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The Value of Feedback in Decentralized Detection
Wee Peng Tay, Member, IEEE

Abstract—We consider the decentralized binary hypothesis
testing problem in networks with feedback, where some or all
of the sensors have access to compressed summaries of other
sensors’ observations. We study certain two-message feedback
architectures, in which every sensor sends two messages to a
fusion center, with the second message based on full or partial
knowledge of the first messages of the other sensors. We also
study one-message feedback architectures, in which each sensor
sends one message to a fusion center, with a group of sensors
having full or partial knowledge of the messages from the
sensors not in that group. Under either a Neyman-Pearson or
a Bayesian formulation, we show that the asymptotically optimal
(in the limit of a large number of sensors) detection performance
(as quantified by error exponents) does not benefit from the
feedback messages, if the fusion center remembers all sensor
messages. However, feedback can improve the Bayesian detection
performance in the one-message feedback architecture if the
fusion center has limited memory; for that case, we determine
the corresponding optimal error exponents.

Index Terms—Decentralized detection, feedback, error expo-
nent, sensor networks.

I. INTRODUCTION

In the problem of decentralized detection, introduced by

Tenney and Sandell [1], each one of several sensors makes an

observation and sends a summary by first applying a quan-

tization function to its observation and then communicating

the result to a fusion center. The fusion center makes a final

decision based on all of the sensor messages. The goal is to

design the sensor quantization functions and the fusion rule

so as to minimize a cost function, such as the probability of

an incorrect final decision.

In this paper we consider sensor network architectures

that are more complex than those in [1], and which involve

feedback: some or all of the sensors have access to com-

pressed summaries of other sensors’ observations. We are

interested in characterizing the performance under different

architectures, and, in particular, to determine whether the

presence of feedback can substantially enhance performance.

Because an exact analysis is seemingly intractable, we focus

on the asymptotic regime, involving a large number of sensors,

and quantify performance in terms of error exponents. The

numerical examples in [2], [3] show that feedback can improve

the detection performance if the number of sensors is fixed.

In the asymptotic regime however, the somewhat unexpected

conclusion is that for most of the models considered in
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this paper, feedback does not improve performance in binary

hypothesis testing.1 The only exception we have found is

Bayesian hypothesis testing in a “daisy-chain architecture” (cf.

Section II) where the fusion center has limited memory. In this

configuration, feedback can result in a better optimal error

exponent.

A. Related Literature

The decentralized detection problem has been widely stud-

ied for various network architectures, including the above

described “parallel” configuration of [1] (see [4]–[15]), tandem

networks [16]–[19], and bounded height tree architectures

[20]–[27]. For sensor observations not conditionally indepen-

dent given the hypothesis, the problem of designing the quanti-

zation functions is known to be NP-hard [28]. For this reason,

most of the literature assumes that the sensor observations are

conditionally independent. Several works have considered the

case of correlated observations, but under specific assumptions

like observations having Gaussian distributions [29]–[33] or

hierarchical Markovian models [34]. In this paper, we consider

the case where observations are conditionally independent

given the hypothesis, but the information available at each

sensor may become correlated after feedback messages are

transmitted to them.

Non-tree networks are harder to analyze because the dif-

ferent messages received by a sensor are not in general

conditionally independent. While some structural properties

of optimal decision rules are available (see, e.g., [35]), not

much is known about the optimal performance. Networks with

feedback face the same difficulty, and the relevant literature

(discussed in the next paragraph) is limited.

A variety of feedback architectures, under a Bayesian for-

mulation, have been studied in [2], [3]. These references show

that it is person-by-person optimal for every sensor to use

a likelihood ratio quantizer, with thresholds that depend on

the feedback messages. However, because of the difficulty

of optimizing these thresholds when the number of sensors

becomes large, it is difficult to analytically compare the per-

formance of networks with and without feedback. Numerical

examples in [3] show that a system with feedback has lower

probability of error, as expected. To better understand the

asymptotics of the error probability, [36] studies the error

probability decay rate under a Neyman-Pearson formulation

for two different feedback architectures. For either case, it

shows that if the fusion center also has access to the feedback

messages, then feedback does not improve the optimal error

exponent. References [37], [38] consider the Neyman-Pearson

1Although feedback has been studied in various areas of information theory,
including channel capacity, those results have no direct relationships with the
topic of decentralized detection that we address in this paper.

NTULSC
Text Box



2 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , 2012

problem in a daisy-chain architecture (see Figure 2), and

obtain a similar result. However, the analogous questions under

a Bayesian formulation were left open in [36]–[38].

B. Summary and Contributions

In this paper, we revisit some of the architectures studied

in [36]–[38], and extend the available results. We also study

certain feedback architectures that have not been studied

before. In what follows, we describe briefly the architectures

that we consider, and summarize our results.

1) We study a new two-message sequential feedback ar-

chitecture. Sensors are indexed, and the second message

of a sensor can take into account the first message of all

sensors with lower indices. We show that under either the

Neyman-Pearson or Bayesian formulation, feedback does

not improve the error exponent.

2) We consider the two-message full feedback architecture

studied in [36]. Here, each sensor gets to transmit two

messages, and the second message can take into account

the first messages of all sensors. We resolve an open

problem for the Bayesian formulation, by showing that

there is no performance gain over the non-feedback case.

We also provide a variant of the result of [36] for the

Neyman-Pearson case. Our model is somewhat more

general than that in [36], because we do not restrict

the sensors’ raw observations and the sensor messages

to be finite-valued. More crucially, we also remove the

constraint in [36] that the feedback message alphabet

can grow at most subexponentially with the number of

sensors.

3) We consider the one-message sequential feedback ar-

chitecture studied in [39], [40] (under the name of “full

observation network topology”), where sensors are in-

dexed, and each sensor knows the messages of all sensors

with lower indices. Unlike [39], [40], which investigate

“myopic” strategies where each sensor selfishly mini-

mizes its local error probability, we show that if there

is cooperation amongst sensors so that the last sensor

makes the final decision for the whole network, there is

no loss of asymptotic optimality if sensors other than the

last ignore information from the other sensors, for both

the Neyman-Pearson and the Bayesian formulation.

4) We consider the daisy chain or one-message architec-

tures studied in [37], under which the sensors are divided

into two groups, and sensors in the second group have full

or partial knowledge of the messages sent by the first

group. Reference [37] dealt with the Neyman-Pearson

formulation. In this paper, we turn to the Bayesian

formulation and resolve several questions that had been

left open.

a) In a full feedback daisy chain, sensors in the second

group, as well as the fusion center, have access to all

messages sent by sensors in the first group. Similar to

the Neyman-Pearson case, we show that the Bayesian

optimal error exponent is the same as for a parallel

configuration with the same number of sensors; in par-

ticular, feedback offers no performance improvement.

b) In a restricted feedback daisy chain, the second group

of sensors, as well as the fusion center, have access to

only a 1-bit summary of the messages sent by sensors

in the first group. For the Neyman-Pearson formulation,

[38] shows that feedback does not improve the error

exponent. In contrast, for the Bayesian formulation, we

show that in general, feeding this 1-bit summary to

the second group of sensors can improve the detection

performance. We provide sufficient conditions for feed-

back to result in no performance gain. Furthermore,

we show that this architecture is strictly inferior to the

full feedback daisy chain and the parallel configuration.

We also provide a characterization of the optimal error

exponent.

The study of feedback mechanisms in parallel configura-

tions or daisy chain architectures provides insights into the

performance of more complex networks in which groups of

sensors may have access to the information at other sensors.

The results in this paper serve as a first step to a better

understanding of the performance of complex networks.

Feedback messages can complicate the design of optimal

sensor quantization functions and fusion rules [3], and may

improve the detection performance when the number of sen-

sors is limited. However, the results in this paper suggest that

for binary hypothesis testing, and in most message architec-

tures, feedback does not significantly improve the detection

performance when the number of sensors is large. Therefore,

it is better to adopt simple sensor quantization functions and

fusion rules and optimize other aspects of the network when

designing a decentralized detection network.

The remainder of the paper is organized as follows. In

Section II we define the model, formulate the problems that

we will be studying, and provide some background material.

In Section III, we study two-message feedback architectures

(sequential and full feedback). In Section IV, we study one-

message feedback architectures. We offer concluding remarks

and discuss open problems in Section V. Some mathematical

results that we use frequently are presented in the Appendix.

II. PROBLEM FORMULATION

In this section, we describe the feedback architectures of

interest, define our model, and present some preliminary

results. We consider a decentralized binary detection problem

involving n sensors and a fusion center. Sensor k observes

a random variable Xk taking values in some measurable

space (X ,F), and is distributed according to a measure Pj

under hypothesis Hj , for j = 0, 1. Under either hypothesis

Hj , j = 0, 1, the random variables Xk are assumed to be

independent and identically distributed. We use Ej to denote

the expectation operator with respect to (w.r.t.) Pj , and Xn
1 to

denote the vector (X1, . . . , Xn). A similar notation, e.g., Y n
1

will be used for other vectors of random variables as well.

Let T be the set from which messages take their values. In

most engineering applications, T is assumed to be a finite

alphabet, although we do not require this restriction. This

allows us to model the received messages at the fusion center

over noisy channels. Furthermore, we use Γ to denote the set of
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allowed quantization functions, that is, functions γ : X 7→ T ,

that can be used to map observations to messages. One

possible choice is to let Γ consist of all measurable functions.

Alternatively, for the problems considered in this paper, it is

known that for T finite, there is no loss of optimality if we

let Γ be the set of likelihood-ratio quantizers [2], [3], [35].

We consider two classes of feedback architectures: the two-

message and one-message architectures.

A. Two-Message Feedback Architectures

In two-message feedback architectures (see Figure 1), each

sensor k sends a message Yk = γk(Xk), with γk ∈ Γ, which

is a “quantized” version of its observation Xk, to the fusion

center.

X1 Xn

Yf

Y1 = γ1(X1) Yn = γn(Xn)

W1 Wn

Z1 = δ1(X1, U) Zn = δn(Xn, U)

Fig. 1. A two-message architecture.

We assume that the sensors are indexed in the order that

they send their messages to the fusion center. We consider

three forms of feedback under the two-message architecture.

(a) Sequential feedback. Here, for k = 2, . . . , n, the feed-

back message sent by the fusion center to sensor k is

Wk = (Y1, . . . , Yk−1), the vector of messages generated

by the previous sensors.

(b) Full feedback. The feedback message sent by the fusion

center to sensor k is the vector Wk = (Y k−1
1 , Y n

k+1) of

messages generated by all of the other sensors.

(c) Restricted feedback. The feedback message sent by

the fusion center to sensor k is a function Wk =
fk(Y

k−1
1 , Y n

k+1) of the other sensors’ first messages,

whose alphabet does not increase with the number of

sensors.

In all of the above scenarios, each sensor forms a new,

second message Zk = δk(Xk,Wk) based on the additional

information Wk, and sends it to the fusion center.

For simplicity, we assume that Zk takes values in the same

alphabet T and, furthermore, that for any w, the function

δwk (·) = δk(·, w) is constrained to belong to the same set Γ
that applies to the first round. As alluded to earlier, when

T is finite, it is known that there is no loss of optimality

if we restrict to log-likelihood ratio quantizers of Xk, with

thresholds that depend on the received messages.

Finally, the fusion center makes a decision Yf =
γf (Y

n
1 , Z

n
1 ). Here, we assume that the fusion center al-

ways remembers the first messages Y1, . . . , Yn. The collection

(γf , γ1, . . . , γn, δ1, . . . , δn) is called a strategy. A sequence

of strategies, one for each value of n, is called a strategy

sequence. We wish to design strategy sequences that are

asymptotically optimal (in the sense of error exponents), as

n increases to infinity.

B. One-Message Feedback Architectures

In one-message architectures, every sensor sends a single

message to an intermediate aggregator or the fusion center,

but some of the sensors have access to the messages of

some other sensors. Specifically, we consider a one-message

sequential feedback architecture [39], [40], and a daisy chain

architecture [37], [38]. As before, we let Γ be the set of

allowed quantization functions.

(a) One-message sequential feedback. Here, sensor k has

access to the messages Y1, . . . , Yk−1 of all sensors

with lower indices. Sensor k forms a message Yk =
γk(Xk, Y

k−1
1 ), and broadcasts it to all sensors with

higher indices. The last sensor, n, makes a final decision

and plays the role of a fusion center. We assume that for

any Y k−1
1 , the mapping from Xk to Yk belongs to Γ.

(b) Daisy chain. This architecture consists of two stages

(see Figure 2) with the first stage involving m sensors

and the second n −m. Each sensor k in the first stage

sends a message Yk = γk(Xk) to an aggregator, with

γk ∈ Γ. The aggregator forms a message U that is

broadcast to all sensors in the second stage and to the

fusion center. Each sensor l in the second stage forms

a message Zl = δUl (Xl) = δl(Xl, U), which depends

on its own observation and the message U . Again, we

assume that δui ∈ Γ, for every possible value u of U .

The fusion center makes a final decision using a fusion

rule Yf = γf (U,Zm+1, . . . , Zn). We can view the daisy

chain as a parallel configuration, in which the fusion

center feeds sensors m+ 1, . . . , n with a message based

on information from sensors 1, . . . ,m.

X1 Xm

Xm+1 Xn

U

Yf

Y1 = γ1(X1) Ym = γm(Xm)

Zn = δn(Xn, U)
Zm+1

= δm+1(Xm+1, U)

Fig. 2. The daisy chain architecture.
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We consider two cases for how U is formed.

(i) Full feedback daisy chain. Here, we let U =
(Y1, . . . , Ym), i.e., the second stage sensors and

fusion center have the full information available at

the first stage aggregator.

(ii) Restricted feedback daisy chain. Here, we let

U = γu(Y1, . . . , Ym) ∈ {0, 1}. This architecture can

be viewed as a parallel configuration in which the

fusion center makes a preliminary decision based on

the messages from the first m sensors, broadcasts

the preliminary decision, and forgets (e.g., due to

memory or security constraints) the messages sent

by the first m sensors.

C. Assumptions and Preliminaries

In this section, we list the basic assumptions that we will be

making throughout this paper, and note a useful consequence

that will be used in our subsequent proofs. The first assumption

we make results in no loss of generality (see [41]).

Assumption 1: The measures P0 and P1 are absolutely

continuous w.r.t. each other.

Let P
X
i be the distribution of a random variable X un-

der hypothesis Hi. Consider the Radon-Nikodym derivative

dPX
i /dP

X
j of the measure P

X
i with respect to the measure

P
X
j . Informally, this is the likelihood ratio associated with an

observation of X , and is a random variable whose value is

determined by X; accordingly, its value should be denoted

by a notation such as ℓXij (X), where ℓXij is a function from X
into [0,∞) determined by the distributions of X under the two

hypotheses. However, in order to avoid cluttered expressions,

we will abuse notation and just write ℓij(X). Furthermore, to

simplify notation, we use ℓij(X,Y ) in place of ℓij((X,Y )),
and similarly for random vectors of arbitrary length. We also

use ℓij(γ(X)) to denote the Radon-Nikodym derivative of

the random variable Z = γ(X). Throughout the paper, we

deal with various conditional distributions. Abusing notation

as before, we let ℓij(X|Y ) be the Radon-Nikodym derivative

of the conditional distribution of X given Y . Other notations

like ℓij(γ(X)|Y ) will also be used.

In this paper, we are interested in the decay rates of

the detection error probabilities. As such, we make exten-

sive use of quantities like the Kullback-Leibler divergence

Ei [log ℓij(X1)] in the subsequent discussions. Note how-

ever, that in some places it is more convenient to use

Ei [log ℓji(X1)] = −Ei [log ℓij(X1)], which is the negative

of the Kullback-Leibler divergence.

The following assumption is made to simplify the exposi-

tion, and can often be relaxed. See [42] for a discussion.

Assumption 2: We have Ei

[

log2 ℓji(X1)
]

< ∞ for i, j =
0, 1.2

Assumption 2 implies the following lemma, which follows

from Proposition A.1 in Appendix A. This result was first

proved in [42].

2For the Neyman-Pearson formulation, we will only require that this
assumption and Lemma 1 hold for i = 0, j = 1.

Lemma 1: There exists some finite constant a, such that for

all γ ∈ Γ, and i, j = 0, 1,

Ei

[

log2 ℓji(γ(X1))
]

≤ Ei

[

log2 ℓji(X1)
]

+ 1 < a,

Ei [|log ℓji(γ(X1))|] < a.

Under both the Neyman-Pearson and Bayesian formula-

tions, the optimal fusion policy at the fusion center is a

likelihood ratio test [43]. For i, j ∈ {0, 1}, we consider the

likelihood ratio of the information at the fusion center under

Hi to that under Hj . Let the logarithm of this likelihood

ratio be denoted by L(n)
ij . In the two-message architectures,

L(n)
ij = log ℓij(Y

n
1 , Z

n
1 ), and in the one-message architectures,

we have L(n)
ij = log ℓij(Y

n
1 ) for the sequential feedback

configuration, and L(n)
ij = log ℓij(U,Z

n
1 ) for the daisy chain

network.

For the convenience of the reader, we end this section by

summarizing some frequently encountered notations in the

following table.

Notation Definition

ℓij(X) likelihood ratio of distribution of X under Hi to that under
Hj

ℓij(X|Y ) likelihood ratio of the conditional distribution of X given Y ,
under Hi to that under Hj

L
(n)
ij log likelihood ratio of the total information at the fusion

center under Hi to that under Hj , when there are n sensors

ψn(s) the log moment generating function of L
(n)
10 under H0, i.e.,

logE0[exp(sL
(n)
10 )]

ϕξ(s) the log moment generating function logE0 [(ℓ10(ξ(X1))s],
where ξ is a measurable function.

g∗2p, g
∗

sf
,

g∗
rf
, g∗

f

optimal Neyman-Pearson error exponent for the two-message
parallel, and sequential, restricted, and full feedback architec-
tures respectively

E∗

2p, E
∗

sf
,

E∗

rf
, E∗

f

optimal Bayesian error exponent for the two-message parallel,
and sequential, restricted, and full feedback architectures
respectively

E∗

dc
, E∗

t optimal Bayesian error exponent for the one-message daisy
chain and tree architectures respectively

TABLE I
SUMMARY OF FREQUENTLY USED NOTATIONS.

III. TWO-MESSAGE ARCHITECTURES

In this section, we study the Neyman-Pearson and Bayesian

formulations of the decentralized detection problem in two-

message architectures. The log-likelihood ratio at the fusion

center is given by

L(n)
10 = log ℓ10(Y

n
1 , Z

n
1 )

=

n
∑

k=1

log ℓ10(Yk) + log ℓ10(Z
n
1 | Y n

1 )

=

n
∑

k=1

log ℓ10(Yk) +

n
∑

k=1

log ℓ10(Zk | Y n
1 )

=

n
∑

k=1

log ℓ10(Yk) +

n
∑

k=1

log ℓ10(Zk | Yk,Wk).

The third equality above holds because, under either hypoth-

esis, and given Y n
1 , the random variables Zk are functions of
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the respective Xk; thus, the Zk are conditionally independent,

given Y n
1 . The last equality holds because Zk depends on Y n

1

through Yk and Wk.

To simplify notation, we define, for every possible value w
of Wk, a random variable Lk

10(w), according to

Lk
10(w) = log ℓ10(Yk) + log ℓ10(Zk | Yk,Wk = w)

= log ℓ10(γk(Xk), δ
w
k (Xk)).

Note that Lk
10(w) is a random variable which is a function of

a non-random argument w and the random variable Xk. Note

also that

L(n)
10 =

n
∑

k=1

Lk
10(Wk).

A. Neyman-Pearson Formulation

Let α ∈ (0, 1) be a given constant. A strategy is admissible

if its Type I error probability satisfies P0(Yf = 1) < α. Let

β∗
n = inf P1(Yf = 0), where the infimum is taken over all

admissible strategies for the n-sensor problem. Our objective

is to characterize the optimal error exponent

lim sup
n→∞

1

n
log β∗

n, (1)

under different feedback architectures. In this paper, we define

the error exponent to be the worst case limiting bound for the

error decay rate. One can also define the error exponent with

an infimum limit in (1) in place of the supremum limit. In

general, these two error exponents are not equal [44]. However,

for a parallel configuration without feedback, these two error

exponents coincide and the limit limn→∞(1/n) log β∗
n exists

[42]. It will be clear from our subsequent proofs that the limit

also exists for the feedback architectures that we consider in

this paper.

Let g∗2p be the optimal error exponent for the two-message

parallel configuration, in which there is no feedback from the

fusion center, i.e., when each sensor k sends two messages,

(γk(Xk), δk(Xk)), to the fusion center. From [42], the optimal

error exponent is

g∗2p = inf
(γ,δ)∈Γ2

E0 [log ℓ10(γ(X1), δ(X1))].

Let g∗sf , g∗rf , and g∗f be the optimal error exponents for the

sequential, restricted, and full feedback architectures respec-

tively. Since the sensors can ignore some or all of the feedback

messages from the fusion center, we have

g∗f ≤ g∗sf ≤ g∗2p, (2)

g∗f ≤ g∗rf ≤ g∗2p, (3)

(Note that error exponents are nonpositive and that smaller

error exponents correspond to better performance.)

We will show that under appropriate but mild assumptions,

the inequalities in (2) and (3) are equalities. Hence, from an

asymptotic viewpoint, feedback results in no gain in detection

performance. From [42], this implies that there is no loss

in optimality if the sensors ignore the feedback messages

from the fusion center and are constrained to using the

same quantization function. We first show a useful result that

underlies a key step in our proofs.

Lemma 2: Consider a sequence of strategies, indexed by n,

the number of sensors. Let βn be the associated Type II error

probabilities. Suppose that for every strategy in the sequence,

the Type I error probability P0(Yf = 1) ≤ α, where α ∈
(0, 1). If there exists a nonnegative constant R such that

lim sup
n→∞

P0(L(n)
10 < −nR) < 1− α,

then

lim inf
n→∞

1

n
log βn ≥ −R.

Proof: We have

βn = P1(Yf = 0)

= E0

[

exp(L(n)
10 )1{Yf=0}

]

≥ E0

[

exp(L(n)
10 )1

{Yf=0,L
(n)
10 ≥−nR}

]

≥ e−nR
P0(Yf = 0,L(n)

10 ≥ −nR).
Therefore,

P0(Yf = 0,L(n)
10 ≥ −nR) ≤ βne

nR.

This upper bound yields

1− α ≤ P0(Yf = 0)

= P0(Yf = 0,L(n)
10 ≥ −nR)

+ P0(Yf = 0,L(n)
10 < −nR)

≤ βne
nR + P0(L(n)

10 < −nR),
and we have

1

n
log βn +R ≥ 1

n
log(1− α− P0(L(n)

10 < −nR)).

The lemma follows by taking the limit as n → ∞, and the

proof is complete.

B. Neyman-Pearson Formulation — Sequential Feedback

For the case of sequential feedback, the proof that feedback

yields no performance improvement is relatively simple. The

core of the proof is an inequality on the (conditional) expecta-

tion of the log-likelihood ratio at the fusion center. We use this

inequality together with a variance bound to obtain a bound on

the tail probabilities associated with the log-likelihood ratio,

and finally use Lemma 2.

Theorem 1: Suppose that Assumptions 1-2 hold. Then, the

optimal error exponent for the sequential feedback architecture

is g∗sf = g∗2p, i.e., there is no loss in optimality if the sensors

ignore the feedback messages from the fusion center and are

constrained to using the same quantization function.

Proof: From (2), we have g∗sf ≤ g∗2p. To show the reverse

inequality, we first bound E0[Lk
10(Wk) | Wk] from below by

g∗2p. We have, for any w,

E0

[

Lk
10(Wk) |Wk = w

]

= E0 [log ℓ10(γk(Xk), δ
w
k (Xk)) |Wk = w]

≥ inf
(γ,δ)∈Γ2

E0 [log ℓ10(γ(X1), δ(X1))]

= g∗2p. (4)



6 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , 2012

In particular, E0

[

Lk
10(Wk)

]

≥ g∗2p and E0

[

L(n)
10

]

≥ ng∗2p.

We next obtain a suitable variance bound. Let Qk =
Lk
10(Wk) − E0[Lk

10(Wk) | Wk]. From Lemma 1, there exists

some constant a > 0 such that

var0(Qk) ≤ E0

[

E0

[

(

Lk
10(Wk)

)2 |Wk

]]

≤ a. (5)

Recall that Wk = Y k−1
1 . We have, for m < k,

E0 [Qm ·Qk]

= E0 [QmE0 [Qk |Wk]]

= 0. (6)

Let ǫ > 0. Inequality (4), together with the bounds (5) and

(6), and Chebyshev’s inequality, yield

P0

(

L(n)
10 < n(1 + ǫ)g∗2p

)

≤ P0

(

n
∑

k=1

Qk < nǫg∗2p

)

≤ a

nǫ2(g∗2p)
2
.

Letting n→ ∞, we get

lim
n→∞

P0

(

L(n)
10 < n(1 + ǫ)g∗2p

)

= 0 < 1− α.

Therefore, applying Lemma 2, we have g∗sf ≥ (1 + ǫ)g∗2p.

Since ǫ was chosen arbitrarily, we obtain g∗sf ≥ g∗2p, and the

proof is complete.

C. Neyman-Pearson Formulation — Full Feedback

Next, we consider the full feedback architecture. The same

architecture has been studied in [36], using the method of

types, and under a more restrictive set of assumptions. In the

following, we show a result similar to the one in [36], i.e., that

there is no gain from the feedback messages asymptotically.

For a comparison, we note that [36] involved a constraint

that feedback messages take values in an alphabet that grows

at most subexponentially. This constraint excludes the full

feedback case, in which the feeback messages Wk take values

in an exponentially growing alphabet.

The following result subsumes, in some sense Theorem 1;

indeed, if full feedback cannot improve performance, then

sequential feedback cannot either. On the other hand, for

this more general result we will need a stronger assumption.

In Theorem 1, we used the property that the “innovations”

Lm
10(Wm) − E0[Lm

10(Wm) | Wm] were uncorrelated, which

allowed us to use Chebyshev’s inequality. Such a property is

no longer true in the full feedback case. Instead, we impose

an exponential tail bound on the original log-likelihood ratios;

equivalently, we make a finiteness assumption on the log

moment generating function of the original log-likelihood

ratios about a neighborhood of the origin, which is standard in

the theory of large deviations [45]. We then proceed to derive

related bounds that refer to the log-likelihood ratios associated

with various messages. This step is somewhat tedious but

unsurprising.

Let ϕξ(s) = logE0 [(ℓ10(ξ(X1))
s] be the log moment

generating function of the log-likelihood ratio of the distri-

bution of ξ(X1) under H1 versus that under H0, where ξ is

a measurable function. If ξ = Id the identity function, we

have ϕId(s) = logE0[(ℓ10(X1))
s], which is the log moment

generating function of the log-likelihood ratio log ℓ10(X1)).
We make the following assumption about ϕId(s).

Assumption 3: There exists some s̄ < 0 such that ϕId(s̄) <
∞.

Since ϕId(·) is nonincreasing on [s̄, 0] (cf. Lemma 2.2.5

of [45]), Assumption 3 implies that ϕId(s) < ∞ for all

s ∈ [s̄, 0]. Furthermore, the second moment of log ℓ10(X1)
under H0 exists and is finite. Therefore, Assumption 3 implies

Assumption 2 for i = 0 and j = 1.

Now consider a pair ξ = (γ, δ) ∈ Γ2 of quantization

functions. We have ϕξ(s) is the log moment generating

function of the log-likelihood ratio of the distribution of

ξ(X1) = (γ(X1), δ(X1)) under H1 versus that under H0.

Suppose that a strategy sequence has been fixed. Based on

Assumption 3, we will show some properties of ϕξ and ψn.

(Recall that ψn(s) = logE0[exp(sL(n)
10 )] is the log moment

generating function of L(n)
10 .) We will then use these properties

to obtain tail bounds on L(n)
10 , which will play the same role

as the Chebyshev bound in the proof of Theorem 1. 3 A proof

of the following lemma is provided in Appendix B.

Lemma 3: Suppose Assumption 1-3 holds, and let s̄ be as

in Assumption 3.

(i) There exists a positive constant c such that for all s ∈
[s̄/2, 0], and for all ξ ∈ Γ2, we have 0 ≤ ϕ′′

ξ (s) ≤ c.

(ii) Let ξ∗ ∈ Γ2 be such that ϕ′
ξ∗(0) ≤ g∗2p + ǫ, where ǫ

is a small positive constant so that h =
√

ǫ/(2c) <
min{|s̄|/2, 1/4}. Then, for all s ∈ [−h, 0], and for all

ξ ∈ Γ2, we have ϕξ(s) ≤ ϕξ∗(s) + ǫ/2.

(iii) For all n ≥ 1 and s ∈ [−h, 0], we have ψn(s)/n ≤
ϕξ∗(s) + ǫ.

Finally, we show that for both the full and restricted

feedback architectures, feedback does not improve the optimal

error exponent.

Theorem 2: Suppose that Assumptions 1-3 hold. Then, in

both the full and restricted feedback architectures, there is no

loss in optimality if sensors ignore the feedback messages from

the fusion center, i.e., g∗f = g∗rf = g∗2p.

Proof: From (3), it suffices to show g∗f ≥ g∗2p. Choose a

sufficiently small ǫ > 0. Let ξ∗ and h be chosen as in Lemma

3(ii), and let tǫ = −(ϕξ∗(−h) + ǫ)/h. From the Chernoff

bound and Lemma 3(iii), we have

lim sup
n→∞

1

n
logP0

(

L(n)
10 < n(tǫ − ǫ)

)

≤ ϕξ∗(−h) + ǫ+ h(tǫ − ǫ)

= −hǫ < 0.

Applying Lemma 2, we have g∗f ≥ tǫ − ǫ. The Taylor series

expansion of ϕξ∗ yields

tǫ = ϕ′
ξ∗(0)− ϕ′′

ξ∗(θ)
1

2

√

ǫ

2c
−
√
2cǫ,

3Throughout the paper, we use f ′(s) and f ′′(s) to denote the first and
second derivatives of f w.r.t. s.
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where θ ∈ [−h, 0], and c is the same constant as in Lemma

3(i). Since 0 ≤ ϕ′′
ξ∗(θ) ≤ c, tǫ → g∗2p as ǫ decreases to 0.

Letting ǫ→ 0, we obtain the theorem.

D. Bayesian Formulation

In this section, we show that feedback does not improve the

optimal error exponent for the binary Bayesian decentralized

detection problem in the sequential, full, and restricted feed-

back architectures. Let the prior probability of hypothesis Hj

be πj > 0, j = 0, 1. Given a strategy, the probability of error

at the fusion center is Pe(n) = π0P0(Yf = 1)+π1P1(Yf = 0).
Let P ∗

e (n) be the minimum probability of error, over all

strategies, for the n-sensor problem. We seek to characterize

the optimal error exponent

lim sup
n→∞

1

n
logP ∗

e (n).

From [42], the optimal error exponent for the parallel config-

uration without any feedback is given by

E∗
2p = inf

(γ,δ)∈Γ2
min

s∈[0,1]
logE0 [(ℓ10(γ(X1), δ(X1)))

s
]. (7)

Similar to the Neyman-Pearson formulation, we let E∗
sf , E∗

rf

and E∗
f denote the optimal error exponents for the sequential,

restricted, and full feedback architectures respectively. Note

that the counterparts of inequalities (2) and (3) also hold for

the Bayesian error exponents. Therefore, to show that feedback

does not improve the asymptotic performance, it suffices

to show a lower bound for the full feedback architecture.

Recall that ψn(s) = logE0

[

exp(sL(n)
10 )
]

is the log moment

generating function of L(n)
10 . The following lemma, whose

proof is in Appendix C, provides uniform bounds for ψn and

its derivatives, over all strategies.

Lemma 4: Suppose that Assumptions 1 and 2 hold.

(i) For all s ∈ [0, 1], we have E0 [log ℓ10(X1)] ≤
ψ′
n(s)/n ≤ E1 [log ℓ10(X1)].

(ii) For any bounded sequence (tn) and for any given strat-

egy such that there exists sn ∈ (0, 1) with ψ′
n(sn) = tn

for each n,4 we have ψ′′
n(sn) ≤ nC, where C is a

constant independent of the strategy.

(iii) For all s ∈ [0, 1], we have ψn(s) ≥ nE∗
2p.

The following result shows that feedback does not improve

Bayesian detection performance in the full feedback architec-

ture.

Theorem 3: Suppose that Assumptions 1 and 2 hold. Then

E∗
f = E∗

2p, i.e., there is no loss in optimality if sensors

are constrained to using the same quantization function that

ignores the feedback messages from the fusion center.

Proof: It is clear that E∗
f ≤ E∗

2p. To show the reverse

bound, we make use of Proposition A.2. Let the conditional

probability of error under Hj be Pn,j for j = 0, 1. Let s∗n =
argmins∈(0,1) ψn(s) so that ψ′

n(s
∗
n) = 0. From Proposition

4Note that the sequence (sn) depends on the strategy used.

A.2, we have

max
j=0,1

Pn,j ≥
1

4
exp

(

ψn(s
∗
n)−

√

2ψ′′
n(s

∗
n)
)

≥ exp(ψn(s
∗
n)− C

√
n)

≥ exp(nE∗
2p − C

√
n)

where C is some constant. The penultimate inequality follows

from Lemma 4(ii), and the last inequality from Lemma 4(iii).

Letting n→ ∞, we have

lim inf
n→∞

1

n
logPe(n) = lim inf

n→∞

1

n
log max

j=0,1
Pn,j

≥ E∗
2p.

This implies that E∗
f ≥ E∗

2p, and the proof is complete.

Since the sequential and restricted feedback configurations

can perform no better than the full feedback architecture, and

no worse than the parallel configuration, we have the following

result.

Theorem 4: Suppose that Assumptions 1 and 2 hold. Then

E∗
sf = E∗

rf = E∗
2p. Moreover, there is no loss in optimality

if sensors are constrained to using the same quantization

function, which ignore the feedback messages from the fusion

center.

IV. ONE-MESSAGE ARCHITECTURES

In this section, we consider the one-message architecture.

We study both the Neyman-Pearson and Bayesian formulations

for the binary hypothesis testing problem. Similar to the two-

message architecture, feedback in general does not improve

the asymptotic detection performance, except for the case of

Bayesian detection with restricted feedback in the daisy chain

architecture. In the case where there is no feedback [42], the

optimal Neyman-Pearson error exponent is

g∗1p = inf
γ∈Γ

E0 [log ℓ10(γ(X1))],

while the optimal Bayesian error exponent is

E∗
1p = inf

γ∈Γ
min

s∈[0,1]
logE0 [(ℓ10(γ(X1)))

s
].

A. Full Information at Fusion Center

We consider the case where the fusion center has access

to all sensor messages. This is the case for the sequential

feedback architecture in which the fusion center is the last

sensor. The same applies for the full feedback daisy chain

architecture. By ignoring all feedback messages except at the

fusion center, these architectures are equivalent to the parallel

configuration with the same number of sensors. Therefore, the

optimal error exponents under both the Neyman-Pearson and

Bayesian formulations are at least as negative as those for

the parallel configuration. The proof of the reverse direction

involves the same steps as in the proofs for the two-message

architectures in Section III. Specifically, the proof for the one-

message sequential feedback architecture is similar to that of

Theorem 1, with suitable modifications (remove all references

to the first messages γk and replace Yk by Zk). The proof for

the daisy-chain architecture corresponds to that of Theorems
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2 and 3. The result for the daisy-chain architecture under the

Neyman-Pearson formulation is also provided in [37]. The

above discussion is summarized in the following result, whose

proof is omitted.

Theorem 5: Suppose that Assumptions 1 and 2 hold.

1) Under either the Neyman-Pearson or Bayesian formu-

lation, the optimal error exponents for the one-message

sequential feedback are the same as that of the parallel

configuration under either corresponding formulations.

2) Under the Bayesian formulation, the optimal error expo-

nent for the full feedback daisy chain is the same as that

of the parallel configuration. In addition, if Assumption

3 holds, the Neyman-Pearson error exponent is the same

as that of the parallel configuration.

B. Restricted Feedback Daisy Chain

In this section, we consider the restricted feedback daisy

chain (RFDC) architecture. References [37], [38] have shown

that under the Neyman-Pearson formulation, feedback again

does not improve the optimal error exponent. In this section,

we consider the Bayesian formulation, and show that unlike

the Neyman-Pearson formulation, feedback may improve the

detection performance. We provide a characterization of the

optimal error exponent in this case.

Recall that m is the number of sensors in the first stage

of the RFDC architecture. We assume that limn→∞m/n =
r ∈ (0, 1), otherwise the architecture is equivalent to a parallel

configuration. Let E∗
dc be the optimal error exponent. For γ ∈

Γ, and j = 0, 1, let the Fenchel-Legendre transform of the log

moment generating functions be

Λ∗
j (γ, t) = sup

s∈R

{

st− logEj

[

es log ℓ10(γ(X1))
]}

.

These are also known as rate functions [45] for the log

likelihood ratio log ℓ10(γ(X1)). For i, j ∈ {0, 1}, and for any

given sequence of strategies for the first m sensors, let the rate

of decay of the conditional probabilities be

eij = − lim inf
n→∞

1

m
logPi(U = j).

We collect the decay rates into a vector

~e = [e01, e10, e00, e11]. (8)

Suppose that the quantization functions for the first stage

sensors have been fixed. We characterize the optimal error

exponent of the second stage in terms of ~e in the following

lemma. The proof can be found in Appendix D.

Lemma 5: Suppose Assumptions 1 and 2 hold. Suppose

that the quantization functions for sensors 1, . . . ,m in a RFDC

have been fixed. Then, we have

lim
n→∞

1

n
logPe(n) = −h(~e)

where ~e is as defined in (8),

h(~e)

= min
{

(1− r) sup
δ0∈Γ

Λ∗
0

(

δ0,
r

1− r
(e10 − e00)

)

+ re00,

(1− r) sup
δ1∈Γ

Λ∗
1

(

δ1,− r

1− r
(e01 − e11)

)

+ re11

}

, (9)

and Pe(n) is the optimal probability of error under the given

quantization functions for sensors 1, . . . ,m.

Reference [37] shows that if e01 > 0 and e10 > 0, then

there is no loss in optimality if sensors within each stage are

constrained to using the same quantization function. In the

following, we show that it is optimal to require that e01 > 0
and e10 > 0. We also provide a characterization of the optimal

error exponent.

Theorem 6: Suppose that Assumptions 1 and 2 hold. Then,

the following statements hold for a RFDC architecture.

(i) There is no loss in optimality if e01 and e10 are con-

strained to be strictly positive.

(ii) There is no loss in optimality if sensors in the first stage

are constrained to using the same quantization function.

(iii) There is no loss in optimality if sensors in the second

stage are constrained to using the same quantization

function (which may depend on the feedback message).

(iv) The optimal error exponent for the RFDC is

E∗
dc = −(1− r) sup

γ,δ0,δ1∈Γ
t∈R

min

{

Λ∗
0

(

δ0,
r

1− r
Λ∗
1 (γ, t)

)

,

Λ∗
1

(

δ1,− r

1− r
Λ∗
0 (γ, t)

)}

.

(10)

Proof: We first show claim (i). Note that only one of e01
and e00 can be strictly positive. The same applies to e10 and

e11. If e01 > 0 and e10 > 0, we have e00 = e11 = 0, and (9)

yields

h(~e) = (1− r)min
{

sup
δ∈Γ

Λ∗
0

(

δ,
r

1− r
e10

)

,

sup
δ∈Γ

Λ∗
1

(

δ,− r

1− r
e01

)

}

≥ (1− r)min
{

sup
δ∈Γ

Λ∗
0 (δ, 0), sup

δ∈Γ
Λ∗
1 (δ, 0)

}

= (1− r) sup
δ∈Γ

Λ∗
1 (δ, 0).

On the other hand, if e00 > 0 and e10 > 0. Then, e01 = e11 =
0, and from (9), we have h(~e) ≤ (1 − r) supδ∈Γ Λ

∗
1 (δ, 0).

The same argument applies for the case where e01 > 0 and

e11 > 0, and the case where all the decay rates are zero.

Therefore, there is no loss in optimality if e01 and e10 are

constrained to be strictly positive.

Claims (ii) and (iii) follow from either an application of

Cramèr’s Theorem (cf. [46]) and (9), or from [37].

Finally, we prove claim (iv). Since there is no loss in

optimality if all first stage sensors are restricted to some same

quantization function γ ∈ Γ, the first stage Type I and II

error decay rates are e01 = Λ∗
0 (γ, t) and e10 = Λ∗

1 (γ, t)
respectively, for some t (cf. [27]). Applying Lemma 5, and

optimizing over γ and t, we have shown that the optimal error

exponent is lower bounded by the right hand side of (10). This

bound is achievable, hence the claim follows. The proof is now

complete.

Let E∗
t be the optimal error exponent of the daisy-chain if

the second stage sensors ignore the feedback message. This
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is equivalent to a tree architecture with a height of two [27].

Using the same arguments as above, it can be shown that

E∗
t = −(1− r) sup

γ,δ∈Γ
t∈R

min

{

Λ∗
0

(

δ,
r

1− r
Λ∗
1 (γ, t)

)

,

Λ∗
1

(

δ,− r

1− r
Λ∗
0 (γ, t)

)}

. (11)

Comparing (10) and (11), we have E∗
dc ≤ E∗

t , i.e., the

optimal error exponent for the RFDC is in general better

than the tree configuration where feedback is absent. In the

following, we provide a sufficient condition for no loss in

performance when feedback is ignored, i.e., E∗
dc = E∗

t . We

also provide a numerical example in which E∗
dc < E∗

t , i.e.,

feedback can strictly improve the asymptotic performance in

some cases.

Proposition 1: Suppose that there exists δ ∈ Γ such that

E∗
t = −(1− r) sup

γ∈Γ
t∈R

min

{

Λ∗
0

(

δ,
r

1− r
Λ∗
1 (γ, t)

)

,

Λ∗
1

(

δ,− r

1− r
Λ∗
0 (γ, t)

)}

, (12)

and Λ∗
1 (δ, t) = Λ∗

0 (δ,−t) for all t. Then,

E∗
dc = E∗

t = −(1− r) sup
γ,δ∈Γ

Λ∗
0

(

δ,
r

1− r
Λ∗
1 (γ, 0)

)

.

Therefore, there is no loss in optimality if the RFDC second

stage sensors ignore the feedback message.

Proof: To simplify the proof, we assume that γ ∈ Γ and

t ∈ R can be chosen so that the supremum in (12) is achieved.

To find the optimal threshold t, we set

Λ∗
0

(

δ,
r

1− r
Λ∗
1 (γ, t)

)

= Λ∗
1

(

δ,− r

1− r
Λ∗
0 (γ, t)

)

.

From the proposition hypothesis, we obtain Λ∗
1 (γ, t) =

Λ∗
0 (γ, t), which implies that t = 0. Therefore, from (11), δ

satisfies

Λ∗
0

(

δ,
r

1− r
Λ∗
1 (γ, 0)

)

= sup
δ′∈Γ

Λ∗
0

(

δ′,
r

1− r
Λ∗
1 (γ, 0)

)

.

(13)

Suppose that there exists δ0 6= δ1, and v 6= 0 such that

min

{

Λ∗
0

(

δ0,
r

1− r
Λ∗
1 (γ, v)

)

,Λ∗
1

(

δ1,− r

1− r
Λ∗
0 (γ, v)

)}

> Λ∗
0

(

δ,
r

1− r
Λ∗
1 (γ, 0)

)

. (14)

If v > 0, we have Λ∗
1 (γ, v) ≤ Λ∗

1 (γ, 0) since Λ∗
1 (γ, ·) is a

decreasing function. Therefore from (14), we obtain

Λ∗
0

(

δ0,
r

1− r
Λ∗
1 (γ, 0)

)

≥ Λ∗
0

(

δ0,
r

1− r
Λ∗
1 (γ, v)

)

> Λ∗
0

(

δ,
r

1− r
Λ∗
1 (γ, 0)

)

,

a contradiction to (13). A similar argument produces a con-

tradiction if v < 0. Therefore, we must have v = 0. But

this implies that (14) cannot hold as it again contradicts (13).

Hence, E∗
dc = E∗

t , and the proposition is proved.

The following example shows that in some cases, the RFDC

performs strictly better in the presence of feedback.

Example 1: Let Xk take values in the set {1, 2, 3}, and

suppose that sensor messages are restricted to a single bit.

Assume that the probability mass functions under the two

hypotheses are as shown in Table II. We also let m = n/2,

i.e., r = 1− r = 1/2.

1 2 3

H0 4/5 3/20 1/20

H1 1/20 3/20 4/5

TABLE II
PROBABILITY MASS FUNCTIONS FOR EXAMPLE 1.

Since ℓ10(Xk) is increasing with Xk, the two possible 1-

bit quantizers are γ1(Xk) = 0 iff Xk = 1, and γ2(Xk) = 0
iff Xk ∈ {1, 2}. We optimize (10) over these two quantizers

and the threshold t. The results are shown in Figure 3. The

optimal error exponent is found to be −0.5 · 0.73 = −0.365,

and is achieved by having all second stage sensors use γ2 if

the feedback message is 0, and γ1 if the feedback message

is 1. On the other hand, if feedback is ignored, the optimal

quantizer is γ2, and the optimal error exponent is −0.356,

which is strictly worse than that with feedback.

It is interesting to note that unlike the daisy chain with full

information at the fusion center (cf. Section IV-A), feedback

in the RFDC may improve the detection performance in some

scenarios. The fusion center in the RFDC architecture receives

only a compressed summary of the information available at

the first stage. We can think of the message from the first

stage as a preliminary decision about the true hypothesis. At

the fusion center, a significant weight is given to the first stage

preliminary decision as compared to individual messages from

sensors in the second stage. If sensors in the second stage

ignore the feedback message, any errors in the preliminary

decision cannot be controlled at the second stage. Errors in the

preliminary decision therefore stay large. The first stage fusion

should then try to balance the Type I and II errors by choosing

a zero threshold for the likelihood ratio test. However, if the

rate functions Λ∗
1 (δ, t) and Λ∗

0 (δ, t) for δ as in Proposition

1, are not symmetrical about the origin, then it is possible

to choose a threshold for the first stage so that there is a

bias towards one error probability type on average, and utilize

feedback to allow the second stage sensors to control this bias.

It turns out that since error exponents are not additive over

stages, this is a better strategy. On the other hand, feedback is

not required for the daisy chain with full information as sensor

messages from both stages can be equally weighted and any

errors in the preliminary decision can be averaged out.

Under the Neyman-Pearson formulation, there is no loss in

optimality if feedback is ignored in the RFDC architecture

[38], in contrast to the conclusion in Example 1. This is

because in the Neyman-Pearson formulation, only the Type

II error exponent is considered. One can design a strategy so

that the first stage preliminary decision is biased in such a way

that its Type II error is exponentially smaller than that for the

second stage (note that the Type I error constraint applies only

to the final decision, i.e., the second stage decision making),
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thus achieving the same optimal Type II error exponent even

if feedback is ignored.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

Rate Functions

 

 

Λ
0

*
(γ

1
,t)

Λ
1

*
(γ

1
,t)

Λ
0

*
(γ

2
,t)

Λ
1

*
(γ

2
,t)

Fig. 3. Plot of the rate functions for γ1 and γ2. The mark ’x’ indicates the
optimal error decay rate (up to a constant 1/2) when the feedback message
U = 0, while ’+’ indicates the optimal error decay rate (up to a constant 1/2)
when the feedback message U = 1. The optimal quantizers are achieved on
rate functions belonging to different quantizers.

In the following, we show that the RFDC performs strictly

worse than a parallel configuration, and hence it has perfor-

mance strictly inferior to a full feedback daisy-chain architec-

ture.

Proposition 2: Suppose that the supremum in (10) is

achieved. Then, the RFDC performs strictly worse than the

parallel configuration with the same total number of sensors,

i.e., E∗
t ≥ E∗

dc > E∗
1p = − supδ∈Γ Λ

∗
0 (δ, 0).

Proof: Let γ, δ0, δ1, t achieve the supremum in (10). If

Λ∗
1 (γ, t) = 0, then from (10), we have

E∗
dc ≥ −(1− r)Λ∗

0

(

δ0, 0
)

> − sup
δ∈Γ

Λ∗
0 (δ, 0),

since r > 0. A similar argument shows that E∗
dc > E∗

1p if

Λ∗
0 (γ, t) = 0. Therefore, in the following, we assume that

Λ∗
j (γ, t) > 0 for j = 0, 1.

We have

(1− r)Λ∗
0

(

δ0,
r

1− r
Λ∗
1 (γ, t)

)

= (1− r)Λ∗
1

(

δ0,
r

1− r
Λ∗
1 (γ, t)

)

+ rΛ∗
1 (γ, t)

< (1− r)Λ∗
1

(

δ0, 0
)

+ rΛ∗
1 (γ, t)

≤ (1− r) sup
δ∈Γ

Λ∗
1 (δ, 0) + rΛ∗

1 (γ, t), (15)

where the penultimate inequality follows from Λ∗
1

(

δ0, ·
)

being

a decreasing function, and Λ∗
1 (γ, t) > 0. Similarly,

(1− r)Λ∗
1

(

δ1,− r

1− r
Λ∗
0 (γ, t)

)

< (1− r) sup
δ∈Γ

Λ∗
0 (δ, 0) + rΛ∗

0 (γ, t). (16)

Combining (15) and (16), and since Λ∗
0 (δ, 0) = Λ∗

1 (δ, 0) for

all δ ∈ Γ, we obtain

E∗
dc > −(1− r) sup

δ∈Γ
Λ∗
0 (δ, 0)− rmin {Λ∗

1 (γ, t),Λ
∗
0 (γ, t)}

≥ −(1− r) sup
δ∈Γ

Λ∗
0 (δ, 0)− rΛ∗

0 (γ, 0)

≥ − sup
δ∈Γ

Λ∗
0 (δ, 0) = E∗

1p.

The proof is now complete.

V. CONCLUSION

We have studied two-message feedback architectures, in

which each sensor has access to compressed summaries of

some or all other sensors’ first messages to the fusion center.

In the sequential feedback architecture, each sensor has access

to the first messages of those sensors that communicate with

the fusion center before it. In the restricted and full feedback

architectures, each sensor has partial and full information

respectively, about the first messages of every other sensor.

Under both the Neyman-Pearson and Bayesian formulations,

we show that the optimal error exponent is not improved by

the feedback messages. We have also studied the one-message

feedback architectures in which a group of sensors have

access to information from sensors in a first group. We show

that if the fusion center has knowledge of all the messages

from the sensors in the first group, then feedback does not

improve the optimal error exponent, which is the same as the

parallel configuration. In the case where the fusion center has

only limited knowledge (a 1-bit summary) of the messages,

feedback can improve the optimal error exponent, but the

optimal error exponent is strictly worse than that of the parallel

configuration. Our results suggest that in the regime of a large

number of sensors, and where the fusion center has sufficient

memory, the performance gain in binary hypothesis testing due

to feedback does not justify the increase in communication and

computation costs incurred in a feedback architecture.

In the two-message feedback architecture, we assumed that

the fusion center has unlimited memory and remembers all the

first messages. The case where the fusion center retains only a

finite-valued summary of the first messages has been studied

in [36], but under various assumptions including finite-valued

observation spaces, sensors all using the same quantization

functions and constraints on the feedback messages. Reference

[36] shows that feedback does not improve the error exponent.

The same problem in the general setting that we have consid-

ered in this paper remains open.

In the case of Bayesian M -ary hypothesis testing, where

M > 2, we conjecture that feedback improves the optimal

error exponent. Characterizing the optimal feedback strategy

and error exponent is part of future work. This research is

also part of our ongoing efforts to quantify the performance

of various network architectures. Future research directions

include studying network architectures with more general loop

structures.
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APPENDIX A

MATHEMATICAL PRELIMINARIES

In this appendix, we collect two well known results that

are useful in our proofs. The first result is an elementary fact,

which is an application of Jensen’s inequality. A proof can be

found in [42], and is omitted here.

Proposition A.1: Suppose φ : (0,∞) 7→ R is a convex

function. Then for any function γ, we have

Ej [φ (ℓij(γ(X)))] ≤ Ej [φ (ℓij(X))] .

The following lower bound for the maximum of the Type

I and II error probabilities was first proved in [47] for the

case of discrete observation spaces. The following proposition

generalizes the result to a general observation space. The proof

is identical to that in [47], with some notation changes, and

is provided for completeness.

Proposition A.2: Consider a hypothesis testing problem

based on an observation X with distribution Pj under hy-

pothesis Hj , j = 0, 1. Suppose that the measures P0 and P1

are absolutely continuous w.r.t. each other. Let Pe,j be the

probability of error when Hj is true. Let Z = log dP1

dP0
(X)

be the log Radon-Nikodym derivative. For any s ∈ R,

let Λ(s) = logE0[exp(sZ)] be the log-moment generating

function of Z. Then, for s∗ ∈ [0, 1] such that Λ′(s∗) = 0, we

have

max(Pe,0, Pe,1) ≥
1

4
exp

(

Λ(s∗)−
√

2Λ′′(s∗)
)

.

Proof: The proof steps are identical to that of Theorem

5 in [47]. Let Pj be the probability measure of Z under

hypothesis Hj , j = 0, 1. For s ∈ (0, 1), define the probability

measure Q such that

dQ

dP0
(z) = esz−Λ(s),

and let EQ and varQ be the mathematical expectation and

variance w.r.t. Q, respectively. Let Y be a random variable

with distribution Q. Then, it is easy to check that EQ[Y ] =
Λ′(s) and varQ(Y ) = Λ′′(s). Let As = {y : |y − Λ′(s)| ≤
√

2Λ′′(s)}. From Chebychev’s inequality, we have

Q(As) >
1

2
. (17)

For any measurable set A, we have

P0(A) = EQ[exp(−sZ + Λ(s))1{Z∈A}]

≥ EQ[exp(−sZ + Λ(s))1{Z∈A∩As}]

≥ exp
(

Λ(s)− sΛ′(s)− s
√

2Λ′′(s)
)

Q(A ∩As).

Similarly, we have

P1(A
c) ≥ exp

(

Λ(s) + (1− s)Λ′(s)− (1− s)
√

2Λ′′(s)
)

·Q(Ac ∩As).

From (17), either Q(A ∩ As) > 1/4 or Q(Ac ∩ As) > 1/4.

Therefore, we have either

P0(A) ≥
1

4
exp

(

Λ(s)− sΛ′(s)− s
√

2Λ′′(s)
)

, (18)

or

P1(A
c) ≥ 1

4
exp

(

Λ(s) + (1− s)Λ′(s)− (1− s)
√

2Λ′′(s)
)

.

(19)

Since Λ(s) is convex with Λ(0) = Λ(1) = 0, there exists

s∗ ∈ (0, 1) such that Λ(s∗) = 0. Substituting this into (18)

and (19), we obtain

max(P0(A), P1(A
c)) ≥ 1

4
exp

(

Λ(s∗)−
√

2Λ′′(s∗)
)

.

The proof is now complete.

APPENDIX B

PROOF OF LEMMA 3

We first prove claim (i). From Lemma 2.2.5 of [45], ϕξ is a

convex function with nonnegative second derivatives. We next

show that its second derivative is uniformly upper bounded

for all ξ ∈ Γ2. From Lemma A.1, we have

E0 [(ℓ10(ξ(X1)))
s] ≤ E0 [(ℓ10(X1))

s] ≤ eϕId(s̄). (20)

Let f(s) = E0 [(ℓ10(ξ(X1)))
s], and η = min{|s̄|/2, 1}. There

exists a positive constant M such that for all |x| > M , we

have x2 ≤ exp(ηx) + exp(−ηx). Making use of this bound,

we obtain

ϕ′′
ξ (s) =

E0

[

(ℓ10(ξ(X1)))
s log2 ℓ10(ξ(X1))

]

E0 [(ℓ10(ξ(X1)))s]
− (ϕ′

ξ(s))
2

≤ E0

[

(ℓ10(ξ(X1)))
s log2 ℓ10(ξ(X1))

]

≤M2f(s) + f(s+ η) + f(s− η)

≤ (M2 + 2)f(s̄)

≤ (M2 + 2)eϕId(s̄).

The third inequality follows from the bounds s̄ < s + η < 1
and s̄ < s − η < 0, and the facts that f(x) is nonincreasing

over [s̄, 0], while f(x) ≤ 1 ≤ f(s̄) for x ∈ [0, 1]. The final

inequality follows from (20). Claim (i) is now proved.

We now use a Taylor series expansion to prove claim (ii).

Since ϕξ(0) = 0 for any ξ ∈ Γ2, we have for s ∈ [−h, 0],

ϕξ(s)− ϕξ∗(s)

= (ϕ′
ξ(0)− ϕ′

ξ∗(0))s+ (ϕ′′
ξ (s1)− ϕ′′

ξ∗(s2))
s2

2

≤ ǫ|s|+ c
s2

2
≤ ǫ/2,

where s1 and s2 are between s and 0, and the first inequality

follows from ϕ′
ξ(0) ≥ g∗2p, ϕ′

ξ∗(0) ≤ g∗2p+ ǫ, ϕ
′′
ξ (s1) ≤ c, and

ϕ′′
ξ∗(s2) ≥ 0.
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Finally, we turn to the proof of claim (iii). Recall that Zk =
δWk

k (Xk). For s ∈ [−h, 0], we have

E0

[

n
∏

k=1

(ℓ10(Zk|Yk,Wk))
s
∣

∣

∣
Y n
1

]

= E0

[

n
∏

k=1

(ℓ10(δ
Wk

k (Xk)|Yk))s
∣

∣

∣
Y n
1

]

=

n
∏

k=1

E0

[

(ℓ10(δ
Wk

k (Xk)|Yk))s
∣

∣

∣
Y n
1

]

≤
n
∏

k=1

(

E0

[

(ℓ10(δ
Yk(Xk)|Yk))s

∣

∣

∣
Yk

]

+ ǫ1

)

, (21)

where ǫ1 = ǫ exp(−ϕId(s̄))/2, and δYk ∈ Γ is a function

depending on the value of Yk, and is such that

E0

[

(ℓ10(δ
Yk(Xk)|Yk))s

∣

∣

∣
Yk

]

≥ sup
δ∈Γ

E0

[

(ℓ10(δ(Xk)|Yk))s
∣

∣

∣
Yk

]

− ǫ1.

From (21), we have

ψn(s)

n

=
1

n
logE0

[

(ℓ10(Y
n
1 ))s · E0

[ n
∏

k=1

(ℓ10(Zk|Yk,Wk))
s
∣

∣

∣
Y n
1

]]

≤ 1

n
logE0

[

(ℓ10(Y
n
1 ))s·

n
∏

k=1

(

E0

[

(ℓ10(δ
Yk(Xk)|Yk))s

∣

∣

∣
Yk

]

+ ǫ1

)

]

=
1

n
log

n
∏

k=1

(

E0

[

(ℓ10(Yk, δ
Yk(Xk)))

s
]

+ ǫ1E0 [(ℓ10(Yk))
s]
)

≤ 1

n

n
∑

k=1

logE0

[

(ℓ10(γk(Xk), δ
Yk(Xk)))

s
]

+
ǫ

2
,

where the last inequality follows from (20), and the inequality

log(x + ǫ) ≤ log x + ǫ for x ≥ 1. Let ξk ∈ Γ2 such that

ξk(Xk) = (γk(Xk), δk(Xk)), where δk(Xk) = δu(Xk) iff

γk(Xk) = u ∈ T . We therefore have

ψn(s)

n
≤ 1

n

n
∑

k=1

ϕξk(s) +
ǫ

2
≤ ϕξ∗(s) + ǫ,

where the second inequality follows from claim (ii). The proof

is now complete.

APPENDIX C

PROOF OF LEMMA 4

We first show claim (i). To show the bounds on ψ′
n(s), we

note that ψn is convex, so ψ′
n(0) ≤ ψ′

n(s) ≤ ψ′
n(1) for all

s ∈ [0, 1]. Using Proposition A.1, it is then easy to check that

ψ′
n(0) ≥ nE0 [log ℓ10(X1)] and ψ′

n(1) ≤ nE1 [log ℓ10(X1)].
Next, we prove claim (ii). We have

ψ′′
n(sn) =

E0[(L(n)
10 )2 exp(snL(n)

10 )]

E0[exp(snL(n)
10 )]

− (ψ′
n(sn))

2

≤ C1E0[(L(n)
10 )2 exp(snL(n)

10 )], (22)

where the inequality follows from the bound

E0[exp(snL(n)
10 )] ≥ 1/C1, for some constant C1 independent

of the strategy. (This fact is proved in Proposition 3 of

[42].) The right-hand side of (22) can be upper bounded by

observing that

E0[(L(n)
10 )2 exp(snL(n)

10 )]

= E0

[

(L(n)
10 )2esnL

(n)
10 1

{L
(n)
10 ≤0}

]

+ E1

[

(L(n)
10 )2e−(1−sn)L

(n)
10 1

{L
(n)
10 >0}

]

≤ 4

(

1

s2n
+

1

(1− sn)2

)

, (23)

where in the inequality, we use the result that the function

f1(x) = x2 exp(snx)1{x≤0} is maximized at −2/sn, and the

function f2(x) = x2 exp(−(1− sn)x)1{x>0} is maximized at

2/(1 − sn). It now suffices to show that both sn and 1 − sn
are at least C2/

√
n for some positive constant C2 independent

of the particular strategy chosen. To simplify the notation, let

ℓn = exp(L(n)
10 ). Suppose that |tn| ≤ t for all n. Using the

inequalities xs ≤ sx+1 for 0 < s < 1, and xs ≥ x for x ≤ 1,

we obtain from the equation ψ′
n(sn) = tn,5

tnE0

[

exp(snL(n)
10 )
]

= E0 [(ℓn)
sn log ℓn]

= E0

[

(ℓn)
sn(log ℓn)

+
]

− E0

[

(ℓn)
sn(log ℓn)

−
]

≤ sn
(

E0

[

ℓn(log ℓn)
+
]

+ E0

[

(log ℓn)
+
])

− E0

[

ℓn(log ℓn)
−
]

,

which yields

sn ≥ E1 [(log ℓn)
−]− t

E1 [(log ℓn)+] + E0 [(log ℓn)+]
, (24)

since 0 ≤ E0

[

exp(snL(n)
10 )
]

≤ 1 and |tn| ≤ t. We first bound

the denominator in (24) by using g(x) = x(log x)+, which is

a convex function, and Proposition A.1 to get

E1

[

(log ℓn)
+
]

= E0 [g(ℓn)]

≤ E0 [g(ℓ10(X
n
1 ))]

≤ E0 [ℓ10(X
n
1 )| log ℓ10(Xn

1 )|]
= E1 [| log ℓ10(Xn

1 )|]

≤
n
∑

k=1

E1 [| log ℓ10(Xk)|]

≤
n
∑

k=1

E1

[

log2 ℓ10(Xk)
]

+ n

≤ nC3, (25)

where C3 is a constant, and the last inequality follows from

Lemma 1. Similarly, it can be shown that E0 [(log ℓn)
+] =

E0[(L(n)
01 )−] ≤ E0[(L(n)

01 )+] is bounded by nC3. Next, we

show a lower bound for the numerator in (24). Let

f(x) =

{

x(log x)−, if 0 ≤ x ≤ 1,
1− x, if x > 1,

5We use the notations x+ = max(x, 0) and x− = −min(x, 0).
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which is a concave function not greater than x(log x)−. From

Proposition A.1, we obtain

E1

[

(log ℓn)
−
]

= E0

[

ℓn(log ℓn)
−
]

≥ E0 [f(ℓn)]

≥ E0 [f(ℓ10(X
n
1 ))]

≥ E1

[

(log ℓ10(X
n
1 ))

−
]

− P1(ℓ10(X
n
1 ) > 1)

≥
√
nE1





(

1√
n

n
∑

k=1

log ℓ10(Xk)

)−


− 1.

Applying Fatou’s Lemma and the Central Limit Theorem, we

obtain

lim inf
n→∞

E1 [(log ℓn)
−]√

n
≥ C4, (26)

where C4 is a positive constant. Substituting the bounds (25)

and (26) into (24), we finally have

lim inf
n→∞

sn
√
n ≥ C2,

for some positive constant C2. A similar proof using

E1[L(n)
01 exp((1− sn)L(n)

01 )]

= −E0[L(n)
10 exp(snL(n)

10 )]

= −tnE0

[

exp(snL(n)
10 )
]

≥ −t

shows that the same bound holds for 1− sn. Therefore, from

(23), claim (ii) holds.

In the following, we establish claim (iii). Let ǫ be a positive

constant. Similar to the proof of Lemma 3(iii), let δYk ∈ Γ be

a function depending on the value of Yk, so that

E0

[

(ℓ10(δ
Yk(Xk)|Yk))s

∣

∣

∣
Yk

]

≤ inf
δ∈Γ

E0

[

(ℓ10(δ(Xk)|Yk))s
∣

∣

∣
Yk

]

+ ǫ.

We have

ψn(s)

= logE0

[

(ℓ10(Y
n
1 ))s · E0

[

n
∏

k=1

(ℓ10(Zk|Yk,Wk))
s
∣

∣

∣
Y n
1

]]

≥ 1

n
logE0

[

(ℓ10(Y
n
1 ))s·

n
∏

k=1

(

E0

[

(ℓ10(δ
Yk(Xk)|Yk))s

∣

∣

∣
Yk

]

− ǫ
)

]

=

n
∑

k=1

logE0

[

(ℓ10(Yk))
s
(

E0

[

(ℓ10(δ
Yk(Xk)|Yk))s

∣

∣

∣
Yk

]

− ǫ
)]

≥
n
∑

k=1

log
(

E0

[

(ℓ10(Yk, δ
Yk(Xk)))

s
]

− ǫ
)

, (27)

where we have used the inequality E0 [(ℓ10(Yk))
s] ≤ 1 in

(27). Recall that Yk = γk(Xk). We can define ξk ∈ Γ2 such

that ξk(Xk) = (γk(Xk), δk(Xk)), where δk(Xk) = δu(Xk)
iff γk(Xk) = u ∈ T . From (27), we obtain the bound

ψn(s) ≥
n
∑

k=1

log (E0 [(ℓ10(ξk(Xk)))
s]− ǫ)

≥ n log

(

inf
ξ∈Γ2

E0 [(ℓ10(ξ(X1)))
s]− ǫ

)

. (28)

Since ǫ is arbitrary, the lemma is proved.

APPENDIX D

PROOF OF LEMMA 5

Let us fix a sequence of strategies that conform to the given

quantization functions for sensors 1, . . . ,m. Let α̂n and β̂n
be the Type I and II error probabilities of a strategy with the

fusion rule

Yf =

{

0, if L(n)
10 ≤ 0,

1, if L(n)
10 > 0.

From the Neyman-Pearson Lemma [48], the optimal de-

cision rule at the fusion center is the Neyman-Pearson test.

Moreover, for any given fusion rule, either the Type I or II

error probability is at least α̂n or β̂n. Therefore, we have

lim inf
n→∞

1

n
logPe(n) ≥ min{lim inf

n→∞

1

n
log α̂n, lim inf

n→∞

1

n
log β̂n}.

(29)

Thus it suffices to find a lower bound for the strategy using a

zero threshold log likelihood ratio test as a fusion rule. Hence-

forth, we will assume that such a fusion rule is employed.

Conditioning on the value of U , we have

P1(Yf = 0) =P1(Yf = 0 | U = 0)P1(U = 0)

+ P1(Yf = 0 | U = 1)P1(U = 1).

Fix an ǫ > 0. Let δi(·, u) = δui (·) ∈ Γ be a function that

depends on the value of u. Let l = n −m. Using the lower

bound in Cramèr’s Theorem (cf. [46]) and Lemma 4, we obtain

1

n
logP1(Yf = 0 | U = 0)

=
1

n
logP1(L(n)

10 /l ≤ 0 | U = 0)

=
1

n
logP1

(

1

l

l
∑

k=1

log ℓ10(δ
0
k(Xk)) ≤ −1

l
log

P1(U = 0)

P0(U = 0)

)

≥ − l

n
· 1
l

l
∑

k=1

Λ∗
1

(

δ0k,−
1

l
log

P1(U = 0)

P0(U = 0)
− ǫ

)

+ o(1)

≥ − l

n
sup
δ0∈Γ

Λ∗
1

(

δ0,−1

l
log

P1(U = 0)

P0(U = 0)
− ǫ

)

+ o(1),

where o(1) is a term that goes to zero as n → ∞. Taking

n→ ∞ and then ǫ→ 0, we obtain

lim inf
n→∞

1

n
logP1(Yf = 0 | U = 0) + lim inf

n→∞

1

n
logP1(U = 0)

≥ −(1− r) sup
δ0∈Γ

Λ∗
1

(

δ0,
r

1− r
(e10 − e00)

)

− re10

= −(1− r) sup
δ0∈Γ

Λ∗
0

(

δ0,
r

1− r
(e10 − e00)

)

− re00 (30)
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In the same way, it can be checked that

lim inf
n→∞

1

n
logP1(Yf = 0 | U = 1) + lim inf

n→∞

1

n
logP1(U = 1)

≥ −(1− r) sup
δ1∈Γ

Λ∗
1

(

δ1,− r

1− r
(e01 − e11)

)

− re11,

(31)

and we obtain

lim inf
n→∞

1

n
logP1(Yf = 0) ≥ −h(~e).

A similar proof shows that

lim inf
n→∞

1

n
logP0(Yf = 1) ≥ −h(~e),

and that the optimal error exponent is lower bounded by

−h(~e). We note that this lower bound can be asymptotically

achieved by letting all sensors in the second stage quantize

their observations using δ0 and δ1 if the feedback message

is 0 or 1 respectively, and where δ0 and δ1 are chosen to

asymptotically maximize their respective rate functions in (9).

The proof is now complete.
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