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In an approach analogous to that used to treat electronic currents in semiconductor quantum dots,
we investigate the exciton current in a pigment network that is sandwiched between two exciton
reservoirs, also known as the emitter and the acceptor. Employing the master equation for the reduced
density matrix, the exciton current is obtained analytically for a two-site model, and numerically
for an eight-site Fenna-Matthews-Olson (FMO) subunit model. It is found that, to maximize the
exciton current with a specific network configuration, there exist optimal emitter temperatures and
exciton transfer rates between the network and the reservoirs. The steady state current in the FMO
model is consistent with the trapping time calculated by network optimization in the one-exciton
picture. The current optimization with respect to various control parameters is discussed for the FMO
model. At and below the biologically relevant transfer rate 1 ps−1, the FMO network is more efficient
for excitation energy transfer than the two-site model. Beyond this scale, the FMO network shows
robustness with respect to the interplay with the reservoirs. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4795204]

I. INTRODUCTION

Thanks to recent compelling experimental evidence of
long-lived quantum coherence that facilitates excitation en-
ergy transfer (EET) in photosynthesis, considerable atten-
tion has been devoted to understanding the observed high
EET efficiency in various complexes of chlorophylls (Chls)
and bacteriochlorophylls (BChls).1–14 Among theoretical ef-
forts are proposals using protein-protected (phonon-induced)
coherence dynamics4–8 and network optimization.9–11 Most
existing theoretical models are constructed using the one-
exciton picture. In natural photosynthesis, the time scale of
solar photon capture is much larger than those of excitation
transfer and decay.15, 16 Therefore, it perhaps makes sense
to address the EET issues in the one-exciton picture. How-
ever, the process of EET in light-harvesting systems is one
in which the excitons are successionally created in anten-
nas and trapped by reaction centers subsequently, yielding a
continuous energy flow. Furthermore, for an artificial photo-
synthesis apparatus aimed to optimize solar energy utiliza-
tion and improve photon capture efficiency, multi-exciton ef-
fects are not negligible, and the EET should be considered
in a multi-exciton picture that is capable to describe con-
tinuous exciton currents. In fact, the creation and annihila-
tion of excitons in the antennas and the reaction centers can
be viewed as what occurs in sources and drains of energy
carriers, respectively. Therefore, a new optimization mech-
anism is in need to better describe the source-drain trans-
fer network of excitons. Along this line, Xiong et al. in-
troduced a source-network-drain Hamiltionian14 for excitons
to study EET in photosynthetic systems, analogous to treat-
ments of electronic transport. The exciton current is calcu-
lated using the Landauer-Büttiker expression summing over
all incident and outgoing exciton channels in the sources

a)Electronic address: YZhao@ntu.edu.sg.

and drains, respectively, and integrating over the energy.17

Effects of static disorder and thermal excitations on EET are
examined by solving the Schrödinger equation and taking into
account rates of exciton creations and annihilations in anten-
nas and reactions centers as well as coherent exciton hoppings
in the pigment network. A similar line will be followed in this
work.

It is well known that in electronic transport processes the
current can be described by the Green’s function method18

or a quantum master equation approach19 among other the-
oretical tools. In this work, to deal with exciton transport in
photosynthesis, we borrow the master equation method that
has been widely used in the one-exciton picture. Making the
Born-Markov approximation, we present the quantum master
equation in the Lindblad form for exciton transfer processes
between the pigments and the exciton emitter/acceptor with
transfer rates given by the Fermic golden rule. Unlike elec-
tronic transport in quantum dots, the thermal average of the
emitter exciton number plays a significantly different role in
the excitation transfer dynamics. The average exciton number
is directly related to the injection process, and behaves as a
decoherence factor. From the experimentalist viewpoint, the
average exciton number can be conveniently taken as the nor-
malized temperature of the emitter. Our results indicate that,
to maximize the exciton current (or quantum yield), there ex-
ist optimal emitter temperatures and transfer rates for a given
molecular configuration. Taking into account the decay pro-
cess of excitons, an analytic formulation for the steady state
EET efficiency is given yielding a monotonically decreasing
function of the normalized temperature.

We first investigate in this work the exciton current in a
two-site toy model consisting of two coupled pigments as an
exciton bridge between an emitter and an acceptor. Consid-
ering the emitter and the acceptor as exciton reservoirs, we
focus on the exciton current in the steady state. Analogous
to the electronic transport in semiconductor quantum dots,
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EET in excitonic conductors is treated by the master equation
approach.20 As an application of our formulation to a realistic
network of BChls, we next discuss energy transfer in the well-
known Fenna-Matthews-Olson (FMO) light harvesting com-
plex in green sulfur bacteria.21 As an exciton conductor link-
ing the chlorosome antennas to the reaction centers, the FMO
consists of three identical subunits in which EET pathways
are created by the BChl pigment-pigment coupling. Recent
crystallographic analysis revealed a revised FMO structure
with each subunit containing an eighth BChl in addition to
the seven earlier-known BChls.22, 23 Various non-Markovian
and nonperturbative treatments have been suggested to model
coherent EET in the seven-site monomer with BChl 1 or 6
initially excited.24–28 However, population oscillations that
have been reported by a number of authors on the previously-
known seven BChls may be suppressed by the eighth BChl
due to a large difference in site energy of BChl 8 and weak
coupling to the group of the seven BChls.29–31 Even without
the short-time oscillations, the high EET efficiency is still pre-
served in the eight-site subunit. Moreover, the optimization
theory proved that the FMO network was robust with respect
to its own configuration and the interaction with the phonon
bath.31, 32 The exciton current optimization, with respect to the
normalized temperature and the transfer rates, displays simi-
lar trends as in the two-site model. At and below the biologi-
cal transfer rate 1 ps−1, the FMO network is more efficient for
EET than the two-site model.31, 33 Beyond this scale, the FMO
network shows robustness with respect to the interplay of the
reservoirs. Following Ref. 31, the on-site energy of BChl 8
and the exciton-phonon coupling strength are discussed, and
an optimal on-site energy of BChl 8 is found to be in good
agreement with the experimental value. The exciton current is
found to increase with the exciton-phonon coupling strength,
before reaching saturation in a wide parameter regime.

The overdamped Brownian oscillator model in the
high temperature limit5, 24 with one of the frequently-used
phonon correlation functions is employed in this work to
help simulate phonon-induced dissipation under the Redfield
approximation.34–37 Popular in nuclear magnetic resonance
and optical spectroscopy, the Redfield approach treats the
system-bath coupling to second order in perturbation the-
ory, and uses the energy eigenstate representation with no
promise of complete positivity. For all but the simplest cases,
no analytical solutions can be found for the formidable Red-
field equations. Under the assumption of Markovian dynam-
ics and initial system-bath decoupling, the semigroup ap-
proach deals with dissipative dynamics by using the Lind-
blad dissipation operators, which are in fact operators in
the system Hilbert space responsible for system-bath cou-
plings. Semigroup methods can treat simultaneously multi-
ple types of system-bath interactions. The Lindblad-type mas-
ter equation widely used to describe exciton energy trans-
fer in photosynthetic systems is the Haken-Strobl equation,
also known as the Haken-Strobl-Lindblad equation.9, 10, 38–40

In this work, results on the population dynamics using the
Haken-Strobl approximation41 are also presented for compar-
ison. The Haken-Strobl model assumes infinite temperature,
hence only the real part of the bath correlation function is
kept. In the limit of vanishing exciton-band width, the Haken-

Strobl model can be recovered from the Redfield approxima-
tion. Numerical simulations show that the Redfield approach
gives more reliable results as the interplay between pigment
configurations and phonon relaxation is suppressed in the
Haken-Strobl model. In the multi-exciton picture, by tak-
ing a biologically relevant transfer rate, the Redfield method
yields a much larger outgoing current. Furthermore, the aver-
age trapping time from the Redfield simulation is consistent
with that obtained in the one-exciton picture.31

In some biological light-harvesting systems such as the
FMO complex, the exciton-phonon coupling (or the reorga-
nization energy) is comparable in magnitude to the trans-
fer coupling between pigments, which renders the conven-
tional Redfield equation invalid for EET calculations.42, 43 For
this reason, many sophisticated theoretical treatments have
been recently introduced, such as a few improved Redfield-
like methods,40, 44, 45 the approach of polaron transforma-
tion combined with master equations,46 the iterative path-
integral algorithm,25, 47 and the hierarchical equation of mo-
tion (HEOM) approach.5, 24 Numerically exact quantum dy-
namics can be obtained by the latter two methods for hun-
dreds of femtoseconds after the initial excitation, which are
in agreement with earlier results in the weak- and strong-
coupling regimes.25, 47 In this work, however, we mainly con-
cern ourselves with the steady state current and the long-time
limit, and the Markovian approximation is therefore assumed.
In the one-exciton picture, the conventional Redfield equa-
tion can reproduce approximately numerical results that are
obtained by the HEOM approach and the path-integral algo-
rithm in the long-time limit, as confirmed in Refs. 5 and 25.
We expect similar conclusions to hold in the multi-exciton
picture. Furthermore, the exciton Hilbert space in the multi-
exciton picture is much larger than that in the one-exciton pic-
ture, rendering a rigorous investigation of phonon dissipation
computationally expensive if not impossible. To capture the
relevant optimization features of EET dynamics in a quali-
tative manner, we employ the Redfield-equation approach to
discuss the phonon induced dissipation. More sophisticated
treatments will be devised in our future efforts.

The remainder of our paper is organized as follows. In
Sec. II, the master equation is introduced for the two-site
model. An analytical form of the steady-state exciton cur-
rent is obtained from the master equation together with the
EET efficiency. In Sec. III, the relatively complicated FMO
model is tackled numerically taking into account phonon
induced dissipation. Optimization of the steady state cur-
rent is discussed with respect to the normalized tempera-
ture, the transfer rates, the on-site energy of BChl 8, and the
exciton-phonon coupling strength. Conclusions are drawn in
Sec. IV.

II. EXCITON CURRENT IN THE TWO-SITE MODEL

In this section, we investigate a two-site system as an ex-
citation conductor sandwiched between an emitter and an ac-
ceptor, as sketched in the upper panel of Fig. 1. The emitter
and acceptor are treated as uncorrelated exciton reservoirs,
and assumed to be always in thermal equilibrium with chem-
ical potentials μE and zero, respectively. The Hamiltonian of
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FIG. 1. Schematic illustration of the exciton conduction in a two-site toy
model (upper panel) and that in an eight-site FMO subunit (lower panel).
The exciton transfer from emitters to sites is reversible, whereas the transfer
from sites to acceptors is irreversible. Our calculations indicate that the FMO
network provides a larger exciton current than the two-site model, for the
biological transfer rate γ = 1 ps−1.

the entire system is given by

Ĥ = ĤS + ĤR + ĤSR, (1)

where

ĤS =
2∑

n=1

Enĉ
†
nĉn − J

(
ĉ
†
1ĉ2 + ĉ

†
2ĉ1

)
, (2)

ĤR =
∑

k

εkê
†
kêk +

∑
p

εpâ†
pâp, (3)

ĤSR =
∑

k

[
TE(εk)ĉ†1êk + T ∗

E (εk)ĉ1ê
†
k

]

+
∑

p

[
TA(εp)ĉ†2âp + T ∗

A(εp)ĉ2â
†
p

]
. (4)

Here ĤS denotes the pure exciton Hamiltonian of the two-
site system, where each site is a two-level system represented
by the on-site energy En and the Frenkel exciton annihilation
(creation) operator ĉn(ĉ†n); J is the hopping integral between
the two sites. The reservoir Hamiltonian is labeled by ĤR,
where εk (εp) and êk (âp) denote the single-particle energy
and the annihilation operator of the emitter (acceptor), re-
spectively. The interaction between the system and reservoirs,
ĤSR, is described by the electronic coupling coefficients TE

and TA, which in general depend on the energy levels of the
corresponding excitation bands.

We assume weak transmission and that the relaxation
time scales of both reservoirs are much smaller than that for
inter-site hopping. Following the standard second-order per-
turbation theory, and making the Markov approximation, the
master equation of the reduced density matrix ρ = TrR{ρ tot}
can be written in the Lindblad form20, 48–51 (here ¯ is set to
unity)

dρ

dt
= Lρ = −i[ĤS, ρ]

+ 1

2
γEn̄E

[
2ĉ

†
1ρĉ1 − ρĉ1ĉ

†
1 − ĉ1ĉ

†
1ρ

]

+ 1

2
γE(1 + n̄E)

[
2ĉ1ρĉ

†
1 − ρĉ

†
1ĉ1 − ĉ

†
1ĉ1ρ

]

+ 1

2
γA

[
2ĉ2ρĉ

†
2 − ρĉ

†
2ĉ2 − ĉ

†
2ĉ2ρ

]
. (5)

Here the first term on the right hand side denotes the inter-site
exciton hopping, and the remaining three terms describe the
Poisson processes52–54 that correspond to the exciton injection
from the emitter to site 1, the exciton reflection from site 1 to
the emitter, and the exciton transmission from site 2 to the
acceptor. Further, γ E and γ A are the injection and transmis-
sion rates, respectively, which are determined by the Fermic
golden rule,20

γE = 2π |TE(E1)|2�E(E1),

γA = 2π |TA(E2)|2�A(E2),

where �E and �A are the densities of states of the correspond-
ing reservoirs. In this paper, γ E and γ A are called as the trans-
fer rates for the emitter and acceptor, respectively. n̄E is the
average emitter exciton number in a degenerate state of the
energy level E1,

n̄E = 1

e(E1−μE )/kBT − 1
.

Ultra-low temperatures and the Bose-Einstein condensation
are beyond the scope of this paper. One can expect that the
chemical potential μE varies slowly near the physiological
temperature and does not deviate too far from the on-site en-
ergy (e.g., hundreds of cm−1), and thus, the mean exciton
number is effectively related to the temperature.55 Since n̄E

increases monotonically with T, n̄E can be considered as the
normalized temperature of the emitter. In the acceptor, the
chemical potential is assumed to be zero so that the mean ex-
citon number can be neglected if the temperature is not very
high.

There are four bases in the site representation: the exciton
vacuum state |0〉 ≡ |0, 0〉, the singly excited states |1〉 ≡ |1, 0〉,
|2〉 ≡ |0, 1〉, and the doubly occupied state |d〉 ≡ |1, 1〉. The
exciton populations P1 ≡ Tr{ρĉ

†
1ĉ1} and P2 ≡ Tr{ρĉ

†
2ĉ2}, and

the exciton coherence ρ12 = Tr{ρĉ
†
2ĉ1} obeys a closed set of

equations,

dP1

dt
= 2J Imρ12 + γEn̄E(1 − P1) − γE(1 + n̄E)P1, (6)

dP2

dt
= −2J Imρ12 − γAP2, (7)

dρ12

dt
= −i [E12ρ12 + J (P1 − P2)]

− γEn̄Eρ12 − 1

2
(γE + γA)ρ12. (8)

Here “Im” denotes the imaginary part of a complex variable,
and E12 ≡ E1 − E2 is the on-site energy difference (i.e., detun-
ing). On the right side of equation (7), the first term describes
the hopping from site 1 to site 2, and the second term, the
transfer from site 2 to the acceptor. Naturally, one can define
the average outgoing current as

〈Io〉 = γAP2, (9)

which quantifies the exciton current from the system to the
acceptor, or the quantum yield in a unit time. Similarly, the
average incoming current can be defined as

〈Iin〉 = γEn̄E(1 − P1) − γE(1 + n̄E)P1. (10)
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From this point on, the average outgoing current 〈Io〉 is re-
ferred to as the exciton current without ambiguity. Given an
initial state, one can solve the master equation exactly. How-
ever, for long times, the system settles into a steady state that
has no memory of initial conditions. In the steady state, Eqs.
(6)–(8) are reduced to algebraic equations that can be solved
easily,

P ∞
1 = n̄E − P ∞

2 γA/γE

2n̄E + 1
, (11)

P ∞
2 = 2J 2�γEn̄E

(2n̄E + 1)(E2
12 + �2)γEγA + 4J 2�2

, (12)

ρ∞
12 = −

(
E12

�
+ i

)
γAP ∞

2

2J
, (13)

where the upper index “∞” indicates the steady state and
� ≡ γE(n̄E + 1/2) + γA/2. The real part of ρ∞

12 depends on
the on-site energy difference E12, and its imaginary part is di-
rectly proportional to the exciton current, pointing to the fact
that an enhanced coherence brings about more efficient en-
ergy transport.

For a system with parity, E12 = 0 and γ A = γ E = γ , the
exciton current has a simplified form 〈Io〉∞ in the steady state,

〈Io〉∞ = 2J 2γ n̄E

(n̄E + 1)
[
(2n̄E + 1)γ 2 + 4J 2

] . (14)

Up to a saturation value, the exciton current trivially increases
with the hopping integral J,

〈Io〉∞
∣∣
J 2/γ 2�n̄E

= n̄Eγ

2(n̄E + 1)
. (15)

But for a given J , there exist optimal values of n̄E and γ ,

n̄E = 1 + √
5

2
	 1.62, γ = 2J

√√
5 − 2 	 0.97J, (16)

which maximize the steady current. In Fig. 2, the steady
state current 〈Io〉∞ is plotted as a function of the normalized
temperature n̄E and the normalized transfer rate γ /J. As the

FIG. 2. Steady-state exciton current 〈Io〉∞ versus γ /J and n̄E in the symmet-
ric two-site model. The temperature dependence of the current varies dramat-
ically while the transfer rates take values around the hopping integral.

temperature (or the transfer rate) goes up, the current firstly
increases quickly reaching a maximum, and then decreases
gradually. In Eq. (6), the factor γ n̄E plays the role of exci-
tation injection rate, but in Eq. (8), it is tied to decoherence.
For large transfer rates or at high temperatures, the decoher-
ence effect becomes dominant, and the exciton current is sup-
pressed.

To define the EET efficiency, we introduce the decay pro-
cess with a homogeneous decay rate γ d. Exciton population
decay per unit time is given by 〈Id〉 = γ d(P1 + P2). In the
steady state, 〈Iin〉∞ = 〈Io〉∞ + 〈Id〉∞, and the EET efficiency
is defined as

η∞ = 〈Io〉∞
〈Io〉∞ + 〈Id〉∞ = 1

1 + γd

γ

(
P ∞

1

P ∞
2

+ 1

) . (17)

In principle, the decay process may be involved in the master
equation. However, as γ d is much smaller than the transfer
rates and hopping integral, the steady state populations differ
very little from those given in Eqs. (11) and (12). Neglecting
higher order terms (in γ d/γ ), one can substitute Eqs. (11) and
(12) into Eq. (17), and obtain

η∞ = 1

1 + 2
γd

γ
+ γ γd

2J 2
(n̄E + 1)

. (18)

As expected, the EET efficiency decreases monotonically as
the normalized temperature goes up. The reason is that, for a
given transfer rate γ , a larger nE means more injected exciton
populations to occupy the conductor before the decay process.

III. EXCITON CURRENT IN THE FMO MODEL

Realistic systems in photosynthesis have of course more
than two pigments. For example, there are 7 or 8 pigments
in the much studied FMO complex of green sulfur bacteria,
whereas the LH2 complex of R. Acidophila has two rings of
chromophores, one with 18 sites and one with nine. In this
section, we choose an eight-site FMO subunit as the conduc-
tor between an artificial exciton emitter and an acceptor. An il-
lustration is shown in the lower panel of Fig. 1, wherein BChls
8 and 3 serve as the entrance and the exit, respectively.29–31 In
the FMO complex, the BChl pigments are strongly coupled to
the surrounding protein matrix. Hence the dissipation caused
by the exciton-phonon scattering should be considered.

The system Hamiltonian Ĥ is given as

Ĥ = ĤS + ĤB + ĤSB + ĤR + ĤSR, (19)

ĤS =
8∑

n=1

(En + λn)ĉ†nĉn +
∑
m
=n

Jmnĉ
†
mĉn, (20)

ĤB =
∑
n,ξ

1

4
ωξ

(
P̂ 2

nξ + Q̂2
nξ

)
, (21)

ĤSB =
∑

n

ĉ†nĉnûn, ûn = −
∑

ξ

ωξgnξ Q̂nξ . (22)

Here ĤS is the exciton Hamiltonian of the eight-site sub-
unit characterized by the on-site energies En and hopping
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integrals Jmn. Each pigment is coupled to its local environ-
mental phonon bath, which is described by harmonic os-
cillators with various modes in ĤB, where ωξ and Q̂nξ

(P̂nξ ) denote the frequency and dimensionless canonical co-
ordinate (momentum) of the ξ -mode, respectively. ĤSB de-
picts the linear exciton-phonon coupling, in which gnξ is
the coordinate shift of the equilibrium configuration of the
ξ -mode, between the ground and excited states of the nth
site.56 λn ≡ ∑

ξ g2
nξωξ is the reorganization energy that char-

acterizes the exciton-phonon coupling strength. Finally, the
reservoir Hamiltonian ĤR and the system-reservoir interac-
tion Hamiltonian ĤSR assume the same forms as those in
Eqs. (3) and (4) in the two-site model.

The master equation of the reduced density matrix,
ρ = TrR,B{ρ tot}, can be generally written as

dρ

dt
= Lρ = LSρ + LSRρ + LSBρ. (23)

LSρ describes the free exciton evolution, and LSRρ, the
injection-emission process, similar to Eq. (5). Accordingly,
the average outgoing current and the steady state EET effi-
ciency can be defined by

〈Io〉 = γAP3, (24)

η∞ = 〈Io〉∞
〈Io〉∞ + 〈Id〉∞ = 〈Io〉∞

〈Io〉∞ + γd

8∑
α=1

P ∞
α

, (25)

where γ A and γ d are the emission (trapping) rate and the ho-
mogeneous decay rate, respectively; Pα ≡ Tr{ρĉ†αĉα} is the
exciton population on site α.

The last term on the right side of Eq. (23) represents the
dissipation process induced by the exciton-phonon scattering.
Since we are interested in the steady state, the Markov ap-
proximation can be readily used. Our starting point is the sec-
ond order cumulant expansion in the Markovian and secular
limits,5, 56–58

LSBρ = −
∑

n

[ĉ†nĉn, �̂nρ − ρ�̂†
n], (26)

�̂n =
∫ ∞

0
dτCn(τ )e−iĤSτ ĉ†nĉneiĤSτ . (27)

Dissipation is characterized by the time correlation function
of the phonon bath,

Cn(t) =
∑

ξ

g2
nξω

2
ξ

[
coth

(
ωξ

2kBT

)
cos ωξ t − i sin ωξ t

]
.

(28)
The simplest treatment of the correlation function is the δ-
correlation assumption,41 Cn(t) ∼ δ(t), which leads to the
Haken-Strobl form,9, 10

LSBρ = −
∑

n

ηn

[
ĉ†nĉnρ + ρĉ†nĉn − 2ĉ†nĉnρĉ†nĉn

]
, (29)

where ηn denotes the dissipation rate. Such a simplification
has an obvious shortcoming that the dependence of the dissi-
pation rate on the physical parameters (e.g., the temperature)
is not clear.

A more precise treatment is to extract the correlation
function from fitting measured spectra. One frequently used
form is the overdamped Brownian oscillation in the high tem-
perature limit,5, 32, 33, 59–62

Cn(t) = (2λnkBT − iλnωc) e−ωct , for T > Tc. (30)

where ωc and Tc ≡ ¯ωc/kB are the characteristic frequency
and temperature of the phonon bath, respectively. With this
correlation function, Eq. (27) can be readily expressed in the
exciton basis,

�̂n =
∑
μ,ν

2λnkBT − iλnωc

ωc + iωμν

A∗
nμAnνĉ

†
μĉν, (31)

ĉ†μ =
∑

n

Anμĉ†n, ĤS =
∑

μ

εμĉ†μĉμ, (32)

where ωμν = εμ − εν is the exciton energy difference. Substi-
tuting Eq. (31) into Eq. (26), one obtains the secular Redfield
form.

If the free exciton bandwidth is much smaller than the re-
laxation rate of the phonon bath, i.e., ωμν � ωc, the Redfield
approximation can be reduced to the Haken-Strobl form

�̂n 	 (2λnT /Tc − iλn)ĉ†nĉn. (33)

On the right hand side of Eq. (33), the real part of the co-
efficient, 2λnT/Tc, is the temperature-dependent dissipation
rate ηn, and the imaginary part cancels out the on-site energy
shift in ĤS. However, this is not the case for the FMO com-
plex. The phonon parameters used are λn = λc = 35 cm−1,
and ωc = (50 fs)−1 is of the same order of magnitude as the
exciton bandwidth.24, 31, 63, 64 The value of (50 fs)−1 has been
widely used as the cutoff frequency in the literature.31, 42 In the
calculations below, we will employ (λc, ωc) for the phonon
manifold and (En, Jmn) for the pigment network following
Renger and co-workers.29 The temperature of the phonon bath
is set to be 300 K, which is higher than the characteristic tem-
perature Tc = 153 K, thus satisfying the high temperature con-
dition. The decay rate is set to be γd = 1 ns−1, and for sim-
plicity, the transfer rates are assumed to be uniform γ E = γ A

= γ .
The interplay between the pigment configuration and

phonon bath relaxation is suppressed in the Haken-Strobl
model (33), which inevitably leads to inferior results when
compared with those obtained under the Redfield approxima-
tion (31). In Fig. 3, we present population dynamics in the
one-exciton picture calculated by the two approaches. There
is an acceptor but no emitter source, and initially BChl 8 is
excited. One can see that the exciton populations fade away
within ten picoseconds in the Redfield approach, whereas in
the Haken-Strobl simulation the populations reach the ther-
mal equilibrium and last for a much longer period of time. In
comparison, both the emitter and the acceptor are present in
the multi-exciton picture, and all the pigments are initially in
their ground states. As shown in Fig. 4, the exciton popula-
tions calculated by the two approaches in the multi-exciton
picture increase with the time until the steady state is reached.
Using a biologically relevant transfer rate γ = 1 ps−1, it
is revealed that the exciton currents calculated by the two
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FIG. 3. The FMO population dynamics in the one-exciton picture with BChl
8 excited initially. The upper and middle panels display results from the eight-
site model using the Haken-Strobl and Redfield approaches, respectively.
The bottom panel shows results from the five-site model using the Redfield
approach.

methods are very different. As shown in Fig. 4 by the thicker
blue lines next to the “current” label, the Redfield method
yields a much larger exciton current than the Haken-Strobl
approach. It should be noted that the steady state exciton cur-
rent 0.3 ps−1 obtained in the Redfield simulation corresponds
to an average transfer time 3.3 ps for one exciton to go from
the emitter to the acceptor, a result that is consistent with the
trapping time scale in the one-exciton picture.31

There are two well-known EET pathways in the tradi-
tional seven-site FMO monomer which correspond to two dis-
tinct entry sites (1 and 6) and accept excitation energy from
the chlorosome with equal priorities.65–67 In the eight-site sce-
nario, site 8 is the most likely entry point because of its loca-
tion and orientation. Considering the coupling strengths be-
tween BChl 8 and the other sites, there exists a dominant
pathway that starts from BChl 8, goes through BChls 1 and
2, and terminates at BChl 3. This can be seen from the pop-
ulation dynamics in the one-exciton picture, in which those
dominant sites attract most of the exciton population till the
exciton is trapped to the reaction center. Among others, BChl
4 is the only pigment that couples strongly to the dominant
exciton pathway. Thus, a reduced five-site model (the four-
pigment pathway plus site 4) can be adopted to simplify nu-
merical calculations.31 In the bottom panels of Figs. 3 and 4,

FIG. 4. The FMO population dynamics in the multi-exciton picture with all
8 pigments in the ground states. See line-color labels in Fig. 3. Here we set
n̄E = 1 and γ = 1 ps−1, hence the exciton current in the multi-exciton pic-
ture equals to the population P3 ≡ Tr{ρĉ

†
3ĉ3} in unit of ps−1, which is shown

as the thicker blue lines next to the “current” label in the three panels.

population dynamics is displayed for the five-site model using
the Redfield method. In the one-exciton picture, results differ
only slightly from the eight-site model. In contrast, the dis-
tinction is substantial in the multi-exciton picture, as demon-
strated by the population on site 3, thus leading to the claim
that the rest four BChls in FMO, i.e., sites 4, 5, 6, and 7, may
help build an auxiliary pathway for interference-enhanced ex-
citon transport in the eight-site FMO conductor.

Now we concentrate on the steady state exciton current
and its optimization in the eight-site FMO model within the
Redfield framework. The steady state density matrix is con-
strained by

Lρ∞ = lim
t→∞

dρ

dt
= 0, (34)

Trρ∞ = 1. (35)

In the Liouville space, the steady state density matrix ρ∞ is
a normalized eigenvector of the super-operator L with zero
eigenvalue. For the eight-site exciton system, the dimension
of the Hilbert space is 28, and the dimension of the Liouville
space is 216, making it difficult to solve Eq. (34) by direct
diagonalization of L. An alternative method is to solve the
master equation (23) for a sufficiently long time so that the
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FIG. 5. The exciton current versus n̄E in the FMO model (solid lines) and
two-site model (dashed lines), for various transfer rates γ in units of ps−1.
The hopping integral J in the two-site model is set to be 10 ps−1.

first derivative of the density matrix converges to zero within a
given precision. In our calculations, the precision requirement
is set to be ‖ Lρ∞ ‖< 10−6ps−1.

Figure 5 presents the steady state exciton current as a
function of the normalized temperature of the emitter. In the
FMO model, when the transfer rates are much smaller than the
average pigment-pigment coupling strength (∼10 ps−1), the
current increases with the temperature before reaching satura-
tion in a wide parameter regime. As the transfer rates are in-
creased to the average hopping integral, optimal value for the
normalized temperature appears readily. The above behavior
is similar to that of the two-site model. To give a comparison
between these two models, we match the hopping integral in
the two-site model to the average hopping integral of the FMO
model, and the corresponding current-temperature curves are
shown in Fig. 5. It is found that the FMO model provides
larger currents than the two-site model, at or below the bio-
logical transfer rate scale 1 ps−1, whereas for γ > 1 ps−1, an
opposite trend is revealed. This points to that the FMO net-
work is perhaps optimized for weak coupling to the antenna
and the reaction center. It should be noted that the FMO net-
work is more robust than the streamlined two-site model for
n̄E > 1.

The robustness of the FMO network is further demon-
strated in Fig. 6, where the steady state exciton current and
the EET efficiency plotted as functions of the transfer rate. It
can be seen that at low to moderate temperatures the current in
the FMO model increases slowly with γ for γ > 1 ps−1. For
high temperatures, the optimal γ which maximizes the current
emerges around the biologically relevant value. However, in
the two-site model the exciton current changes dramatically
with the transfer rates in a wide parameter regime as shown
in Fig. 2, while the EET efficiency monotonically increases
with the transfer rates. For γ > 1 ps−1, the temperature de-
pendence of EET is negligible.

The exciton current provides us a new way for optimiza-
tion not only on the interplay between the pigment network
and the emitter/acceptor, but also on the configuration of the
network itself. For an example, Fig. 7 displays the dependence

FIG. 6. The exciton current (upper panel) and the EET efficiency (lower
panel) as functions of γ in the FMO model, for various normalized tempera-
tures. The FMO model is robust as the transfer rates go beyond the biological
scale.

of the exciton current on the on-site energy of BChl 8. It is
found that the optimal on-site energies are close to the exper-
imental value 700 cm−1 for several transfer rates, and as the
transfer rate decreases, the optimal energy moves higher and
closer toward 700 cm−1.

It has been demonstrated in the literature that the pro-
tein environment plays a crucial role in determining the EET
efficiency in light harvesting complexes. Figure 8 shows the
dependence of the exciton current on the exciton-phonon cou-
pling strength in the FMO model. It is apparent in Fig. 8
that the exciton current increases with the exciton-phonon
coupling if its strength stays below λc = 35 cm−1. This result

FIG. 7. Exciton current (in ps−1) versus on-site energy (in cm−1) of BChl
8 in the FMO model, for various transfer rates γ in units of ps−1. Optimal
on-site energies are marked for each curve. The reference of on-site energies
is 12 000 cm−1.
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FIG. 8. Exciton current (in ps−1) versus exciton-phonon coupling strength
(in cm−1) in the FMO model for various transfer rates γ in units of ps−1. The
robustness is also shown when the coupling strength goes beyond 35 cm−1.

is in agreement with that obtained previously by Xiong et al.14

for a photosynthetic source-network-drain system using a
time-dependent Schrödinger equation approach, in which the
exciton current at T = 300 K is found to increase monotoni-
cally with the exciton-phonon coupling strength if it is smaller
than 48 cm−1. Deviation of our result from that in Ref. 14
in the strong-coupling regime is attributed to the breakdown
of the Redfield approximation outside the weak-coupling
regime. While on-site energy variations can enable the pig-
ment network to absorb at a broad range of frequencies,68

exciton-phonon interactions help broaden the spectral lines
further forming an excitation energy funnel.29 Dynamic dis-
order may scatter exciton transport and imped energy transfer,
but the phonon modes can also supply alternative channels for
exciton transport facilitating energy transfer.

Finally, as mentioned in the Introduction, we note that de-
spite being a simplified treatment that comes with analytical
expressions and a physically intuitive picture of the dynam-
ics, the Redfield approach used here neglects several impor-
tant aspects crucial for a quantitative description of the quan-
tum dissipative process, such as the memory of the thermal
bath and strong-coupling effects. Future extension to the non-
Markovian regime is necessary to arrive at a more accurate
description of the quantum dissipative process.

IV. CONCLUSIONS AND REMARKS

Using approaches analogous to those employed to treat
electronic currents in semiconductor quantum dots, we have
studied the exciton current in a pigment network sandwiched
between two exciton reservoirs. The exciton transfer pro-
cess between the pigment and the exciton reservoir is treated
within the Lindblad form, while the phonon-induced dissi-
pation process is approximated in the secular Redfield de-
scription. In contrast to the quantum yield in the one-exciton
picture, the exciton current in the multiple-exciton picture
provides a new venue for optimization on pigment configu-
rations and pigment-environment interplays. Employing the
master equation for the reduced density matrix, the exciton

current is obtained analytically for a two-site model, and nu-
merically for an eight-site FMO subunit model. Given a spe-
cific conductor configuration there exist optimal emitter tem-
peratures and transfer rates that maximize the exciton cur-
rent. The steady state current in the FMO model is con-
sistent with the trapping time calculated by network opti-
mization in the one-exciton picture. Optimization with re-
spect to various control parameters is discussed for the FMO
model, which is shown to be an efficient, robust network for
the excitation energy transfer. Finally, we mention some re-
cent work by Manzano,69 which also addresses steady-state
EET optimization in systems similar to ours. Using the mas-
ter equation method, Manzano calculated the energy and ex-
citon flux in a seven-site FMO model with fixed transfer
rates γ 	 0.2 ps−1. The dissipation process is treated with
the Haken-Strobl method and the optimization focuses on dis-
sipation rates and Hamiltonian disorder. Optimal dissipation
rates were found to be around 60 cm−1 for FMO.
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