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Abstract. Let F be an extended generalized octagon such that the points of a triple {u, v, w} not on 
a block are pairwise adjacent if and only if the distance between v and w in the local generalized 
octagon I'~ equals 3 and there is a thick line through any point of r~. Then I" is one of the two 
examples related to the groups 2.L3(4).22 and He. It is also shown that r does not admit further 
extensions. 

Mathematics Subject Classifications (1991): 51 E24, 20D08, 51 E12. 

1. Introduction and the Results 

A number of sporadic simple groups arise as automorphism groups of exten- 
sions of  classical geometries or buildings. The Mathieu groups act on (multiple) 
extensions of PG(2, 4) or AG(2, 3), and the sporadic Fischer groups act on exten- 
sions of the U6(2)-polar space. The Suzuki chain groups act on extensions of a 
certain subgeometry of the O+(2).3-building. The latter groups also, along with 
McL, Co2,11S, He and Ru, act on extensions of generalized polygons. The group 
Co2 acts on an extension on the U6(2)-dual polar space, the group B M  acts on 
an extension of 2E6(2)-building. These geometries were characterized under the 
assumption that they admit a flag-transitive automorphism group (see, e.g., [3], [9], 
[12], [10], [24], [23], [18]). 

Purely combinatorial characterizations of the extensions of the projective plane 
of order 4 and the affine plane of order 3, that is, without any assumption on group 
actions, were obtained by Witt in the 1930's. Recently, similar characterizations of 
some other sporadic geometries were obtained. The author gave such characteriza- 
tions of the geometries for the Suzuki chain groups related to the O + (2).3-building 
([13]), of  those related to the sporadic Fischer groups ([16], [15]), and of the exten- 
sions of  the generalized quadrangle of order (3, 9) related to the groups MeL and 
Co3 ([14]). Cuypers characterized the extended hexagons related to the Suzuki 
chain groups and the geometry for Co2([4], [5], [6]). Cuypers, Kasikova and the 
author characterized the multiple extensions of a generalized hexagon related to 
McL and Co3 ([7]). 

Hem we consider a class of extended generalized octagons. In general, they 
have infinite universal covers, see [17], thus additional conditions are needed to 
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characterize finite examples. The example F related to the group l i e  satisfies the 
following condition. 

( .)  The points of a triple {u, v, w} of points not on a block of F are pairwise 
adjacent if and only if v and w are at distance 3 in the local generalized 
octagon F~. 

There is one more example of an extended generalized octagon satisfying (,), it 
relates to the group 2. L3(4).22. It turns out that (,), along with a natural assumption 
on point residues, characterizes those two examples. 

THEOREM 1.1. Let F be an extension o f  a nondegenerate generalized octagon 
satisfying (,). Assume that for  any point u the local generalized octagon P~ has at 
least one thick line through each point. Then F is isomorphic either to the extended 
generalized octagon on 2048 points related to the group He, or to the extended 
generalized octagon on 112 points related to 2 -L3(4).22. 

R. Weiss ([24]) characterized these extended generalized octagons as flag-transitive 
geometries satisfying a property related to (,) and having diagram 

C 
O.. ~ Im,m,,mm~O 

The example related to 2.L3(4).22 admits a 2-fold quotient satisfying the property 
(*)3,4 (cf .  [5] )  obtained from (,) by replacing the words 'distance 3' to the words 
'distance 3 or 4'. This geometry appears in the list in [24], as well. Cuypers 
mentions in [5] that the methods he uses there could be applied to the extended 
generalized octagons satisfying (*)3,4. 

We also settle the question about further extensions of the geometries under 
consideration. 

THEOREM 1.2. Let F be as in Theorem 1.1. Then F does not admit any further 
extensions. 

Note that R. Weiss shows in [24] that there are no flag-transitive geometries with 
the diagram 

C 
O '  

and with residues of the left-hand side type of elements as in the remark following 
Theorem 1.1. 
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2. Definitions and Notation 

Let 1 ~ be an incidence system (7 9, B) of points and blocks, where the latter are 
subsets of 79 is size at least 2. The point graph of F is the graph with vertex 
set 79 such that two vertices p and q are adjacent (notation p _1_ q) if there is 
a block containing both of them. The distance between subsets X, Y of points 
of F (notation d(X, Y)  or d r (X ,  Y)) is the minimal distance in the point graph 
between a point of  X and a point of Y. We denote by F,~(X) the set of points at 
distance n from X C 79, we also use F(X)  instead of FI(X) .  If X = {x) we 
often use x instead of {x}. For any X C_ 79, we denote X ± = {p E :PIp _1_ z for 
any x E X ) .  The subsystem of F induced by the set X is the incidence system 
r ( x  u 79, {B n XIB E/3, IB n XI > 1)). We call r connected if its point graph 
is connected. 

An incidence system is called a generalized 2d-gon if its point graph has 
diameter d, for any p E 79 and B E /3 there exists a unique point on B closest to 
p, and for any p, q E 79 such that d(p, q) = i < d there is a unique block on p 
containing a point at distance i - 1 from q. Since it follows that there is at most 
one block on any pair of points, the blocks of F are usually called lines, and the 
word collinearity is used instead of the word adjacency. Given I', we define the 
dual system F*, in fact also a 2d-gon, whose points (respectively lines) are lines 
(respectively points) on F, incidence is by the inverse inclusion. We say that F 
is nondegenerate if for each point there exists a point at distance d from it, and 
the same holds in F ~. A line of F is thick if it contains more than two points, 
otherwise it is thin. We say that F is regular of order (8, t) if each point is on 
exactly t + 1 lines and each line contains exactly 8 + 1 points. The numbers 
and t are called parameters in this case. The famous Feit-Higman theorem ([8]) 
says that a line-thick finite regular 2d-gon satisfies d E { 1,2, 3, 4, 6). An incident 
point-line pair of 1 ~ is called aflag. Given a generalized 2d-gon F, one can always 
construct a 4d-gon F F, whose points are flags of F and whose lines are the points 
and the lines of F, incidence being the natural one. Note that it is customary to refer 
to a generalized 4-gon as a generalized quadrangle (GQ, for short, or GQ(s, t)). 
Similarly, we refer to generalized 8-gons as generalized octagons (respectively GO 
and GO(s, t)). 

In what follows a well-known family of generalized quadrangles with parame- 
ters (s, s) usually called W(s)  (see [19], a standard reference on GQ's), will play 
a significant role. For a prime power, 8, the points and the lines of W(8) are the 
points and the lines of the projective space PG(3, s) which are totally isotropic with 
respect to a nondegenerate alternating form f .  Without loss of generality, f can be 
chosen as follows: 

f ( x ,  y) = xlY4 - x2Y3 + x3Y2 - x4Yl. 

Note that W(8)* ==- W(8) if and only if8 = 2 k. 

(1) 
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Let P be an incidence system. Given X C 79(F) satisfying [B - X] > 1 for 
any B E B( r ) ,  we refer to the incidence system 

r x  = ( r ( x ) ,  { B -  XlX c B 

as the residue of X,  or as the local system in X.  Let 79 be a class of incidence 
systems. We say that r is an extension of / )  (or extended 79) if, for any z E y , ( r ) ,  P~ 
is isomorphic to a member of / ) .  I f / )  = {A}, it is customary to refer to extensions 
of 79 as extensions of A (or extended A). If r is an extension of 79 then the 
connected components of F are extensions of 79, also. Hence, unless otherwise 
stated, we assume our extensions to be connected. 

In particular, if 79 is a class of generalized octagons, we say that F is an extended 
generalized octagon. Note that F can be considered as a geometry with the follow: 
ing diagram (for this notion see, e.g., [2]). 

C 
O-------------~ ~ o 

Here g is the set of  edges of the point graph of P. Note that the subgraph E of the 
point graph of P induced by x ± - {x} is not necessarily isomorphic to the point 
graph T and F~. In particular, -- and T are not isomorphic if F is an extended 
generalized octagon satisfying (,), namely two vertices of E are adjacent if and 
only if the distance between them in T is 1 or 3. 

3. The Type of Point Residues 

In what follows F = r(7 ~, B) denotes an extended GO satisfying the conditions of 
Theorem 1.1. The main result of this section is as follows. 

PROPOSITION 3.1. r is an extension o f  the generalized octagon W (  s) F o f  flags 
o f  the generalized quadrangle W (  s), where s = 2 k. 

In the remainder of this section we prove Proposition 3.1. Then in Lemma 3.8 we 
summarise a few facts arising mainly as by-products of the proof. 

The following statement can be easily deduced from the main result~f Yanushka 
[25]. 

RESULT 3.2 (cf. [25]). Let A be a nondegenerate GO such that for  any point 
p E 79(A) there exists a thick line on p. Then exactly one o f  the following holds: 

(i) A is regular o f  order (8, t ) for  some s > 1, t >_ 1. 
(ii) A i s a G Q  (Sl,S2)F forsome  sl < s2,sl  > 1 ands2 > 1. 

(iii) A is a G F, where G is the (a + 1) x (b + 1)-gridfor some a > 1 and b > 1. [] 
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Below we say that a GO is of  type (x) if it belongs to the family (x) of  
Result  3.2. 

L e t u  E 7 ) . P i c k x , z  E u ± - u , x  # z , { x , u , z }  C_ B E B. If  I'~ is of  type 
(ii) (respectively, (iii)) we make our choice to satisfy IBI = sl + 2 (respectively, 
IBI = 3 and the size of  the other block on {u, x} to be a + 2). Choose v E x ± - u z 
satisfying v l r ~  z. 

L E M M A  3.3. Let f~ be the subsystem of the residue r~ induced by v ±, and E the 
connected component of f~ containing x. Then 

(a) dry(u, v) = 2 for any y E E; 

(b) there is exactly one thin line of ~7 on y, and the remaining lines of ~7 on y 
coincide with those of Fu, for any y E E. 

Proof Note that u -kr,  z ±r~  v. In Fx we find that for any line L on u but not 
on z each point w E L distinct from U is at distance 3 from v, so w ± v by (,) .  
The remaining line on u has all its points, except z, at distance 2 from v, so z is 
the only point on it adjacent to v. Thus we have that x ± O -- contains each line L 
o f r u  on x such that z ~ L, and xz (as a line of - - )  is thin. This proves part (b) for 
y-- - -x .  

By the choice of  z, there is a thick line of  -- on x, namely any line of  -- 
on x missing z is thick. On the other hand, let us choose v I E x ± satisfying 
dr~ (u, v I) = 4. Let  E ~ be the connected component  containing x of  the subsystem 
of  F~, induced by v ~±. Then x ± M .=/ intersects each line of  Fu on x in exactly two 
points, that is, all the lines of  -~ on x are thin. This gives us a criterion for checking 
whether dru (u, v) is 2 or 4. 

Clearly dr,(u,  v) = 2. If  y E x ± N -- - {x, z} then the line xy  of  r~, lies 
within E. By the choice of  z, xV is thick. Using the observation above in the case 
dr~(u, v') = 4 we see that dr,(u,  v) = 2. Hence dry(u, v) = 2 for any y E E. 
Thus part (a) is proved. 

To complete  the proof  of  (b) it suffices to repeat the first paragraph of  the proof  
with y in place of  x and with z ~ E yZ satisfying u Lru z ~ Lr~ v in place of  z. [] 

L E M M A  3.4. Let -- be as defined in Lemma 3.3, and set X '  = --(x) O --3(x). 
Then 

(i) IX'l = 1 + 8t + s z ,  z + st(1 + st - s)  2, 
(ii) IX'l -- 1 + 2sz + s 2, 

(iii) I X ' I =  l + a + b + a b ,  

according as rx is of type (i), (ii) or (iii). 
Proof By L e m m a  3.3 (b), we have that I--(x)] = 1 +st, 1 +s2, or 1 + a  according 

as the type of  r u  is (i), (ii), or (iii). Since the point graph of  E behaves as a 'cac- 
tus' in the first three layers, it is straightforward to count I-- 3 (x)l, and hence IX~I. [] 
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LEMMA 3.5. Let A = Fx, and set 

x = U A (u) n AAv ), 
i=1,3 

j = l , 3  

where u, x and v are as defined above. Then 

(i) IXt = 1 + 2st + s2t 3 q- s 2 t ( t  - -  1), 
(ii) IXI = 1 + Sl + s2 + sis2, 

(iii) I XI = 2 + 2a, 

according as Fu is o f  type (i), (ii) or (iii). Moreover, X = x ± n f t  - {x}, where f~ 
is as defined in Lemma 3.3. 

Proof. We begin by proving the first part of the lemma. Observe that the type of 
A can be easily determined, using the blocks on {u, x}. Namely, it is the same as 
the type of F~,, with the exception that if F~, is of type (iii) then the corresponding 
parameters b for F~, and A are not necessary equal. 

For A of type (i), we determine I Xl using standard calculations with parameters 
of distance-regular graphs [1], as follows. The point graph of A is distance regular 
with intersection array 

{s(t  + 1), st, st, st; 1, 1, 1, t + 1 }. 

Given any two vertices x, y satisfying d,x(x, y) = k, the number of vertices w 
such that d/x(x, w) = i and da(y ,  w) = j is a constant Pi~" Note that IXl = 
p~l + 2p23 + p 233 and that P21 = 1,P~3 = st. The c°nstant p23 = s2t(t2 + t - 1 )  
is computed using the recurrence formulae in [1, Lemma 4.1.7]. The consideration 
of this case is complete. 

For A of type (ii), it is clear that 

I/X(u) n/X(v)l  + I/X(u) n A3(v)l + IA3(u) N  X(v)l = 1 + sl + s2. 

Now let us consider • = A3(u ) n A3(v). Let vpqw be a path from v to ~. Since 
there are exactly two lines on each point, it follows thatp  E A3(u) and q E An(u). 
By the same reason, for any q C A2(v) n Aa(u) there is a unique point wq C q± n ~. 
Moreover, wq = we  implies q = ql, for otherwise A possesses a circuit on q, q' 
and wq of length less than 8. Hence 

= Az (v )  n A4(u) l  = sis2. 

The consideration of this case is complete. 
The remaining case of A of type (iii) is dealt with by arguments similar to those 

used for type (ii). 
The last part of the lemma immediately follows from (.). [] 
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L E M M A  3.6. Fp is isomorphic to a GO (8, 1) ,for  some constant a > 1 independent 
from particular choice o f  p E P .  

Proof. Note that X ~ C_ X,  where X and X ~ are as defined in Lemmas 3.5 and 
3.4. It follows that t = 1 if Fu is of type (i). If  Fu is of  type (ii) then X ~ C X 
implies that 81 >_ 82, a contradiction. If  F,~ is of  type (iii) then X ~ C_ X implies 
that b = 1, which is also a contradiction. 

Thus F~ is a GO(s,  1). Let w E u ± - {u}. In I'~o we see that there are exactly 
two lines on u, both of  size s + 1. Hence, by Result 3.2, F~ is a GO(s,  1), as well, 
and by the connectivity of  F the result follows. [] 

Our next task is to investigate E more closely. 

L E M M A  3.7. f / =  E, that is, f~ is connected. Moreover, f~, is a subGO Of Fu. It is 
o f  type (iii) such that a = b = s. 

Proof  Using Lemmas 3.3 and 3.6, we observe that each point of E has one thin 
line and one line of  size s + 1 through it. Combining Lemmas 3.4 and 3.5 with 
t = 1, we have X = X ~. Hence x ±z U Ea(x) = x ± n E = x ± n fL It follows that 
every thick line of  f~ intersects x ±, since each line of I',~ intersects x ± . Hence the 
first part of  the lemma holds, and the diameter of  f~ is at most 4. 

Since f~ has exactly 8 thin lines w w  ~ satisfying d~(x ,  w) = d~(x,  w ~) - 1 = 2,  it 
has (exactly) 8 thick lines L at distance 3 from x, since for each w with df~ (x ~ w) = 2 
and such L there exists w ~ E L such that w w  ~ is one of  the 8 thin lines just 
mentioned. Hence [fh(x)[ = 8 2. Also, there are 8 2 points p E f~3(x) such that the 
thick line on p is at distance 2 from x. If  p is such a point then there exists a thin 
line pp' satisfying p' E f/a(x).  It follows that for any y E fta(x) the thin line on 
ff is at distance 3 from x. Hence f~ is a GO. It is clear that it is of type (iii) with 
a = b = 8 .  [] 

Let A = F~, x, z E u ± - {u} and x _1_ a z. Pick L, M E B(A)  - { x z }  such that 
z E L and x E M.  We claim that there are 8 points p at distance 2 from u in Fx 
satisfying L, M C u ± n p± and such that u ± n p± # u z n ff.L for any pair p, p' 
of those s points. 

P i c k v  E x ± -  u ± such that v L G  z ± G  u. We check that the set of 8 
points on the line vz  of Fz not containing z satisfies the requirements above. Let 
p E v z  - {v ,  z} .  Clearly L, M C u z n p ± .  On the other hand, we see within Fv 
that there is a point q E u z n v ± such that p ~ q. Hence u ± N v ± # u ± n p±, as 
required. 

Thus A admits at least 8 distinct subGO's isomorphic to ~t which contain L and 
M ,  where Ft is the subsystem of  A induced by v ±. Let 0 be the GQ(s,  s) such that 
A = O F, and L, M are (collinear) Points of  0 (we use capital 'P' to distinguish 
Points of  0 from points of  A). It is clear that ~t corresponds to a subGQ(1,8)  of 
0 ,  among the 8 subGO's of  A just constructed. So we have distinct subGQ(1, 8)'s 
8 1 , . . . ,  Ss containing the Points L and M of 0 .  Pick a Point P E L ±~ - M ±o . 
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It is easy to see that there is at most one subGQ(1, s) through P and M. Denoting 
Si N L P  = {L, Pi}, we see that Pi = Pj implies i = j ,  for i , j ,  E 1 , . . . ,  8. 

We have established that for any Q E P ( O )  - M ±e there is a subGQ(1, s) on 
M and Q. In other words, J{M, Q}XoXe[ = 8 + 1, that is, M is regular, cf. [19]. 
Therefore each Point of  0 is regular, for we are free to choose M to be any line of 
A. Hence O ~ W ( 8 )  by [19, 5.2.1]. 

Let N be a line of A intersecting M - {x}. The lines N and x z  of A correspond 
to the collinear Points of O*, the dual of O. Repeating the argument above with N 
and x z  in place of L and M, we see that O* -~ W(8) also. Hence 8 = 2 k, cf. [19]. 
The proof of Proposition 3.1 is complete. [] 

Several facts arising in the proof above will be required later. We summarize them 
and some other facts in the following lemma. 

LEMMA 3.8. Let =. be a subGO of  A = F~ = 0 F isomorphic to [2. Then 
there exists q E F2(u) such that T. = u ± M q±. There are two classes O, O* 
of  such subGO, where 0 (respectively 0 " )  corresponds to the subGQ(1,8) 's  o f  O 
(respectively 0"),  I Ol = I O*l =  2(82 + 1)/2, and a E O. There are ( s -  1)(s + 1)2 
elements E E 0 such that 112 n El = 28 + 2 and [2 and E have two thick lines in 
common. For all other E E 0 - {[2} we have [[2 N E I = O. For E E 0 " ,  [2 n E is 
either an ordinary octagon or empty. 

Proof. Without loss of generality we can assume that the lines L, M of A defined 
in the final part of the proof of Proposition 3.1 lie in E. We saw that there are exactly 
8 subGO's containing L and M, and all of them are of the form q± N u ± for some 
q E F2(u). Thus E is among them, and the first statement is proved. 

The second statement just repeats an observation made at the end of the proof 
of Proposition 3.1, and the formula for IOl = IO* I is well known. 

Let E E O - {f~}. If h N ~ contains a Line then there are exactly 2 Points in 
N ~. There are (s + 1) 2 Lines in ~ and there are s subGQ(1, s)'s of 0 through 

each Line. Thus there are (8 - 1)(8 + 1) 2 elements of O intersecting f~ in two thick 
lines. If [2 N E is nonempty then ~ N E contains a flag. Hence fl N E contains a 
thin line. Thus it also contains two thick lines, and we are in the already considered 
situation. 

It remains to consider the case E E O*. Here E is a subGQ(s, 1) of O. Assume 
that ~ and ~ have a common Point. It is easy to deduce that they intersect in an 
ordinary quadrangle of •, so [2 fl E is an 8-gon. Otherwise (that is, if ~ and ~ do 
not have common Points), [2 M E = 0. [] 

4. More on Point  Residues 

In this section we show that P is an extension of either W(2) F or W(4) F, and as 
a by-product we obtain more information about the set F2(u), where u E T'. Let 
v E r2 (u ) .  
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LEMMA4.1 .Le tx  E u±Nv ±. Then, foranyy  E u±Nv±,dry(u ,  v ) =  dr~(u, v) = 
d E {2,4}. 

Proof If d = 2 then the statement follows from Lemma 3.7. The only other 
possibility is d = 4. [] 

L E M M A  4.2. Let a, b E u ± N v ± satisfy a a L r ,  c ± r ,  b for  c E u ± - {u}. Then 
c L v .  

Proof. By Lemma 3.7, if dr~(u, v) = 2 then the subsystem of I',~ induced by 
v ± is geodetically closed, so the statement holds in this case. By Lemma 4.1 we 
may assume that dra(u,  v) = drb(u, v) = 4. Observe that the subsystem f~ of Fb 
induced by a ± is a subGO, and that uc is a thin line of 12. Since drb(u, v) = 4, v 
is at distance 3 from any line on u of f~. Hence d~(v, c) = 3, so v ± c. [] 

Let d r , (u ,  v) = 4 for some (and so, by Lemma 4.1, for any) x E u ± N v ±, and let 
f~ be the subsystem of I~, induced by u ±. It is easy to see that the connected com- 
ponents of f / a re  ordinary polygons. The following is an immediate consequence 
of Lemma 4.2. 

LEMMA 4.3. The connected components o f f l  are ordinary polygons. The distance 
between any two of  them is at least 3. [] 

It turns out that the components are the polygons of the least possible girth. 

LEMMA 4.4. The connected components of  fl are ordinary 8-gons. 
Proof Let axb be a 2-path contained in a component of fL Let ubbl dvcal a be an 

8-gon inside Fx containing u and v (points are listed in the natural cyclic order). This 
8-gon is unique, since F is an extended GO(s, 1). Since dv~ (u, c) = dv~ (u, d) = 3, 
we have c ± u ± d. Since x , u  E a ± N c ± anddr , (a ,c )  = 2, by Lemma4.1 we 
have that d r ,  (a, c) = 2. So there exists p = P~c E u ± satisfying a -l-r,, p -l-r, e. 
By Lemma 4.2, p E v ±. 

Similarly we find Pba,Pca E u ± N v ±. So xap~cp~adpbdb is an 8-gon within f~ 
containing axb. By Lemma 4.3, it is a full connected component of ft. [] 

Denote by E the connected component of f~ containing axb, {e, d} = E3(x). 
Considering l~x, we easily find that X = {u, v, x} ± - E satisfies I X l  = - 1)  2 

and that X C_ c ± U d ±. Moreover, for any y E X there exists the unique y' E 
X - {y} such that y -Lp~ y'. Denote by T the connected component off~ containing 
ft. Let Yl, Y2 be the two points of  T at distance 3 from y. As x E {u, v, if}± - T, 
we see that x E y~- U u~-. So T has at least four, and so exactly four, of its points 
within X.  Summarizing, we have the following. 

LEMMA 4.5. The set X is the disjoint union of(8 - 1) 2 sets o f  size 4 of  the form 
X M T, where T is a connected component o f~ .  [] 

Let q E {x, v)  ± - u ± satisfy dv~(u, q) = 2. We shall establish a correspondence 
between the subsystem II of  P,, induced by q± and the subsystem II' of Fq induced 
by u ±. 
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LEMMA 4.6. Let x z be a thin line of  II. Then it is a thin line o f  IF as well. Let 
{z, a l , . . . ,  as} be the thick line on z o f  lI and for  i = 1 , . . . ,  s let aia~ be the thin 

a t line on ai of  II. Then the thick line o f l I  ~ on x is {x,  a'l, . . . , s}. 
Proof The first statement follow~s immediately from the observation that for 

any x E u -t N q± the thin line xz  of II is defined by q -l-re z -l-r~ u. Let L be the 
thick line of II' on z, and let y E L - {x}. Note that dn,(z, y) = drq(z, y) = 2. 
Hence by Lemma 4.1 we have that dr~(z, y ) =  2. So either y is one of the a~ or 

-l-r~ x. But the latter is clearly impossible. Hence the lemma. [] 

LEMMA 4.7. The subsystem of  II induced by v ± is the disjoint union o f  s copies 
of  the 3-path. Moreover, i f  c~/37~ and ~ /~7 '5  ~ are any two of  them written in the 
natural order, then, without loss in generality, c~,7,~5 E II3(c~ ~) and c~, ~ , ~ E 
II3(~t).  

Proof Let Ill ~ be the subsystem of rq induced by u ±. Let O - W(s)  such that 
I'q = 0 v and II' corresponds to a subGQ(1, s) H' of (9. Denote by ab the thin line 
of IY at distance 2 from v. Let A, B be the thick lines of IF satisfying a E A, b E B. 
Let v correspond to the flag (P, l) of O. Then P E A B  E B(II'). 

For any W E P(I I ' )  - {A, B} there exists a Line w through W intersecting 
l. There are 2s such Points W. As they correspond to thick lines of IF, they give 
us 2s thick lines (and so 2s points) of IF at distance 3 from v. Also, there are 2s 
points at distance 3 from v lying on the thick lines A, B of II'. Clearly, there are 
no more points at distance 3 from v within IF. It shows that the subsystem of II' 
induced by v ± consists of 4s points. 

Next, for w as above let w n II ~ = {W, Wt}. This defines an equivalence 
relation with classes of size 2 on P(I~ t) - {A, B}, and so gives s thin lines of 
IF at distance 3 from v. The translation of this situation back into IF is presented 
diagrammatically in Figure 1. Now we use Lemma 4.6 to look at the pointset we 
are interested in within II. By Lemma 4.6 we have that o~Lr~/3_l_r~f_l_r,,~5, and 
none of the points just listed is collinear within I'~, to any other point at distance 3 
from v within II. The same holds for c~',/3', 7' and 5', and it is straightforward to 
check the remaining claimed distances. [] 

Now we return to the connected components -~ and T of f~, that We considered 
in the text preceding Lemma 4.5. We shall improve the result of Lemma 4.5. As 
above, denote X = {u, v, x} ± - E. By Lemma 4.5, the subsystem X fl T has two 
connected components with sets of points {Yl, Y~} and {Y2, Y~} respectively. Let 
{y, y~} = ~3(x). As already noted, each point of X is at distance 3 within F~, from 
either y or yt (but not both of them). 

LEMMA 4.8. Let dr~ ( y , Yl ) = 3. Then dr~ ( y', y~ ) = 3. 
Also, dT({yl,y~}{Y2, ' y2 ) )  = z.  

Proof First, we claim that there exists q E {x, y, v, yl} ± - u ± such that 
u -l-ry w -l-ry q for w E u ± N q±. Note that da (y ,  yl) = dA(v, y~) = 3, where 
A = F~. Let L be the unique line of A at distance 1 from v, y and Yl, and let z be 
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V y 

v ~  

Fig. 1. The subsystem II ~ of I~q, see the proof of Lemma 4.7. (Unless s = 2, only a part of 
II '  is actually shown.) Points inside II ~ are shown as circles whereas those outside are shown 
as squares. Thick lines of 1I ~ are shown as triangles, thin lines of II ~ are shown as bold lines. 
Points of II ~ at distance 3 from v are shown by bigger circles than the rest of them. 

the point on L satisfying {z) = L fq A3(U ). Denote {q) = z ±" Cl A2(u ). Clearly 
dA(v, q) = dA(y, q) = 3 and dA(yl, q) = 1 or 3. We are done. 

Now we apply Lemma 4.7. Since x, y, Yl E q J-, the subsystem Q of f / induced 
by q± contains the 3-path joining x and y and a 3-path of T containing yl. In the 
notation of Lemma 4.7, without loss in generality let us take a I = x, 6' = y. Since 
Yl is at distance 3 from both x and y, either a = Yl or 6 = Yl. 

If a = Yt then, by Lemma 4.7, y~ ~ Q and, by the same lemma, {/~) = 
T N {y, yl} j- ~ {y~}. The line Yt~ of I~ is at distance 2 from y, so the line yly~ 
is at distance 3 from y. Hence y ¢ y~. Therefore yr _1_ y~. 

If ~ = Yl the y~ = 7 and so y ~t y~. Hence again y' _J_ y~. This completes the 
proof of the first part of the lemma. 

To prove the second part, observe that by Lemma 4.7 the system X f3 T fq Q 
has two components and that the distance between them equals 2. [] 

At this point we are able to analyse tl yet more precisely. We shall establish that 
s = 2 or 4 and that ~2 is as in the known examples. We translate the situation 
with the 8-gons of f/ into the corresponding one with the 4-gons in ®, where 
A = Fu = O F. 

It is obvious that a (nondegenerate) 8-gon of z5 corresponds to a quadrangle 
ABCD of O, such that the points of the 8-gon are the flags (A, AB), (A, AC),..., 
(C, AC) of 0.  Denote by ~ the set of 4-gons of 0 corresponding to the set of 8- 
gons of ~2. We write the Points of  4-gons in the natura! cyclic order. We call the 



96 DMITRII V. PASECHNIK 

Fig, 2. Points of O are shown as circles. Points inside 0 are shown as bigger circles than 
Points outside. Sides of ~ are shown by continuous lines. Other Lines of O are shown by 
discontinuous lines. 

Lines AB,  A C, B D and C D of 0 the Sides of ABC D. The next statement follows 
immediately from Lemma 4.3. 

LEMMA 4.9. Let P, pt (respectively L, L9 be the set of Points (respectively, of 
Sides) of two distinct 4-gons of (~ corresponding to the 8-gons T, T t of fL Then 
P M pt = L M L t = ~ andY  q[ s I f o ranyY  E P ands t E L ~. [] 

LEMMA 4.10. With the notation of Lemma 4.9, let dA(T, T t) = 3. Then for any 
Y E P there exists a unique y t  E p t  such that Y -l-e Y~, and for any s E L there 
exists a unique g E U intersecting s. 

Proof In this proof we shall write _1_ instead of J-e. Figure 2 illustrates the 
argument. Let P = ABDC,  P~ = AtBtCtD t. Without loss of generality A ± A t. 
So the lines 11 = (A ' ,A 'B ' ) (A ' ,A 'C')  of T '  and (A, AB)(A,  AC) of T are at 
distance 3 in A. There is one more line 12 of T t at distance 3 from (A, AB) such 
that 12 and (A, AB)(B,  AB)  are at distance 3 in A. By Lemma4.8, dT,(ll, lz) = 2. 
Without loss of  generality, Iz = (B ~, B~Dt)(D t, B~Dt). It follows that the Lines 
AB and B~D t of 19 intersect. Since there must be two lines of T t at distance 3 
from (B, AB), and one of them is Iz, we see that B L C t. Continuing in the same 
vein we find that AC intersects CtD t, C ± B I, BD intersects AtB t. Finally, we 
see that D L D ~ and CD intersects ArC ~. 

Thus the existence of  y t  and ,s t mentioned in the statement is established. The 
uniqueness easily follows from Lemma 4.5. [] 

Our next goal is to reconstruct the whole of ~2 starting from a single 8-gon 
T C f L  

Let ~" and ,~,t be the 4-gons of  19 corresponding to T and T t as in Lemma 4.10. 
We shall show that the choice of the point M = AC O C~D t and the line ra = CtD ! 
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(see Figure 2) determine T I uniquely. That is, if there exists T I C ~2 having the 
Side m then it is determined uniquely. 

Let M and m be chosen. Note that the points of ~,t collinear to B or to D lie on 
m. By Lemma 4.10, ,  m N BD = 0. So the two points D ~ and C t of ~'~ satisfying 
D ~ 3-0 D,  C ~ 3-0 B are distinct and uniquely determined. Next we see that 
the Side ra'  of  ~'~ on D ~ distinct from m must intersect AB. It determines ra t. 
Similarly we reconstruct the remaining Side on C ~. Finally we are forced to set 
A ~ = A ±e N ra",  and B ~ = C ±* fq m ~. Thus ~'~, and so T I is determined. 

There are s - 1 possible choices of  M and s - 1 possible choices of ra through 
M.  These gives a total of  at most (s - 1) 2 8-gons of [2 at distance 3 from z E T. 
Since by Lemma 4.5 this number must be exactly (s - 1) 2, and hence the 8-gons 
of f~ at distance 3 from x are determined once T is chosen. 

Since 0 - W ( s ) ,  s even, the 8-gons of  r u  all lie in one orbit of  Aut(r~,). 
Thus there is no loss of  generality in choosing ~" to have points A = (1000), B = 
(0010), D = (0001), C = (0100). (Here we present 19 as it was explained in 
Section 2. Collinearity is determined by (1).) 

Choose M = (1100) and ra = M D  ~, where D ~ = (0111). We see that 
~'~ = ~'(ra,  M )  has the following points, where the notation is chosen to match 
those of  Figure 2: A'  = (1110), B '  = (1101), C '  = (1011), D '  as above. 

Let M1 = ( la00) ,  where a E G F ( s ) -  GF(2) , ra l  = M1D1, where D1 = 
(011a). Let us find ~'" = ~ ' (ml ,  M1) with points A",  B" ,  etc. First, observe that 
19 _1_ D1, so D "  = DI ,  and B "  = B ± N  ml  = (a- l ,0 ,1,a) .  Since D '  3_ D" ,  
it follows that d r , ( T ' ,  T" )  = 3. Therefore there exists a point Y of  "I" satisfying 
Y 3_ B" .  

I f Y  = C '  then f (C' ,  B")  = a + a - I  = 0, so a 2 = 1, contradicting the choice 
o f a .  (Here f is the form in (1).) 

I f  Y = B r then 1 + a + a -  1 = 0, so a 2 + a = 1. The later implies a 3 + a 2 = a, 
so a 3 = 1. Hence in this case s _< 4. 

Finally, Y = A'  implies 1 + a = 0, again contradicting the choice of  a, and 
Y = D ~ is impossible. So s _< 4. 

To summarize, we state the following. 

PROPOSITION 4.11. I? is either an extension of W(2)  F or an extension of 
w(4)  F [] 

5. The Remaining Cases 

We shall reconstruct the point graph of  F layer by layer. Let u E 7 9 (F). The set r2  (u) 
is naturally divided into two parts I?~(u) and F~(u) according as dr~(u, v) = 2 or 
4, respectively, where v E r2 (u)  and x C u ± N v ±, cf. Lemma 4.1. We proceed 
by showing that I' is isomorphic to one of  the known examples. Table I is self- 
explanatory. It shows certain infromation on the subsystems f~ of A = Fu induced 
by v ±, v C Fz(u),  for the examples related to the groups 2 .  L3(4).2 2 (here s = 2) 
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TABLE 1. Sets x ± n f~ in the examples, where 
f ~ = u  ± N v  ± C F u .  

s Location Loca f ionofx  E A - ~  

o f v  dzx(x,f~) 1 2 3 4 

ri(~) I~ ~ n~ l  6 8 
#x 9 18 0 0 

r~(u) I x ± n o l  6 8 8 0 
#x 16 8 4 1 

r~(u) Ix ± h a l  10 16 
#x 75 300 0 0 

r[(u) I ,±nf l l  22 16 32 
#x 240 60 45 0 
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and He  (here s = 4). By Lemma 3.8, for any v C r~(u)  the subsystem ft of 
A = I'~, induced by v ± is a subGO, and each subGO of A isomorphic to f~ appears 
in this form for a point of r~(u).  We shall prove similar statement for r~(u) .  

LEMMA 5.1. Let s = 2, • = 79(A) and m = 4, respecively lets = 4, • be the set 
of  subGO(2, 1)k of  A forming an orbit of  Aut(A) of length 1360 and m = 3, 

Then for  any v C I'~(u) there exist unique ¢ ~ ,~ such that 

u ± n v  ± = {x  e P ( A ) I d A ( z , ¢ ) =  m).  

Moreover, ¢ is at maximal distance in A from u ± N v ±. 
Proof The statement of the lemma merely describes the situation with r~(u)  

and • in the known examples. All we need to show is that once A is given, the set 
I'~(u) and the edges joining u ± and F~(u) are uniquely determined. 

Let v E F~(u). Pick an 8-gon T of f~ = u ± N v ± C A. We know that Aut(A) 
acts transitively on the 8-gons of A, so there is no loss in generality in choosing 
f~ = u ± n v ±. We saw in the final part of the proof of Proposition 4.11 that once 
T is chosen, the set fU of the 8-gons of f / a t  distance 3 from a point x of T 
is determined. It is easy to check that f/~ does not depend upon the particular 
choice of the point x, so we denote f f f  = ~x. It is straightforward to check that 
II = {T)  U Fff = {E) U ~=- for any 8-gon E of II. It follows that 9t is the 
disjoint union of several Components (to distinguish form 8-gons of ft) of the form 
{E) U f~z, where E is an 8-gon of~2. Each Component is one of the sets arising in 
the known examples, so it remains to show that there is only one Component. 

Clearly the Components are at distance 4 from each other. But in both cases the 
size of the set of points of A at distance 4 from a Component is less than the size 
of a Component. We are done. [] 
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TABLE II. The intersections of sets u L M v "L in the examples. 
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4 

Location 

o fv  

r~(u) 1{~, u , , , } ' l  
#x 

r~'(~) I { ~ , u , v } ' l  
#z 

r;(~,) I{~,,,,  v}-'-I 
#x 

r ; ' (u)  I {x,  ,,, , , } ' l  
#x 

8 

9 

8* 

4 

10 

75 

16 

60 

Location o fz  

ri(u) - {~} 
6 0 8* 

9 1 9 

8 4 8 I 6 

8 8 4 ( 16 

8 0 16 

100 60 + 36 300 

8 0 32 25 

2 0 + 1 8 0  12 45 144 

8 4 

18 18 

5 4 

16 8 

8 0 

100 + 900 

22 12 

240 720 

60 

180 30 

It immediately follows from Lemma 5.1 and the observation preceding it that the 
partial subgraph of I ~ consisting of the points u x U E2(u) and the edges at distance 
at most 1 from u is isomorphic to the same subgraph in the example. Next task is 
to show that the edges within F2(u) are uniquely determined, as well. 

In Table II we present information ab out the sets { x, u, v } ±, where x, v 6 I72 (u). 
We denote there by 8* the entries corresponding to the subsystems of Pu not 
isomorphic to those mentioned in Lemma 4.7, that is the disjoint union of  two 
copies of the 3-path. 

Comparing Tables I and II, we see that the edges within r2(u)  are uniquely 
determined, as well. As an example, let as consider the case ~ = 4, v E /?~(u). 
In Table 1 we see that the set v ± - u x - {v} consists of 75 points x such that 
I{u, v, x}±l = 10 and 300 points x such that I{u, v, x}Xl = 16. In Table 2 we 
look at the corresponding entries and see that in I'2(u) there are exactly 75 points 
satisfying I{u, v, x}Xl = 10 and exactly 300 points satisfying I{u, v, x}±[ = 16. 
Hence the v ± is determined. 

Thus the consideration of the case s = 4 as complete, since by Table 1 the 
diameter of the point graph is 2. 

Let us tum to the case s = 2. We see that for any v E F~(u) there is a unique 
Zv = v ± fq E3(u). Each w E v ± N E~(u) lies in a block on v and zv. Hence 
z~ = zv. The subgraph of the point graph induced on I'~(u) is isomorphic to 
those induced on/?(u) ,  in particular it is connected. Hence F3(u) = {zv} and 

/ 
= u 

The proof of Theorem 1.1 is complete. 

6. Proof of  Theorem 1.2 

Let P be an extension of D, where 79 is the class of extended generalized octagons 
satisfying the conditions of Theorem 1.1. 

Pick u ¢ P ( F ) ,  x E u ± - {u}. Note that G,x is a GO(s, 1), for some s E 
{2, 4}. By the connectivity argument, the value of s does not depend on the 
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particular choice of u and x. There exists a point v E P(F~)  such that for some 
y, z E {u, v, x} ± one has u l r~u z ±rxu v. Define the incidence system fl as 
follows. Let 

t~o(fl) = {B n B' lv  ¢ B e t~(ru),  u ¢ B '  ~ t~(ru), IB n B '  I = 3} 

and let P ( f l )  = UBet~0(f~) B. Then let 

B(fl)  = Bo(fl) O ( B  - (u ) lv  ¢ B E B(r~), B - {u} c P( f l )} .  

Note the fl~ is a subGO of F,,~ of type (iii), where a = b = s. Since there exist 
blocks of F containing, respectively {u, x, y, z} and {v, x, y, z), one has that flu 
is a subGO of P~,y and fly ~ fl~ for any y C P(f l~)  and an appropriate choice 
of z. 

The idea of the following argument is adapted from [7]. By Lemma 3.8, there 
exists r E P ( F ~ )  such that flu is the subsystem of F~,u induced by r ±r~, . In 
particular, y -l-r~x w ±r,,x r for w E T'(F~,x). 

By the choice of r, we have wy  fq B ( ~ x )  = {w, y}, where wy  E B(F~,~). Hence 
the other line w r  of fl~ on w is thick. In particular, r E P(fl~).  Repeating the 
argument above with the roles of y and r interchanged, we have that the line wr  of 
fix is thin. This is the contradiction. 

The proof of Theorem 1.2 is complete. 
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