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Abstract

Secret-sharing is an important topic of cryptography and has applications in information
security. One approach to the construction of secret-sharing schemes is based on error-correcting
codes. In this paper, we describe a secret-sharing scheme based on a class of ternary codes (Ding
et al. IEEE Trans. Inform. Theory IT-46 (2000) 280–284). We determine the access structure
and prove properties of the secret-sharing scheme. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In a secret-sharing scheme, a dealer has a secret. The dealer gives each party in
the scheme a share of the secret. Let P denote the set of parties involved in the
secret-sharing. There is a set �⊆ 2P such that any subset of parties that is in � can
determine the secret and no subset in 2P\� can determine the secret. The set � is
called the access structure of the secret-sharing scheme.
The �rst construction of secret-sharing schemes was done by Blakley [3] and Shamir

[14]. Since then many other schemes have been proposed and studied. Two kinds of
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approaches to the construction of secret-sharing schemes based on linear codes have
been so far considered (see [9–12, 1, 4, 15]). The relations between secret-sharing and
codes based on the Chinese Remainder Theorem are dealt with by Ding et al. in
[6, Chapter 7].
The access structure of secret-sharing schemes based on error-correcting codes

depends on the weight distribution of their dual codes. In fact, the determination of the
access structure of those secret-sharing schemes requires more than the knowledge of
the weight distribution. This makes it rather di�cult to determine the access structure
of secret-sharing schemes based on codes, as determining the weight distribution of
codes is a very hard problem in general. Note that the weight distribution of only a
few classes of codes is known. In principle, every error-correcting linear code can be
used to construct secret-sharing scheme. The question is how to determine the access
structure.
In this paper, we describe a secret-sharing scheme based on a class of ternary codes

which is described and analyzed by Ding et al. [5]. We determine the access structure
of the secret-sharing schemes and prove their properties. The access structure of this
secret-sharing scheme is richer, compared with the schemes based on some two weight
geometric codes [1]. We are able to determine the access structure of our secret-sharing
scheme because the structure of the underlying error-correcting ternary codes is fully
understood [5].

2. The general secret-sharing scheme based on codes

Recall that a code of length N over GF(q) is a nonempty subset of GF(q)N . An
[N; k; q] linear code is a k-dimensional subspace of GF(q)N . The elements of a code
are called codewords. The (Hamming) weight of a codeword c, denoted wt(c), is
the number of nonzero positions in c. The minimum distance d of the code is the
smallest (Hamming) distance between any two distinct codewords. Because of linear-
ity, this is also the smallest weight of a nonzero codeword. Sometimes we include
d in the notation and describe the code as an [N; k; d; q] code. A generator matrix
G of an [N; k; q] code C is a k ×N matrix over GF(q) whose rows form a basis
for C.
One approach to the construction of secret-sharing schemes based on linear codes is

as follows. Choose an [N; k; q] code C such that its dual code C⊥ has no codeword
of Hamming weight one. Let G be a generator matrix of C. Let s∈GF(q) denote the
secret, and g0 = (g00; g10; : : : ; gk−1;0)T be the �rst column of the generator matrix G.
Then the information vector u=(u0; : : : ; uk−1) is chosen to be any vector of GF(q)k

such that s= ug0 =
∑k−1

i=0 uigi0.
The codeword corresponding to this information vector u is

t=(t0; t1; : : : ; tN−1) = uG:
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We give ti to the party pi as their share for each i¿1, and the �rst component t0 = s
of the codeword t is the secret. So the number of parties involved in this secret-sharing
scheme is N − 1.
It is not hard to prove that in the secret-sharing scheme based on a generator matrix

G= [g0g1; : : : ; gN−1] of an [N; k; q] linear code such that g0 is a linear combination of
the other N − 1 columns g1; : : : ; gN−1, the secret t0 is determined by the set of shares
{ti1 ; : : : ; tim} if and only if g0 is a linear combination of the vectors gi1 ; : : : ; gim , where
16i1¡ · · ·¡im6N − 1 and m6N − 1.
Computing the secret is straightforward: solve the linear equation

g0 =
m∑
j=1

xjgij

to �nd xj, and the secret is then given by

t0 = ug0 =
m∑
j=1

xjugij =
m∑
j=1

xjtij :

Secret-sharing schemes based on this general approach were considered by Karnin
et al. [7], and Massey [9, 10]. The approach of McEliece and Sarwate is di�erent but
closely related [11].
For secret-sharing schemes based on the Karnin–Green–Hellman approach, Massey

introduced the concept of minimal codewords and characterized the resulting access
structures [9, 10]. We state his characterization in the following lemma which will be
needed in later sections.

Lemma 1. Let G be a generator matrix of an [N; k; q] code C whose dual code C⊥

does not have any codeword of Hamming weight 1. In the secret-sharing scheme
based on G; a set of shares {ti1 ; ti2 ; : : : ; tim} determines the secret if and only if there
is a codeword

(1; 0; : : : ; 0; ci1 ; 0; : : : ; 0; cim ; 0; : : : ; 0)

in the dual code C⊥; where cij 6=0 for at least one j; 16i1¡ · · ·¡im6N − 1 and
16m6N − 1.

Here we would point out that this lemma was incorrectly stated in [1, 12], but other
results in the two references are still correct.
We also mention the fact that for secret-sharing schemes based on the above

approach, a set of shares either determines the secret or gives no information about it,
i.e., such schemes are perfect. This fact and Lemma 1 will be used to determine the ac-
cess structure of our secret-sharing scheme later. The access structure of secret-sharing
schemes based on error-correcting codes is closely related to the parameters of the
codes. For details, we refer to [12].
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3. The class of ternary codes

Note that (GF(2)n;+) is an additive Abelian group of exponent 2 and order N =2n,
with 0 as the identity element. From now on we assume that n¿2. Let M denote the
multiplicative group of characters from GF(2)n to GF(3)∗. The group M is isomorphic
non-canonically to GF(2)n [13, Chapter 6]. In particular we have |M |= |GF(2)n|=N
=2n.
The set GF(2)n may be identi�ed with the set of integers {i : 06i62n − 1}: the

element (i0; i1; : : : ; in−1) of GF(2)n is identi�ed with i= i0 + i12+ · · ·+ in−12n−1, where
each ij is 0 or 1. We also say that (i0; i1; : : : ; in−1) is the binary representation of i.
We de�ne

fi(y) = (−1)i0y0+i1y1+···+in−1yn−1 ; (1)

where y=(y0; y1; : : : ; yn−1)∈GF(2)n, and (i0; i1; : : : ; in−1) is the binary representation
of i. It is easy to check that, for all i with 06i62n−1, this gives all the 2n characters
from GF(2)n to GF(3)∗ with f0 as the trivial character, so M = {f0; f1; : : : ; f2n−1}.
Since we identify i and y with their respective binary representation, we have fi(y)
=fy(i).
For any subset X of GF(2)n, the group character code CX over GF(3) described by

Ding et al. [5] is

CX =

{
(c0; c1; : : : ; cN−1) ∈ GF(3)N :

N−1∑
i=0

cifi(x) = 0 for all x ∈ X
}
:

Let X = {x0; x1; : : : ; xt−1} be a subset of GF(2)n and let X c be the complement of
X in GF(2)n, indexed such that GF(2)n= {x0; x1; : : : ; xN−1}.

Proposition 2 (Ding et al. [5, Proposition 2 and Section 3]). Let X be as above. For
06i6N − 1; let vi denote the vector

(f0(xi); f1(xi); : : : ; fN−1(xi)):

Then the set {v0; v1; : : : ; vN−1} is linearly independent. In particular;

H = [fj−1(xi−1)]16i6t; 16j6N

has rank t and is a parity check matrix of CX ;

G = [fj−1(xt−1+i)]16i6N−t; 16j6N

has rank N − t and is a generator matrix for CX ; so CX is an [N; N − t] linear code
over GF(3). Moreover; H is a generator matrix for CX c and CX ⊕CX c =GF(3)N .

De�nition. The Hamming weight of a vector a of GF(2)n, denoted wt(a), is de�ned
to be the number of its nonzero coordinates. For −16r6n, let X (r; n)= {a∈GF(2)n :
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Table 1
The weight distribution in C3(1; n)

Range of m Weight Frequency Codeword type
06m6n 16ik6n

m≡ 0 (mod 3) 2n − 2n−m
2m + (−1)m=32

3

(
n
m

)
2m

∑m
k=1

akvik

m≡ 0 (mod 3) 2n − 2n−m
2m − (−1)m=3

3

(
n
m

)
2m+1 av0 +

∑m
k=1

akvik

m≡ 1 (mod 3) 2n − 2n−m
2m − (−1)(m−1)=32

3

(
n
m

)
2m

∑m
k=1

akvik

m≡ 1 (mod 3) 2n − 2n−m
2m + (−1)(m−1)=3

3

(
n
m

)
2m+1 av0 +

∑m
k=1

akvik

m≡ 2 (mod 3) 2n − 2n−m
2m + (−1)(m−2)=32

3

(
n
m

)
2m

∑m
k=1

akvik

m≡ 2 (mod 3) 2n − 2n−m
2m − (−1)(m−2)=3

3

(
n
m

)
2m+1 av0 +

∑m
k=1

akvik

wt(a)¿r}, and let C3(r; n) denote the code CX (r;n) over GF(3). For a word c=(c0; : : : ;
c2n−1) in GF(3)2

n
, let the support of c be de�ned as

Supp(c) = {i : 06i ¡ 2n; and ci 6= 0}:
By convention we de�ne the minimum distance of the zero code to be ∞.

Proposition 3 (Ding et al. [5]). The following properties of the codes C3(r; n) are
known:
(A) C3(r; n) is a [2n;

∑r
j=0

(n
j

)
; 2n−r] ternary code.

(B) The minimum nonzero weight codewords generate C3(r; n).
(C) The dual code C3(r; n)⊥ is equivalent to C3(n− r − 1; n).

In the sequel we de�ne v0 = (1; 1; : : : ; 1)∈GF(3)n and
vi = (f0(ei); f1(ei); : : : ; fN−1(ei))

for all 16i6n, where ei is the vector of GF(2)n whose ith coordinate is 1 and other
coordinates are all zero.

Proposition 4 (Ding et al. [5]). The weight distribution in the code C3(1; n) is given
in Table 1; where all the a and ai are nonzero elements of GF(3).

Proposition 5. For any integer 16m6n; in the code C3(1; n) there are
(n+1
m

)
2m code-

words of the form
∑m−1

j=0 ajvij which have the same Hamming weight

w(m) := 2n − 2n−m 2
m + (−1)(m+2r)=32

3
; (2)

where all aj ∈GF(3)∗; r=mmod 3 is the unique remainder with 06r62; and 06i0
¡i1¡ · · ·¡im−16n.
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The n weights w(m) in (2) are pairwise distinct and satisfy

w(2)¡w(4)¡w(6)¡ · · · ¡w(2bn=2c)¡ w(2b(n− 1)=2c+ 1)

¡w(2b(n− 1)=2c − 1)¡ · · · ¡w(5)¡w(3)¡w(1):

Proof. We �rst prove that all the
(n+1
m

)
2m codewords of the form

∑m−1
j=0 ajvij have the

same weight. We prove this in three cases.
Case 1: m≡ 0 (mod 3). In this case, we have m−1≡ 2 (mod 3). If v0 appears in the

sum
∑m−1

j=0 ajvij , according to the last row of Table 1 this codeword has weight

2n − 2n−(m−1) 2
(m−1) − (−1)(m−3)=3

3

= 2n − 2n−m 2
m − (−1)(m−3)=32

3

= 2n − 2n−m 2
m + (−1)m=32

3
:

If v0 is not involved, according to the �rst row of Table 1 this codeword has weight

2n − 2n−m 2
m + (−1)m=32

3
;

which is the same. This proves the conclusion for Case 1.
Case 2: m≡ 1 (mod 3). The proof is similar to that of Case 1, except that rows 2

and 3 of Table 1 are used instead.
Case 3: m≡ 2 (mod 3). The proof is similar to that of Case 1, except that rows 4

and 5 of Table 1 are used instead.
It is straightforward to get

w(2j + 2) = w(2j) + 2n−(2j+1);

w(2j + 1) = w(2j − 1)− 2n−2j:
We now prove that

w(2bn=2c) + 2 = w(2b(n− 1)=2c+ 1): (3)

Assume that n=2j is even. Then

w(2bn=2c) = 2n − 2n + 2
3

and

w(2b(n− 1)=2c+ 1) = 2n − 2n − 4
3

:

So (3) is true when n is even. We can similarly prove that it is also true when n is
odd. The inequalities then follow.
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Proposition 5 gives not only the weight distribution of C3(1; n), but also the infor-
mation which codewords have the weights. It also shows an interesting pattern in the
weight distribution.

4. Our secret-sharing scheme

4.1. Splitting a big secret into a string of small ones

In our secret-sharing scheme, the secret to be shared could be a positive integer or
an element of GF(3m). Any positive integer s has the 3-adic expansion

s = s0 + s13 + s232 + · · ·+ sj3j;

where each si ∈{0; 1; 2} for all 06i6j and sj 6=0. In this case, sharing the secret s
becomes sharing each si one by one.
If the secret s is an element of GF(3m) for some positive integer m, it can be

represented as

s = s0 + s1�+ s2�2 + · · ·+ sm−1�m−1;

where {1; �; �2; : : : ; �m−1} is a basis of GF(3m) over GF(3), and si is again an element
of GF(3). In this case, sharing s becomes sharing each si one by one.

4.2. Sharing small secrets

As we split a big secret into a string of smaller ones, we assume that the secret s
is an element of GF(3)= {0; 1; 2}. This secret is shared among 2n− 1 parties. We use
the code C3(1; n)⊥ to establish our secret-sharing scheme, and we use the approach
described in Section 2. By Proposition 3 C3(1; n) and C3(1; n)⊥ are [2n; n + 1; 2n−1]
and [2n; 2n − n− 1; 4] ternary codes, respectively.
Let G be a generator matrix of C3(1; n)⊥. Let s∈GF(3) denote the secret, and

g0 = (g00; g10; : : : ; g2n−n−2;0)T be the �rst column of the generator matrix G. Then the
information vector u=(u0; : : : ; u2n−n−2) is chosen to be any vector of GF(3)2

n−n−1

such that s= ug0 =
∑2n−n−2

i=0 uigi0.
The codeword corresponding to this information vector u is

t = (t0; t1; : : : ; t2n−1) = uG:

We give ti to party pi as his share, and the �rst component t0 = s of the codeword t
is the secret. This explains how to compute the shares. Recovering the secret s can be
done by solving linear equations, as described in Section 2.
The following property of the code C3(1; n) is useful in understanding the access

structure of our secret-sharing schemes.
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Proposition 6 (Ding et al. [5]). The supports of all the minimum weight codewords
of C3(1; n) form a 1 − (2n; 2n−1; n(n + 1)=2) design. The 2n(n + 1) minimum weight
codewords are

avi + bvj; 06i ¡ j6n; a; b ∈ GF(3)∗:

In some applications, a party may modify his share of the secret in order to cheat.
We call such a party a cheater. In some cases, it would be good if a secret sharing
scheme could detect and correct some false shares.

Theorem 7. The access structure of this secret-sharing scheme is given by

� = {Q⊆{1; 2; : : : ; 2n − 1} |Q contains an element of �};
where

� = {Supp(c) ∩ {1; : : : ; 2n − 1} | c = (c0; : : : ; c2n−1) ∈ C3(1; n); c0 6= 0}:
The number of parties involved in this scheme is 2n− 1. The access structure has the
following properties:
(A) Any group of less than 2n−1 − 1 parties cannot recover the secret. Thus; more

than half of the parties are needed to recover the secret.
(B) There are n(n+1)=2 groups of 2n−1−1 parties that can recover the secret. They

are Supp(vi + vj) ∩ {1; 2; : : : ; 2n − 1}, where 06i¡j6n.
(C) It is perfect; i.e.; a group of shares either determine the secret or gives no

information about the secret.
(D) When all the parties come together; one cheater can be found.

Proof. Note that the subscripts of our codewords range from 0 to 2n − 1. The access
structure of this secret-sharing scheme follows from Lemma 1. By Proposition 3, the
minimum weight of C3(1; n) is 2n−1. The conclusion of Part (A) then follows from
Lemma 1.
We now prove Part (B). By Proposition 5, there are

(
n+1
2

)
4 minimum-weight code-

words, which are avi + bvj, where a; b ∈ GF(3)∗. It is easily seen that two minimum-
weight codewords have the same support if and only if one is a multiple of the other,

so the
(
n+1
2

)
2 minimum-weight codewords vi + bvj have di�erent supports, where b

ranges over {1; 2}. But the �rst coordinate of the codewords vi + 2vj is zero. Hence
the

(
n+1
2

)
minimum-weight codewords vi + vj give the di�erent groups of 2n−1 − 1

participants that can recover the secret.
The conclusion of Part (C) is true for all such secret-sharing schemes based on

linear codes [10].
Note that the code C3(1; n)⊥ has minimum weight 4. Deleting the �rst coordinate of

this code gives a code with minimum weight 3 or 4. Hence, it can detect and correct
one error. Thus, the conclusion of (D) follows.
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5. An example of the secret-sharing schemes

In this section, we describe an example of our secret-sharing scheme described in
Section 4, speci�cally, the case n=3. This is a secret-sharing scheme involving seven
parties.
The code C3(1; 3) is a [8; 4; 4] ternary code with generator matrix


1 1 −1 −1 −1 −1 1 1

1 −1 1 −1 −1 1 −1 1

1 −1 −1 1 1 −1 −1 1

1 −1 −1 −1 1 1 1 −1


 :

Its dual code C3(1; 3)⊥ is a [8; 4; 4] ternary code with generator matrix

1 1 1 1 1 1 1 1

1 −1 1 1 −1 −1 1 −1
1 1 −1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1 −1


 :

Let s ∈ GF(3) be the secret. Choose any vector (u1; u2; u3; u4) ∈ GF(3)4 such that
u1 + u2 + u3 + u4 = s. There are 27 such vectors. The shares t1; t2; : : : ; t7 for the parties
p1; p2; : : : ; p7 are computed as follows:

(t1; t2; : : : ; t7) = (u1; u2; u3; u4)




1 1 1 1 1 1 1

−1 1 1 −1 −1 1 −1
1 −1 1 −1 1 −1 −1
1 1 −1 1 −1 −1 −1


 :

If {tj1 ; tj2 ; : : : ; tjm} can be used to recover the secret s, then solve the following equation:

(1; 1; 1; 1)T =




1 1 1 1 1 1 1

−1 1 1 −1 −1 1 −1
1 −1 1 −1 1 −1 −1
1 1 −1 1 −1 −1 −1


 (x1; x2; : : : ; x7)T:

The secret s is then given by

s =
7∑
e=1

xetje :

All the codewords of C3(1; 3) tell us that a group of parties {pj1 ; pj2 ; : : : ; pje} can
recover the secret if and only if the set {j1; j2; : : : ; je} contains one of the following
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sets:

{3; 4; 7}; {2; 5; 7}; {2; 3; 6};
{1; 6; 7}; {1; 3; 5}; {1; 2; 4};
{1; 2; 3; 7}; {4; 5; 6; 7}; {3; 4; 5; 6};
{2; 4; 5; 6}; {1; 4; 5; 6}:

(4)

Note that each of the parties p1, p2, p3 and p7 appears 5 times in the above 11
subsets and each of the rest appears 6 times. Thus, each party has more or less the
same importance in this secret-sharing scheme.
By Proposition 6, the supports of all the minimum-weight codewords form a 1-

design. But the example above shows that the n(n + 1)=2 groups of 2n−1 − 1 par-
ties, obtained from the minimum codewords of C3(1; n), do not form a 1-design in
general.

6. The minimum access structure

Let � be the access structure of a secret-sharing scheme. An element B of � is
called a minimum access group if no element of � is a proper subset of B. The set
of all minimum access groups is called the minimum access structure, denoted �, of
this secret-sharing scheme. In other words, � is a subset of � such that
(1) a group of parties can determine the secret if and only if it contains an element

of � as a subset;
(2) no element of � contains another element of �.
For example, (4) gives the minimum access structure of the secret-sharing scheme
described in Section 5.
The minimum access structure of a secret-sharing scheme is interesting in the fol-

lowing senses:
(1) It gives all the information about the access structure of the secret-sharing scheme,

and the information it contains has no redundancy.
(2) It shows the role of each party in the secret sharing. The determination of the

minimum access structure is in general a hard problem.
For our secret-sharing scheme based on the ternary code C3(1; n)⊥, the determination
of the minimum access structure is related to the weight distribution of the second-order
code C3(2; n).
We now prove a property of minimum access groups.

Theorem 8. Any minimum access group of our secret-sharing scheme based on
C3(1; n)⊥ must contain w(m) − 1 parties for some m with 16m6n; where w(m)
is de�ned as in Proposition 5.
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Proof. By Theorem 7 and the de�nition of minimum access groups, for any minimum
access group B we have B ∈ �, where

� = {Supp(c) ∩ {1; : : : ; 2n − 1} | c = (c0; : : : ; c2n−1) ∈ C3(1; n); c0 6= 0}:

The conclusion then follows from Proposition 5.

We say that a codeword a covers another codeword b if Supp(a) contains Supp(b).
By Theorem 8, to �nd the minimum access structure of our secret sharing scheme,
we need only to look at the supports of the codewords of C3(1; n). Hence, for our
secret-sharing scheme based on C3(1; n)⊥, the determination of the minimum access
structure becomes the problem of �nding the set W of codewords in C3(1; n) such that
(1) every codeword in C3(1; n) covers a codeword in W ;
(2) if one codeword in W covers another one in W , they must have the same support.
The following lemma is easily proved.

Lemma 9. A codeword a covers another codeword b if and only if wt(a⊗ b)=wt(b);
where a⊗ b=(a1b1; a2b2; : : : ; anbn); a=(a1; : : : ; an) and b=(b1; : : : ; bn).

Let a and b be two codewords of C3(1; n). By de�nition both can be expressed as

a=
ta∑
l=1

ailvil ; where ail ∈ GF(3)∗;

b=
tb∑
h=1

bjhvjh ; where bjh ∈ GF(3)∗;

where 06i1¡ · · ·¡ita6n, 06j1¡ · · ·¡jtb6n, and the vi are de�ned as before. Hence

a ⊗ b =
ta∑
l=1

tb∑
h=1

ailbjhvil ⊗ vjh :

By the de�nition of C3(2; n), a⊗ b is a codeword of C3(2; n). Therefore, as long as
we can determine the weights of the codewords of C3(2; n), we are able to determine
the set W and hence the minimum access structure of our secret-sharing scheme.

Open Problem. Determine the weight distribution of the code C3(2; n).

As mentioned above, the determination of the minimum access structure of our secret
sharing-scheme is not easy. However, we are able to determine some members of the
minimum access structure, as shown below.
We �rst determine the distinct supports of the codewords

∑3
j=0 ajvij .
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Proposition 10. Let

x =
3∑
k=0

akvik and y =
3∑
k=0

bkvjk

be two codewords of C3(1; n); where 06ik6n; 06jk6n (06k63); and ai; bi ∈
GF(3)∗. Then x covers y if and only if x is a multiple of y.

Proof. First we note that, if x is a multiple of y, then clearly x covers y. Conversely,
assuming x covers y, we prove that x is a multiple of y in several steps.
Step 1: If x covers y, then {i0; i1; i2; i3}= {j0; j1; j2; j3}.
By Proposition 5, we have

w(2)¡w(4)¡w(6)¡w(8)¡w(7)¡w(5)¡w(3)¡ 2n (5)

and that x and y have the same weight. Suppose that x covers y. Then wt(x)¿wt(x+y)
and wt(x)¿wt(x− y). It follows that |{i0; i1; i2; i3} ∩ {j0; j1; j2; j3}|¿2. Without loss
of generality, we assume that i2 = j2 and i3 = j3. Note that one of x ± y has at least
the term vi2 or vi3 . By (5) we have |{i0; i1} ∩ {j0; j1}|¿1. Without loss of generality,
we assume that i1 = j1. Whence, we have

x= a0vi0 + a1vi1 + a2vi2 + a3vi3 ;

y= b0vj0 + b1vi1 + b2vi2 + b3vi3 :

If i0 6= j0, then one of the following two statements must be true:
(i) one of x+ y and x− y has exactly three terms among vi0 ; vj0 ; vi1 ; vi2 and vi3 (and

the other has four terms); or
(ii) one of x + y and x − y has exactly �ve terms among vi0 ; vj0 ; vi1 ; vi2 and vi3 (and

the other has two terms).
By (5) the weight of either x + y or x − y is greater than that of x, which is a
contradiction. This completes Step 1.
Step 2: Assume ik = jk for 06k63 and de�ne a=(a0; a1; a2; a3) and b=(b0; b1;

b2; b3). Then wt(a ± b) equals one of the numbers 0, 2, and 4.
If wt(a+b)= 1 (resp. wt(a−b)= 1), then wt(a−b)= 3 (resp. wt(a+b)= 3). Since

w(1)¿w(3)¿w(4), the conclusion then follows.
Step 3: In fact, wt(a ± b) cannot be 2.
Suppose, on the contrary, that wt(a ± b)= 2. By Proposition 5, x and y have the

same weight 2n−1 + 2n−3. Since x covers y, they should have the same support.
That x and y have the same support means that every (z0; z1; z2; z3) in the space

(GF(3)∗)4 is a solution of the equation a0z0 + a1z1 + a2z2 + a3z3 = 0 if and only if
it is a solution of −a0z0 − a1z1 + a2z2 + a3z3 = 0. However, this is not true. Hence, x
cannot cover y, which is a contradiction.
Combining Steps 1–3, we have proved the proposition.
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Proposition 11. Let

x =
3∑
k=0

akvik and y =
1∑
k=0

bkvjk

be two codewords of C3(1; n); where 06ik6n (06k63); 06jk6n (k =0; 1); and
ai; bi ∈ GF(3)∗. Then x cannot cover y.

Proof. We prove the following two statements:
(i) If x covers y, then {j0; j1}⊂{i0; i1; i2; i3}. Suppose that j0 = i0 and j1 = i1, then

(b0; b1)= ± (a0; a1).
(ii) Let x=

∑3
l=0 alvil and y= ± (a0vi0 + a1vi1 ), where al 6=0. Then x cannot

cover y.
The proof of (i) is similar to that of Step 1 of Proposition 10, while that of (ii)
is similar to that of Step 3 of Proposition 10, except that we now compare x and
x± y.

Combining Theorem 7, Propositions 10 and 11, we obtain the following conclusion.

Theorem 12. The minimum access structure � of our secret sharing scheme based
on C3(1; n)⊥ contains the supports (in {1; : : : ; 2n − 1}) of all the codewords

x =
3∑
k=0

akvik

with
∑3

k=0 ak =1; where 06i0¡i1¡i2¡i36n; and the minimum codewords of the
form

y =
1∑
k=0

vjk ;

where 06j0¡j16n.
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