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MULTIPLE EXTENSIONS OF GENERALIZED HEXAGONS
RELATED TO THE SIMPLE GROUPS McL AND Co3

HANS CUYPERS, ANNA KASIKOVA AND DMITRII V. PASECHNIK

ABSTRACT

The groups McL, Co3 and 2 x Co3 are all contained in the automorphism group of a 2-, respectively,
3-fold extension of a generalized hexagon of order (4,1). We give a geometric characterization of these
multiple extensions of this generalized hexagon.

1. Introduction

Several of the finite sporadic simple groups act as automorphism groups on
extensions of generalized polygons. The large Mathieu groups act on extensions of the
projective plane of order 4, the groups McL, Co3 and HS are automorphism groups
of extended generalized quadrangles, Ru and He are automorphism groups of
extended octagons, and finally the Hall-Janko group HJ and the Suzuki group Suz,
are known to act on extensions of generalized hexagons of order (2,2), respectively,
(4,4). In general, extensions of generalized hexagons and octagons have infinite
covers, see for example [8]. Thus it seems natural to impose extra conditions on
extensions T of generalized hexagons or octagons to obtain characterizations of these
geometries. The two extended generalized hexagons mentioned above satisfy the
following condition:

(*) {x^x^xjs is a clique of the point graph not contained in a circle if and only if x2

and xz are at distance 3 in the local generalized hexagon Tx .

It is just this condition that was imposed on extensions of generalized hexagons
in [5, Theorem 1.1]. There the above mentioned extended generalized hexagons
related to the sporadic groups HJ and Suz, as well as two other extensions of a
generalized hexagon of order (2,1), respectively, (4,1), related to the groups G2(2),
respectively, PSU4(3), were characterized. In particular, it was shown in [5], that these
four extended generalized hexagons are the only extensions of finite, regular, line
thick, generalized hexagons satisfying (*).

In this paper we are concerned with (possibly multiple) extensions of the four
extended generalized hexagons related to the groups G2(2), HJ, PSU4(3) and Suz
mentioned above. The interest in such geometries comes from the existence of two
examples related to the sporadic simple groups McL, respectively, Co3, that are 1-,
respectively, 2-fold extensions of the extended generalized hexagon on 162 points
related to PSU4(3). Their point graphs are the complement of the McLaughlin graph
on 275 points, with automorphism group McL:2, and a graph on 552 points which
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is locally the complement of the McLaughlin graph and has as automorphism group
the group 2 x Co3. This last graph is one of the two Taylor graphs for the third
Conway group; it is the one with intersection array {275,112,1; 1,112,275}, see [1].
These graphs contain a unique class of 7-, respectively, 8-cliques inducing the multiple
extended hexagon, which will be called the multiple extended hexagon related to the
group McL, respectively, 2 x Co3.

The second example related to 2 x Co3 admits a quotient geometry on 276 points,
which is a one point extension of the McL multiple extended hexagon, and has
automorphism group Co3. Obviously these multiple extended hexagons also carry the
structure of a Buekenhout geometry with diagram

for the group McL, respectively,

for the groups 2 x Co3 and Co3.

The groups McL: 2, Co3 and 2 x Co3, respectively, act flag-transitively on these
Buekenhout geometries. As such, these groups and geometries were characterized by
Weiss in [10], under some extra geometric condition closely related to (*). In this
paper we give a purely geometric characterization of these multiple extensions of the
generalized hexagon of order (4,1).

THEOREM 1.1. Let Y be an r-fold extension of a finite, regular, line thick
generalized hexagon, r^-2, in which the residue of any set ofr—\ cocircular points is
an extended hexagon satisfying (*). Then Y is isomorphic to the McL 2-fold extended
hexagon, or to one of the two 3-fold extended hexagons related to Co3, respectively,
2 x Co3.

We notice that the McLaughlin graph and the Taylor graph related to 2 x Co3

with intersection array {275,162,1; 1,162,275} are extensions of the unique
generalized quadrangle of order (3,9). These geometries are characterized in [7]. The
point graph of the 3-fold extended generalized hexagon related to Co3 is a regular
2-graph, as such it is characterized by Goethals and Seidel [6].

2. Definitions and notation

In this paper we use notation and definitions of [3,5]. For convenience of the
reader we recall some of these definitions and fix the notation.

Let F be an incidence structure QP, #) consisting of nonempty sets & of points and
%> of circles, where a circle is a subset of 0> of size at least 2. Then the point graph of
F is the graph with vertex set 0> and as edges the pairs of distinct points that are
cocircular (that is, are in some circle). That two points p and q are cocircular is
denoted by p 1 q. For each subset Xof &, the set X1 consists of all points q cocircular
with all the points of X. We usually write pL instead of {/?}x for a point p in 0>.

Fix a point p of Y. If all circles on p contain at least 3 points, then the residue Yp:=
(J?v, ̂ v) of F at p, where 0>v consists of all points of 0> distinct but cocircular with p
in r , and #p = {C—{p}\ CE^,peC} is also an incidence structure. For any graph ^
and point/? of the graph, the induced subgraph on the neighbours of/? will be denoted
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If J5", respectively, A, is a family of incidence structures, respectively, just an
incidence structure, then F is called a (1-fold) extension of 8P, respectively, A, if and
only if all circles of F have at least 3 points, its point graph is connected and F p is in
3F, respectively, is isomorphic to A, for all points p of F. Inductively, for each integer
r > 1, we define F to be an r-fold extension of SF or A, if and only if all circles contain
at least r + 2 points, its point graph is connected, and F p is an (r— l)-fold extension
of SP', respectively, A for all points p of F. An extended (generalized) hexagon is an
extension of a generalized hexagon.

In a generalized hexagon circles are usually referred to as lines.
An extension is called triangular if and only if any triangle of the point graph is

contained in a circle.

3. The triangular 2-fold extended hexagon related to McL

Let F = (^, #) be a triangular 2-fold extension of a generalized hexagon satisfying
the hypothesis of Theorem 1.1. For all points p of F, the residue F p is an extended
generalized hexagon satisfying (*). In particular, the results of [5] apply and we find
that F p is isomorphic to one of the four extended generalized hexagons related to
G2(2), HJ, PSU4(3) or Suz.

LEMMA 3.1. For all points p and qofTwe have F p ^ Fq.

Proof Suppose that p and q are adjacent points of the point graph of F. Then
(Fp)q ~ (Tq)p. But, by the results of [5], that implies that F p ~ Vq. Since the point
graph of F is connected, we have proved the lemma.

Fix a point p of F. By A we denote the residue F p at p. The point graph of F will
be denoted by 0 , that of A by 2. The above lemma implies that ^ is locally
isomorphic to <2). Suppose that (p, q, r) is a path of length 2 in the point graph ^ of
F. Then let H = Hq be the complement of/?1 (1 q1 0 r 1 in p1 ft qL — {p, q). The set H
is a subset of the point set of the generalized hexagon Ag = F p Q. It plays an important
role in [5] and will also be very useful in the situation considered here. The set H is
the complement of a //-graph in the point graph of Tq. The following properties of H
will be useful later in this section.

LEMMA 3.2. Suppose that F is an extension of a generalized hexagon of order
(s,t). Then we have the following:

(i) each point of Ag not in H is on a unique line of the generalized hexagon AQ

meeting H in 5—1 points;
(ii) H contains (s2- 1)(t2 +1 + 1) points;

(iii) each line of AQ is in H, or disjoint from H, or meets H in s—\ points.

Proof Inside Fq which is one of the four extended generalized hexagons the
points p and r are at distance 2. Thus we can apply the results of [5, Section 3], in
particular Lemma 3.4.

The possible embeddings of sets H in Aq or <2>q having the properties (i) to (iii) of
Lemma 3.2 are classified in [5]. To state that result we first have to fix some notation.
Suppose that A is the PSU4(3) extended hexagon. Then the generalized hexagon Aq
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of order (4,1) will be identified with the generalized hexagon on the flags of PG(2,4).
A hyperoval of PG(2,4) is a set of 6 points no three collinear, its dual is the set of 6
lines missing all the 6 points. This dual hyperoval is a hyperoval of the dual plane,
that is, no three of the lines meet in a point.

LEMMA 3.3. Let Hbea set of points in Aq having the properties (i) to (iii) of Lemma
3.2.

(i) If Ag has order (2,1), (2,2) or (4,4), then H is the complement of a /u-graph
q1 0 xx for some point x at distance two from q in the point graph Q> of A.

(ii) //"Ae has order (4,1) then H consists of the flags o/PG(2,4) missing a hyperoval
and its dual hyperoval.

Proof. This is a straightforward consequence of the results of [5, Section 4].

In the graph ^ the ̂ -graph M = p1 0 r1 is a subgraph of the graph Q), which is
locally isomorphic to the complement of H inside the point graph of the local
generalized hexagon of A.

PROPOSITION 3.4. We have that A is isomorphic to the PSU4(3) extended hexagon.

Proof. Suppose that A is not the PSU4(3) extended hexagon. Consider the
subgraph M of 3. For each point q of M the vertex set of the local graph Mq is the
complement of a set H in Ag satisfying (i) to (iii) of Lemma 3.2.

Fix a point q of M and inside Mq a point x. By Lemma 3.3 there is a point ye Aq

at distance 2 from JC such that Mx is the induced subgraph on the set of common
neighbours of x and y inside 3).

Inside the generalized hexaj jn Ag, we find that the points x and y have mutual
distance 2, so that there is a uni( je point z collinear with both x and y. By the choice
of y, the points x and z are the \ aique points on the line through JC and z inside Mq.
Thus, by 3.2(i), this line is the ui que line on z containing some point outside M. In
particular, yeMQ.

Repeating the above argumen with the role of x and y interchanged, we see that
the line of A9 on y and z is the unique line on z containing a point outside M. A
contradiction, and the proposition is proved.

Thus from now on we can assume that F is locally the extended generalized
hexagon on 162 points related to the group PSU4(3). The generalized hexagon of
order (4,1) is isomorphic to the generalized hexagon on the 105 flags of the projective
plane PG(2,4). We shall identify Tp q = Aq with this hexagon. By Lemma 3.3 we
know that the set H consists of all the flags missing an hyperoval and its dual in
PG(2,4). The following can be obtained easily, especially using the information from
the Atlas [4].

The projective plane PG(2,4) admits 168 hyperovals, the group PFL3(4) being
transitive on them. Thus, there are 168 subgraphs in Q)q isomorphic to H. Of these
subgraphs 56 are the complement of a //-graph of $). The group PSL3(4) has 3 orbits
on the hyperovals, all of length 56. Two hyperovals are in the same orbit if and only
if they meet in an even number of points. The stabilizer of a hyperoval O in PSL3(4)
is isomorphic to A6. It has two more orbits on the PSL3(4)-orbit of 0, one of length
45, consisting of all hyperovals meeting 0 in 2 points, and one of length 10 consisting
of the hyperovals disjoint from 0. This stabilizer has two orbits of length 36 and 20
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on the two other PSL3(4)-orbits on the hyperovals, consisting of all hyperovals of that
orbit meeting O in, respectively, 1 or 3 points of PG(2,4). The stabilizer of one of the
orbits in PFL3(4) is isomorphic to PEL3(4), and permutes the two other orbits.

We shall use the following description of Si (see [5]). First we fix the point q. The
neighbours of q are the 105 flags of PG(2,4), where two flags are adjacent if and only
if they are at distance 1 or 3 in the generalized hexagon on these flags. Now fix one
of the 3 orbits of PSL3(4) of length 56 on the hyperovals, say 0. The vertices at
distance 2 from q are the elements of 0. Two hyperovals are adjacent if and only if
they meet in 2 points. A flag and a hyperoval are adjacent if and only if the point
(respectively, line) of the flag lies in the hyperoval (respectively, dual hyperoval). Fix
a hyperoval O not in 0, and consider the subgraph Jt of S> consisting of q, all flags
on O or its dual and all elements of & that meet O in 3 points of the plane. Then Jt
consists of 1+60 + 20 = 81 points. This graph is the //-graph appearing in the
complement of the McLaughlin graph and thus locally the complement of H in the
distance l-or-3 graph of the generalized hexagon of order (4,1). It is a strongly regular
graph with parameters (v, k, X, //) equal to (81,60,45,42). The complement of Jt in S)
is also isomorphic to Jt. There are 112 elements in the PSU4(3) orbit of Jt, the
complement of Jt not being one of them. Any subgraph of this orbit meets Jt in 81,
45 or 27 points, and hence meets the complement of Jt in 0, 36 or 54 points. (This
can be checked within the McLaughlin graph.)

We shall show that in fact all subgraphs of S) that are locally the complement of
H in the distance l-or-3 graph of the generalized hexagon of order (4,1) are in the
PSU4(3) orbit of Jt or its complement in S>.

LEMMA 3.5. The graph M is in the PSU4(3) orbit of Jt or of its complement in S).

Proof. Fix the point q, and consider Mq and its complement in S)q, the set Hq.
The graph Mq is isomorphic to the graph whose vertex set consists of the 60 flags of
PG(2,4) meeting a hyperoval Oq or its dual. Two such flags are adjacent if and only
if they are at distance 1 or 3 in the generalized hexagon of order (4,1) defined on the
flags of PG(2,4). In particular, one can easily check that inside Mq two nonadjacent
vertices have at least 32 common neighbours. Thus inside M the //-graphs consist of
at least 33 vertices. By the above, Mq is either a //-graph in Si, or it consists of the 60
flags of PG(2,4) meeting one of the 112 hyperovals not in 0.

The same arguments as used in the proof of Proposition 3.4 rule out the case
where Mq is the //-graph for some point r in Si at distance 2 from q, that is, Mq =
r1 0 q1 in 2.

Thus assume that Mq is not the //-graph of some point r at distance 2 from q, that
is, Oq $ (9. There are 36 hyperovals in 0 meeting the hyperoval Oq in a unique point
of PG(2,4). Thus each of these 36 points of S> is adjacent to 30 points in Hq and 30
points in Mq. Since //-graphs in M contain at least 32 points, none of the 36 points
is in M.

The remaining 20 points at distance 2 from q are hyperovals of 0 meeting the
hyperoval Oq in 3 points of PG(2,4). Hence these 20 points are adjacent to 18 points
of Hq and 42 points in Mq. So //-graphs of M contain 42 points, and as Mq has valency
45, there are at least 60 . (60-45-1) /42 = 20 points at distance 2 from q. Thus,
all 20 points in (9 meeting Oq in 3 points of PG(2,4) are in M. In particular, M
consists of q, Mq and the 20 points in 0 meeting Oq in 3 points of the projective
planePG(2,4).
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Since there are 112 hyperovals not in (9, there are 162.112/81 = 224 subgraphs in
3 that are locally isomorphic to the complement of / / in the distance l-or-3 graph of
the generalized hexagon of order (4,1). The lemma follows now easily.

PROPOSITION 3.6. If A is the extended generalized hexagon on 162 points related
to PSU4(3), then Y is isomorphic to the 2-fold extended hexagon related to McL.

Proof. By the above lemma we find that for any two points at distance 2 in 0
the number of common neighbours is 81. Moreover, since each point of the
complement of M in 3) is adjacent to some point in Ji, the diameter of ^ is 2. Hence
^ is a strongly regular graph with parameters (v, k, X, n) — (275,162,105,81). A
strongly regular graph with these parameters has been shown to be isomorphic to the
complement of the McLaughlin graph by Cameron, Goethals and Seidel [2]. Here
however, we quickly obtain the uniqueness of T in the following way, without using
[2]-

There are 112 vertices at distance 2 from q. We can identify each of these points
with a subgraph of 3) isomorphic to Ji. Without loss of generality we may identify
one of these points with Ji.

The subgraph of ^ induced on the 112 points not adjacent to q is locally
isomorphic with the complement of Ji in 3, and thus with Ji. Since its valency is
larger than 112/2, this subgraph is connected.

Two adjacent vertices x and y in this graph have 60 common neighbours, and thus
45 common neighbours in %. But that implies that the two subgraphs q1 D xl and
q1 D yx are in the same PSU4(3) orbit. In particular, by connectivity of the subgraph,
the points at distance 2 from q are in one orbit under the action of PSU4(3). But then
it is easy to see that the graph ^ is unique up to isomorphism. Moreover, T is unique:
as there is only one set of 5-cliques in 3 inducing an extended generalized hexagon
on 3, there is only one set of 6-cliques making T locally A. The McL 2-fold extended
generalized hexagon does satisfy the hypothesis, and we find that it is isomorphic to

r.
4. The triangular 3-fold extended hexagon related to 2 x Co3

The purpose of this section is to show that the 2 x Co3 3-fold extended hexagon
is the only triangular extension of the McL 2-fold extended hexagon satisfying the
hypothesis of Theorem 1.1.

Assume that A is the 2-fold extension related to McL, 3 its point graph, and T
a triangular extension of A with point graph <S. Then ^ is locally 3).

Let (p, q, r) be a path of length 2 in ^, and set M to be the subgraph induced by
/ f i r 1 in 3. Then the graph M is locally isomorphic to the //-graph of the
complement of the McLaughlin graph, and thus to the graph Ji of the previous
section. By Lemma 3.5 we find that Mq is either a //-graph in A, or the complement
of a //-graph. For each point JC of M denote by x' the unique point at distance 2 from
x in 3 such that Mx is either x1 0 x'1 or its complement in 3X.

Let x be a point in M, and y e Mx. Then Mx n My consists of 60 points. The points
of 3y — My have 45 neighbours in My, so that we can conclude that x' is not adjacent
to y, and Mx consists of the points of 3X not adjacent to x'. By the same argument
we find that My consists of all the points in 3y not adjacent to y'.

The 81 points at distance 1 from x', but 2 from JC have 36 neighbours in Mx, and
thus also some neighbour in Mx n My. The 30 vertices at distance 2 from both x and



22 HANS CUYPERS, ANNA KASIKOVA AND DMITRII V. PASECHNIK

x' have 54 neighbours in Mx, and therefore also neighbours in Mx f] My. Thus the
point y' has to be equal to x'. Since each point at distance 2 from both x and x' is
adjacent to some yeMx and thus is My, we find that M contains and hence consists
of the 112 points not adjacent to x'.

Now we can count the number of points at distance 2 from r in &. There are
exactly 275.112/112 = 275 such points.

The point q' is at distance 3 from r. Any point of <&p different from q' is either
adjacent to q' or adjacent to r. Thus all common neighbours of q' and/? are at distance
2 from r. Since the graph yq, is connected we find that all neighbours of q' are
at distance 2 from r. Moreover, this implies that q' is the unique point at distance 3
from r.

But now uniqueness of the graph ^ is obvious, and, since there is a unique way
to fix a set of 6-cliques in Q) making it into a 2-fold extended hexagon, we also obtain
uniqueness of F. We have proved the following.

PROPOSITION 4.1. IfYis triangular and locally the McL 2-fold extended hexagon,
then it is isomorphic to the 2 x Co3 3-fold extended hexagon.

5. The nontriangular 3-fold extended hexagon related to Co3

In this final section we give a characterization of the 3-fold extended hexagon on
276 points related to the sporadic group Co3. But first we consider 2-fold extensions
of generalized hexagons.

PROPOSITION 5.1. Let Y be an extension of one of the four extended hexagons
related to G2(2), PSU4(3), HJ, respectively, Suz. Then Y is triangular and thus
isomorphic to the McL 2-fold extended hexagon.

Proof. Let A be one of the four extended hexagons satisfying (*) such that
F is an extension of A. The point graph of A is strongly regular with parameters
(v, k, X, n), say. Let x, p and q be 3 pairwise adjacent points of F. We want to show
that they are in a common circle.

Assume to the contrary that p and q are not adjacent in Yx. Let

# = {C/n V-{x}\xeUe%,xEVe%\U(] V\ > 2},

and set Jf — \JUe$ U. Notice that \Jf\ equals fi. (See also [5].)

Fix a point yeJf. Then there is no circle through p, q and y. Assume on the
contrary that W is such a circle. There are circles Ue^p and Ve(€q with U()V
containing x and y together with some third point z. Inside Yy we see that p, q and x
form a triangle not in a circle. Thus the distance between the points p and q in the
generalized hexagon F^ x is 3. However, it is at most 2, since z is collinear to both/?
and q inside Yyx. Thus indeed, there is no circle through p, q and y.

This implies that no point of Jf is collinear to q inside Fp. Thus Jf contains
at most k—y. points. Hence, fi+ 1 ^k—fi, which is a contradiction in all the four
cases.

We can conclude that F is triangular. By Proposition 3.6, it is isomorphic to the
McL 2-fold extended hexagon.
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PROPOSITION 5.2. Suppose that Y is an extension of the McL 2-fold extended
hexagon. Then Y is isomorphic to the 3-fold extended hexagon on 552 points related to
2 x Co3, or to its quotient on 276 points related to Co3.

Proof. Let A be the McL 2-fold extended hexagon. If F is a triangular extension
of A, then, by Proposition 4.1, it is isomorphic to the 2 x Co3 3-fold extended hexagon
on 552 points. Suppose that F is not triangular. Let p, q and x be a triple of pairwise
adjacent points of F, such that p and q are not adjacent in Yx. Let

<% = {UnV-{x}\xeUe<$p,xeVe%,\U0V\>3},

and set Jf = \JUe!g U. Note that JV contains 81 points.
Let yeJf. Since Fy is triangular, there is no circle on p, q and y. So q and y are

not adjacent inside Fp. The valency of the subgraph of the point graph of Yv induced
on the vertices not adjacent to q (inside Fp) is 81. Moreover, this subgraph is
connected. Hence all points of Fp not adjacent to q inside Fp are adjacent to q inside
F. Since the complement of the point graph of A is connected, we find that any two
points of Yv are adjacent inside Y. But that implies that all pairs of points of Y are
adjacent, and that Y is a one point extension of A.

Since the point graph of A is strongly regular with parameters k and // such that
k = 2fi, we find that Y carries the structure of a regular 2-graph. (See [1,6,9].) Now
we can finish the proof of the proposition by referring to [6], or by considering the
universal cover obtained by a standard construction for 2-graphs, see [1,6,9]. Its
point graph is the Taylor graph of the regular 2-graph. This cover is a triangular
extension of A and, by Proposition 4.1, it is isomorphic to the 2 x Co3 extension of
A. This proves the proposition.

We finish the proof of Theorem 1.1 with the following proposition.

PROPOSITION 5.3. There exists no r-fold extended hexagon with r ^ 4 satisfying the
hypothesis of Theorem 1.1.

Proof. Suppose that Y is a 4-fold extended hexagon satisfying the hypothesis of
Theorem 1.1. Fix 4 cocircular points xx, x2, x3 and x4, and denote by X the set
\X 1 5 X%, X$, X^j.

By Proposition 3.4 we have that F^ is isomorphic to the unique generalized
hexagon of order (4,1). Identify the points of Yx with the flags of the projective plane
PG(2,4).

Consider a point yt in r̂ x{a.<} which is not cocircular inside this extended hexagon
with xt. As we have seen in Lemma 3.3, we can associate to yi a unique subset HVt of
the hexagon F^ consisting of the flags of PG(2,4) missing a hyperoval and its dual.
Namely, the set {yt} U X\{xt} is cocircular with a point ze Yx if and only if the point
2 is not in Hy(. For fixed / there are 56 different points y{ which are all associated to
distinct sets Hy(.

Let {i,j, k, 1} = {1,2,3,4}. As, by Proposition 5.1, the residue of any two cocircular
points of F is isomorphic to the 2-fold extended hexagon related to McL, we find in
the residue FT r that the subsets H.. and H,. are distinct. Thus, we can find at least

xk'xl «i V)

4.56 different subsets of the form HVi inside the hexagon Yx. However, as PG(2,4)
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admits only 168 hyperovals, there are precisely 168 such subsets HV(. This
contradiction implies that there is no 4-fold extended hexagon and hence also no
r-fold extended hexagon with r ^ 4 satisfying the hypothesis of Theorem 1.1.
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