
CDFs of yrc

m and lrc predicted using the response surface are in close agreement with those from the probabi-
listically nonlinear finite element analysis with the exception of lrc for the fixed/fixed member. The inconsis-
tency in probabilistic distribution of lrc for the fixed/fixed member is mainly induced by the complicated
resistance functions of fixed/fixed members. The CDFs of lrc predicted for the fixed/fixed member are on
the conservative sides to some extent as compared to the probabilistically nonlinear finite element analysis.

5. Conclusions

A simple yet efficient approach of the probabilistic assessment of yrc
m and lrc for RC flexural members under

blast conditions is presented without carrying out probabilistically nonlinear finite element analysis. This
approach is accomplished depending on the formulae of two indices ð1rc

y and 1rc
l Þ that quantify the difference

between the responses of RC members with those of equivalent SDOF systems.
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Fig. 16. Probabilistic results of the fixed/fixed RC member (Example IV).
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The distribution of 1rc
y and 1rc

l with different variables that have been selected randomly from their partic-
ular ranges within the blast-resistant design is generated through a large amount of numerical analyses. By
comparing these distributions, it is found that the support condition and q have profound effects on
1rc

y and 1rc
l while the variables other than support condition and q have some minor influences. To incorporate

all variables effects, the formulae of 1rc
y and 1rc

l are recommended including two items: a nonlinear fitting func-
tion correlated with q and support condition and a random variable (ey and el) to consider the influence of the
others.

Computation of yrc
m and lrc for RC flexural members under a blast loading becomes much simpler based on

the formulae of 1rc
y and 1rc

l since they can be easily derived from the corresponding yeq
m and leq that are com-

putationally straightforward. By combining this approach with Monte-Carlo simulation, the probabilistic
blast responses of RC members are conveniently evaluated accounting for different types of uncertainties.
The PDFs and CDFs of yrc

m and lrc obtained from 1rc
y and 1rc

l have a good agreement with those from prob-
abilistically nonlinear finite element analysis as indicated from numerical examples.
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