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For M =1 an integer and M’ a positive divisor of M, let ¢: Jy(M')" = Jy(M) be
the map defined by all the degeneracy maps, where 7 is the number of positive
divisors of M/AM'. We determine the kernel of ¢ for certain M and M', as well as
relate the pre-image of the Shimura subgroup (M) under ¢ to the group Z(M')".
We also study the restriction of degeneracy maps to Shimura subgroups.

Let M =1 be an integer. The congruence subgroups I'o(M) and I'\(M)
act on the Poincaré upper half-plane # and # = .# U P'(Q) by

a b ar+b
((c d)’ T>Hcr+d'
The quotients I',(M)\J# (i=0, 1) are the classical modular curves X,(M).
The inclusion I';|(M)c I'y(M) induces a natural morphism w. X, (M)—-
Xo(M). By Pic functoriality, u induces a morphism u*: Jy(M)— J,(M)
between the Jacobian varieties. The kernel of «*, which 1s a finite abehan
group, is the Shimura subgroup X(M). This group and its properties are
studied in [9]. We recall in Section 2 some of the facts we need.
If M’ is a divisor of M, and D is a divisor of M/M’, then one can define
the degeneracy map vy, Xo(M}— X, (M'). The modular description of v,
on Iyl M)\# is given by

vplLE, C1)=[E/Cp, Cppp/Cp],

where E is an elliptic curve over C, C a cyclic subgroup of E of order M,
[ E, C] denotes the isomorphism class of such a pair, and Cp and C,,, are
subgroups of C of orders D and M'D, respectively. The map v, induces, via
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Pic functoriality, the map v%: Jo(M')— J,(M) between the Jacobian
varieties. It also induces, via Albanese functoriality, the map (v,),:
Jol M) — Jo(M").

The objective of this paper is to study some relationships between the
Shimura subgroup X(M) and the degeneracy maps v,. Our discussion may
be divided into three parts.

Let N be a positive integer and let p =5 be a prime not dividing N. Let
v be the map

=¥ X e xuh o S Np) - JoNpT),  r22)

Let B be the p-new subvariety of Jy(Np). By definition, B is the identity
component of the intersection of the kernels of

(v))y: JoANp) = Jo(N) and (0} Jo(Np) = Jo(N).

Let @y, ,. Py, , and D(B), denote the component groups of the special
fibre of the Neron model of Jo(Np), Jo(Np") and B, respectively, over Z ,.

In Section 1, we relate the kernel of the restriction of y to B" to the
component group @(B);. More precisely, we prove

THEOREM 1. There is a natural inclusion of the group Ky < (ker y) n B
into the kernel of 7. ®(B), — Dy, ,. where § is the map induced from the
restriction of y to B". This inclusion is compatible with the Hecke operators
T, for n#p.

While Theorem 1 provides an upper bound for K, we shall also give In
subsection 1.2 a lower bound for K in terms of Z(Np).

After recalling some facts on the Shimura subgroups and component
groups in subsection 2.1, we use Theorem 1 to obtain in subsection 2.2 a
generalisation of a result in [7].

THEOREM 2. [f Ne{l, 2, 3, 4,5 6, 8, 9} and p=5 is a prime not
dividing N, then the kernel K, of the map

y=UvFx - xukho J(Np) - Jo(Np'), r=2,

is exactly

K, = : x,€X(Np)y  forall i) x,=0
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The special case where N=1 i1s Theorem 2 of [7]. Theorem 2 is then
applied in Section 3 to establish congruence relations between cusp forms
on I'y(Np) and T'y(Np?), for ISN<K9, N#7.

In the second part of the paper, we begin by proving in Section 4

THEOREM 3. Let L =1 be an integer and let g be a prime not dividing L.
Let 5 be the map

n=uvfxuvg Jo(L}xJo(L)—= Jo(Lg).

(1) If L is odd, then Z(Lyx Z{(L)=n""(X(Lg)).
(ii) If L is even, then the index of X(L)x X(L) in n "(X(Lg)) is at
most two.

In Section 3, some consequences of Theorem 3 are discussed. We obtain,
in particular, the following

THEOREM 4. Let L be a positive integer, and let M =q, --- q, {q, distinct
primes) be such that (L, M)=1. Let

IAPATE R xeX(L)  forall i¥x,=0%. (1)

Xy

Let K, be the kernel of ¢: Jo(L)* - Jo{ LM).

(i) If L is odd or M =gq, is a prime, then K,=Z(L); .

(i) If L is even and M is not a prime, then K, and X (L)f,’ are equal
up to a 2-group.

Theorem 4 is essentially a generalisation of Theorem 4.3 of [ 12], which
deals with the case where M is a prime. It should be noted that this
theorem is used in the proof of Theorem 4.

Finally, we turn our attention to study the restriction of degeneracy
maps to Shimura subgroups. For example, we show that, if M, ..., M, are
pairwise relatively prime positive integers, then the map

a:Z(M])X”'XZ(Mr)——}E(Ml“'MrN)ﬂ N>11

where « |54, 15 any degeneracy map from Z(M,) to Z(M,---M,N), 15
injective. We also determine (up to a group of exponent dividing six) the
kernel of « when r =2 and the assumption (M, M,)=1 is dropped. A few
corollaries of these results are also discussed.
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1. THE KERNEL K

1.1. Proof of Theorem 1

We first note that y restricted to B has a finite kernel. Indeed, the map
v g B - Jy(Np") has a finite kernel if and only if the dual map is surjec-
tive, and the latter map is surjective if and only if its pullback on the
differentials 1s injective. This last map 1s the map

( p-new part of S5(Np))" — S,(Np"), (2)

induced by the degeneracy maps, where S,(Np) (resp. S,(Np')) denotes the
weight-2 cusp forms on [y(Np) (resp. I'y(Np")). The injectivity of (2) 1s
well-known (cf. [1], for example).

ProroSITION 1. The p-new subvariety B of Jo(Np) has purely toric
reduction at p, it is the maximal torus in the reduction of Jo( Np) medulo p.

Proof. Let C be the p-new quotient of Jy(Np) (ie. the quotient
JU N (v} x U:){J‘}(N)z))). Then B and C are 1sogenous. Therefore, to show
that B has purely toric reduction mod p, it suffices to show the same for C.

Results of Raynaud [11] and Deligne-Rapoport [3] yield an exact
sequence

0 T(Np)—=J" = Jo(N) g, xJo(N) iy, =0, (3)

where J° is the connected component of identity in the reduction mod p of
Jol Np), T(Np) is the maximal torus in J°, and J(N) ¢, is the special fibre
of the Néron model of Jo(N) over Z,,.

The two degeneracy maps v, v,: Xo(Np) — Xy(N) also give the standard
degeneracy map v x v, Jo(N) x Jo( N) — Jo( Np). Passing to characteristic
p, we obtain a map

vf X ey Jo(N) g, X Jo(N) g, = S (4)

Combining (3) and (4), we obtain the commutative diagram

0 > F > JG{N]_;F,, X Ju(N).-v,,_‘“L“’ JulN};F,. x Jol N:'.-'F_,. —— 0
1 1!'::(;-; id
0__'_* T(Nﬂ] > J-“ ~— Jq;fN}_,=|-'J_><JIJ(N)_IF‘,__'_"_> 0.
(5)

where the map « is the endomorphism of Jo(N) g, x Jo(N) g, given by the
matrix (}, |). where V' is the Verschiebung endomorphism of Jy(N) .,



(cf. [13]), and Fis the kernel of a. Since « is an isogeny, F is a finite group.

Applying the Snake Lemma to (5), we see immediately that the cokernel
of the map vf xv ) Jo(N)g, x Jo(N) g, — J° is isomorphic to the torus
T{Np)/F. Since this cokernel 1s 1sogenous to the reduction at p of the p-new
quotient C ([2], §7.3), 1t follows that C and hence B have purely toric
reduction T(B) at p.

Passing to the Neéron model, the inclusion Bg J,(Np) (in character-
istic 0) induces a map 7(B)— J°. Since B has semi-stable reduction, results
of Raynaud [11] imply that the map T(B)— J° is an injection, so T(B)
i1s a sub-torus of J°. However, since J°/T(B) is an abelian variety, we
conclude that 7(B) must be the maximal torus in the reduction modulo p
of Jo(Np). 1

The intersection of the kernels of the degeneracy maps (v,),, ., (U,r)y:
Jo(Np")y— J(N) cuts out a subvariety of Jo(Np"), called the p-new sub-
variety of Jo( Np"). Since B has purely toric reduction at p, while J,(N) has
good reduction at p, it follows that the image of B” under y lies in the
p-new subvariety of J,(Np").

Since y: Jo(Np) — Jo(Np™) induces an injection T(Np) < T(Np”) on the
tor1 ([7], Theorem 1), the restriction y |g: B"— Jo(Np") also induces an
injection 7(B) g T(Np") in view of Proposition 1. It follows that there is
an injection T(B) < T(Np"), where T(B) (resp. T(Np")) denotes the lift of
T(B) (resp. T(Np")) to B (resp. Jo(Np")) in the same sense as in [ 7]. Since
K g has trivial intersection with T(B)’, the argument in [ 7] implies that K
extends to a constant (finite, flat) group scheme K over Z,. which embeds
in the Néron model of B", and that K, has trivial intersection with 7(B)".
Therefore, there is a natural inclusion of K into @(B);. Since Ky is the
kernel of y |5 by definition, the image of K in &(B); actually lies in the
kernel of the map 7: @¢(B), — @, , induced from y | 5.

It 1s clear that this inclusion is compatible with the action of the Hecke
operators T, for n #p.

This completes the proof of Theorem 1.

1.2. A Lower Bound for Ky

While Theorem 1 provides an upper bound for Ky, the following
proposition gives a lower bound for K.

PROPOSITION 2. The kernel Ky contains the group

-xl
(Z(Np)nB), & {| X, €Z(Np)nB  forall i x,=0

r



Up to a group of exponent two, the group X(Np)n B is canonically
isomorphic to the group of homomorphisms g (Z/NL)™* x (Z/pZ)* - U
{where U is the group of complex numbers of modulus 1) such that g(d)=1
ifd=—-1,d*+1=0,d°+d+1=0,(d—1)"=0 or

= e’ ! mod N  forsome ee(Z/NL)*
B {1 mod p '

Proof. Since the degeneracy maps coincide on Z(Np) ([9], Theorem 4),
the first statement of the proposition follows immediately.

For the desciption of Z(Np) n B, we observe first that Z(Np) is canoni-
cally isomorphic to the group of homomorphisms g: (Z/NpZ)* — U such
that gld)=1 if d=—1, d’+1=0, d*+d+1=0 or (d—1)*=0 ([9],
Theorem 1).

Recall that B is the identity component of the kernel of

NS (Npy—= Jo(N) x Jy(N),

where #"(x)=((v,), X, (v,}, X). In fact, this kernel is the extension of a
finite group, canonically isomorphic to the Cartier dual Z(N)" of Z(N),
by the abelian variety B (cf [12]). By considering the Galois action
on 2(Np)nkery” and that on Z(N)", we conclude that the image of
any map from Z{(Np)nkern” to XZ(N)" has exponent at most two.
Consequently,

2(E(Np)nkeryp")S X(Np)n B Z(Np)nkern".

Finally, using [9] Theorem 3, it follows that Z(Np) nker #” consists of
the elements of X(Np) (after identifying XZ(Np) with a subgroup of
Hom((Z/NpZ)*, U)) that satisfy the extra condition that

e’ 'mod N  forsome ee(Z/NZ)*

gld)=1 if d‘—_‘{] mod p

2. THE KERNEL K,

2.1. Some Facts on Shimura Subgroups and Component Groups

For an integer M > 1, with prime power decomposition M =] p", we
introduce the following notations:



(1) let m(M) be the largest integer such that m(M)? divides M;

(i1) let k(M) be the number of prime divisors of M distinct from 2
and 3;

(i) let m (M) be 2 if M 1s the product of 1,2 or 4 by a power of
an odd prime, and let it be 1 otherwise;

(iv) let m,(M) be 2 if —1 1s a square mod M, and let it be 1
otherwise;

(v) let my(M) be 3 if X+ X+ 1 has a root mod M, and let it be
1 otherwise;

(vi) letr,=r,—1=[r,2]ifp#2;
(vi1) let ro=max(0,r,—2—[r,/2]);
(viil) let ef(M)=lcm, , ((p—1) p"7).

We write, for example, m for m(M), when no ambiguity is involved.
Then the order of the Shimura subgroup XZ(M) is given by [9]

(M) 2mm~im” if M25

card(Z(M))={l if M <4,

and the exponent of (M) is given by (loc. cit.)

eof(m m,ym,) if M=5

1 if M<4 )

P(E(M))={

When M = Np, where p>3 is a prime not dividing N, the description of
&y, . the component group of the special fibre of the Néron model of
Jo(Np) over Z,, is given in [6, Section 4.4]. Using this description in [6]
and the facts about Shimura subgroups above, we may obtain

ProposiTiON 3. If Ne{l, 2,3.4,5,6,8, 9} and p=5 is a prime not
dividing N, both the Shimura subgroup X(Np) and the component group
@Dy, , at p are cyclic, and they have the same order.

Proof. From [10], it follows that 2(p) and @,
order (p—1)/(p—1, 12).

For N#1, using (6), (7) and the description in [6], we obtain the
following table:

, are both cyclic of
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N pmod 12 card{ X' (Np)) e(X(Np)) card(@y, ,)
2 1.5 (p—1)/4 (p—1)/ (p—1)/4
7,11 (p—1)/2 (p—1)/2 (p—1)/2
3 1.7 (p—1)/3 (p—1)73 (p—1)/73
5,11 p—1 p—1 p—1
4 1,5,7, 11 (p—1)72 (p—1)/2 (p—1)/2
5 1,5 (p—1)/2 (p—1)/2 (p—1)/2
711 2p—1) 2p—1) 2p—1)
6 1,5, 7,11 p—1 p—1 p—1
8 1,5, 7, 11 p—1 p—1 p—1
9 1,5,7,11 p—1 p—1 p—1

The description in [6] also implies that @ 1s cyclic in all these

cases. |

Np. ¥

2.2. Proof of Theorem 2

Now as a corollary of Theorem 1, we deduce Theorem 2.

For the rest of this section we assume 1< N9, N#7, and p=25is a
prime not dividing N.

First, we note that under these assumptions, we have Jy(N)=0, and
so the p-new subvariety B 1s Jo(Np). Therefore, K, coincides with the
group Kp.

Since the degeneracy maps v}: Jo(Np)— J(Np") all coincide on Z(Np)
([9], Theorem 4), it follows that K, < K.

By Theorem 1, there is a natural inclusion of K, into the kernel of
7 P, > Py, (since B=Jo(Np)). Let

Np.p
A
e ker 7.

X

r

Composing 7 with the map (v,),: Py, , — Py, , Induced by @, via
Albanese functoriality, we have (v)), v¥x;+ - (vy), vf-1x,=0. Since
1. Xo(Np") = Xo(Np) has degree p”~', the map (v,), v} is multiplication
by p”~'. Since p"~' is relatively prime to card(@,, ) (Proposition 3),
X1, .., X, completely determine x,. Therefore, K, is contained in a subgroup
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of @7, , of order (card(®y, ,))" " Since Z(Np) and @, , have the same
cardinality (cf. Proposition 3), we have that card(K,) = (card(®, p))'*',
so K. =K.

This completes the proof of Theorem 2.

3. CONGRUENCE RELATIONS BETWEEN CUsP FORMS ON
Ty Np) aND T(Np?) (p I N)

Let f=3 a,q" be a normalised weight-2 Hecke eigenform of level N. Let
! be a prime not dividing N. The coeflicients @, are in a finite extenston £
of Q contained in C. Let {; be the ring of integers in £. Choose a prime
ideal 4 in (¢ of residue characteristic /, and fix a homomorphism n: (' — F,
with kernel 4. By a theorem of Deligne ([4], Théoréme 6.7), there 1s a
semi-simple continuous representation

Pr Gal(Q/Q) — GL,(F)), (8)

with the following property: the representation p, i1s unramified at all
primes g not dividing /N and, for each such ¢, let Frob, denote the
corresponding Frobenius element, then we have

Tr p,(Frob ) =n(a,)
and
det p(Frob,}=gmod /.

In this section we apply Theorem 2 to prove

THEOREM 5. Let f=3 a,q” be a normalised weight-2 Hecke eigenform
of level Np, where | K N9, N+#7 and p= 5 is a prime not dividing N. Let
>3 be a prime such that p* =1 mod [ and [} N. Assume that the associated
Galois representation p is irreducible. Then there exists a weight-2 newform
g of level Mp?; where M divides N, such that the associated Galois represen-
tation p, Is isomorphic to p,.

The case where N =1 has been studied carefully in [ 7, Section 3]. The
argument there can be generalised to our present situation. Therefore we
shall only present a sketch of the proof of Theorem 5. We shall also assume
that | <K N<9, N7 and p =5 is a prime not dividing N for the rest of this
section.

However, we should remark here that the congruences established in this
section have recently been proved independently by Diamond and Taylor
in [5] in greater generality. The method outlined below is different from



that in [5] and provides an additional perspective on the problem of
establishing congruences between cusp forms in certain cases.
Let X be the image of

y: Jo(Np)* = Jo(Np?).

Consider the map
Jo(Np*) =2 Jy(Np?) ¥ —o X ¥, (9)

where 1 is dual to the inclusion 1: X g J(Np?), and ¢4 denotes the canoni-
cal polarisation of J,( Np?). Let Y be the kernel of this composition of maps
in (9). It is known that Y is a subvariety of J,(Np?), that X + Y = J,(Np?)
and that X'~ Y is finite.

Let / be as in the statement of Theorem 5, and let m be a maximal ideal
of T of residue characteristic /. (Here, T denotes the ring generated by the
Hecke operators on the space of weight-2 cusp forms on I'y(Np?).) From
Theorem 5.2 of [ 15], the representation p, can be regarded as arising from
the subspace

V=Jy(Np)[m]= () Jo(Np)[2]

xEM

of Jo(Np)[1]. Borrowing an argument from [ 14], to prove Theorem 35, it
suffices to show that there is an inclusion Vg Y over Q that is compatible
with the action of the Hecke operators 7T, for n#p.

The canonical @ polarisation on Jy(Np?) induces a line bundle % on X,
which in turn induces ¢*% on J,(Np)’, where &:J,(Np)> = X is the
isogeny defined by y. We take 4 to be ker(¢,. ), where ¢ .1 Jo(Np)* —
Jo(Np)* is the isogeny induced by 6*¥. Then K, <4, and there is a
canonical pairing on Ax 4, trivial on K, xK, If K, denotes the
orthogonal complement of K, under this pairing, then K, K. If Q is the
kernel of ¢, then we have further K;/K, =, and the support of 2
consists of primes of fusion.

Let w, be the Atkin-Lehner involution on Xy (Np) (and hence on
Jo{ Np)), defined in modular terms by

wi([E C1)=[E/C,, (E[p]+ C)/C,],

where C, is the unique subgroup of order p in C. It is easy to see that
w,+ T, (acting on Jo(Np)) factors through the map (v,),: Jo(Np) = Jo(N)
(see, for example, proof of [15, Prop. 3.7]). Since J(N)=0 in our
situation, we have w,= —T, on Jy(Np).



The argument in [ 7] then shows that

{2

Since V=Jy(Np)[m]=J(Np)[I]=Jo(Np)[p>—1], it follows that
there is an inclusion Vg 4.

yveJoNp)[ p* — 1]}-

LEMMA 1. The inclusion V g A above induces an inclusion Vg 4/K, .

Proof. Let ye V. It suffices to show that if (*»”)e K, then y=0.

From Theorem 2, (*7/*)e K, implies y & Z(Np), so veZ (Npj[m].

Let I be the ideal in T generated by the elements T, — (1 +r), with r
prime and r { Np. Then Theorem 6 of [ 9] shows that X(Np) is annihilated
by I. However, Theorem 5.2(c) of [ 15] shows that m and I are relatively
prime, so Z(Np)[m]=0, 1e., y 0. J

LEMMA 2. The image of the inclusion Vo A/K, lies in the subgroup
K}'/K..

Proof. We need to prove that the image of ¥ in 4/K, is trivial.

The group 4/K; is the G,-dual of K, which may be identified
Gal(Q/Q}-equivariantly with X(Np). Since the action of Gal{Q/Q) on
Z(Np) is given by the cyclotomic character Gal(Q/Q)— Z*, the Galois
action on 4/K; > is trivial. Therefore, if ¥ maps non-trivially to A/K;, 1 then
the sem151mphﬁcatlon of ¥ (as an F,[Gal(Q/Q)]-module) contains the
trivial representation, which contradicts Theorem 5.2 of [15]. §

Lemma 2 shows that there is a natural inclusion Vg Kj/K, =0 =
X n Y. This completes the proof of Theorem 5.

4. PROOF OF THEOREM 3

We now proceed to prove Theorem 3. We first observe that n(Z{L) x
2(L))eZ(Lg) ([9], Theorem 4).

Let 4 denote the g-old part of J,(Lg). ie., the image of J,(L)* under
n=vixvk Let ¢ be a prime not dividing Lg. Consider the following
{commutative) diagram:

0—— (L) —— J (LY =1, 42 50,

N

0 —— (Lg') ~—— Jo(Lg') —— Jo(Lgq').



The map Z(L)> — Jo(L)* is defined by (x,y)(x, —x, y, —y) and the
map 2(Lg'}— Jo(Lg')? is given by x — (x, —x). The map " is v} x v¥. The
map o« is defined by a(x,y,z,w)=(v¥fx+ov}z, vfy+uviw), and g 1s
obtained by restricting the map v xv*: Jo(Lg)* — Jo(Lgq') to 4°. The
map Z(L)>— X(Lgq') is induced by «.

The exactness of each row follows from [12, Theorem 4.3]. The
commutativity is easy to see.

By applying the Snake Lemma to (10), we get the exact sequence

0 —— Z(L) ——— Z(LY —"— (Z(Lg) " A) —— Z(Lq')/Z(L).
Using (6), we see that, for ¢’ #2, 3,

(' —1) mi(L)y mi(L)

. YE(L)) =
card(Z(Lg' Y/ Z(L)) (L) mE (L)

(11)

where k=k(L).

If 7#£2,3 1s a prime, we may choose ¢’ such that ¢' #1 mod/ Then /
does not divide card(Z(Lq')/Z(L)), and so 6(X(Lg)n A),=0, where the
subscript / denotes the /-primary part. Hence, (Z{Lg) n A4), lies entirely in
the image of Z(L)? (under #), for 1#2, 3.

For /=3, we split into two cases.

(I) When m.(L)=1. In this case, m,(Lg") =1 also. We choose ¢’ #2
such that ¢’ =2 mod 3, then 3 does not divide card (Z(Lq')/Z(L)). Hence
(X(Lqg) n A), lies entirely in p(Z(L)?).

(IT) When m,(L)=3. In this case, we pick ¢’ such that ¢'=1 mod 3,
but ¢'# 1 mod 9. Then 3 exactly divides ¢’ — 1, and m,{Lqg')=3. Hence,
3 fcard(X(Lq')/Z(L)) again. Therefore, (Z(Lg) n A) also lies in p(Z(L)?).

Now assume L to be odd.
If ¢ # 2, then choose ¢’ =2. Then (6) implies

CR-Dmi(Lymy(L)
card(Z(2L)/X(L)) = wH2L) m2L) = m%(L).

Then 2 fcard{X(2L)/2(L)), implying that (X(Lg) n A), is in the image of
X2(L)? under .
If g =2, then
card(Z(2L)) =m(L) card(Z(L)),

so clearly (X(2L) n A), lies in p(Z(L)*).
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Therefore, X(Lg)n A =n(Z(L)*), when L is odd. If xeJ (L) and ye
2(L)* have the same image in J4(Lq), then x — ye ker n. By Theorem 4.3
of [121, x —ye Z(L)? so xe X(L)>. Therefore, Z(L) x Z(L)=n""X(Lq)).

When L is even, we split into two cases to consider.

(I) When m,(L)=1. It follows that m,(Lg')=1. We choose ¢q' # 3
such that ¢'=3mod4. Then from (11), we see that 2 exactly divides
card(Z(Lq')/X (L)), which means 2 annihilates (Z(Lg) ~ 4)/n{ Z(L)?).

(II}) When my(L)=2. In this case, we choose ¢’ such that
g'=1mod 4 but ¢’ # 1 mod 8§, then m,(Lg') =2, and (11) again shows that
2 exactly divides card (Z(Lq')/Z(L)). Hence 2. (E(Lg)n A) = p(Z(L)?).

Therefore, as above, we conclude that the index of Z(L)x2(L) in
n Y Z(Lg)) is at most two.
This completes the proof of Theorem 3.

5. KERNELS OF DEGENERACY MAPS

Given M >1 and M’ such that M’ | M, let D denote a divisor of M/M'.
Consider the map ¢ =11 v} Jo( MY — J{ M), where 7 is the number of
positive divisors of M/M', and the product is taken over all the positive
divisors D of M/M’.

In this section we apply Theorem 3 to determine the kernel of ¢ in some
cases. Theorem 4 characterises the kernel of ¢ when M’ is a positive
integer, and M =M'q,---¢q,, where the g, are distinct primes such that
(M',q,---q,)=1. Theorem 8 describes the kernel of ¢ when M' = Np,
where | <N<9, N#7 and p=5 is a prime not dividing N, and M=
Np'q,---q,, where the g, are distinct primes such that (Np,q,---¢q,)=1.

Before we prove these theorems, we need some preparatory results.

THEOREM 6. Let L be a positive integer, and let M =gq, -+ ¢, (g, distinct
primes) be relatively prime to L. Let ¢ be the map

¢: Jo( L) = Jo(LM).

(1) If L is odd, then ¢ (Z(LM))=Z(L)*.
(i) If L is even, then ¢ "(Z(LM)) and Z(L)* are equal up to a
2-group.

Proof. First assume M =g is a prime. The theorem is then Theorem 3.

Write M=¢,---¢q,. If M is even (which only occurs if L 1s odd), we
order the g, such that ¢g,=2.

By the inductive hypothesis, we assume that the theorem is true when M

is replaced by M'=¢q,---q,_,.



Let d|, .., d>. 1 denote all the divisors of M’ such that | =d, <d, < ---
<dy-1=M. Let ¢ J(LY "= J(LM') be the map vh x oxok,
and ¢: Jo(L)” — Jo(LM) may be taken to be the map v¥ x --- xv¥, X
vh % - xvk, .. Then the diagram

Jo(L)* " x Jo(L)*"

= \

T LMY x J(LM') —~""ts J(LM)

is clearly commutative.

When L is odd, Theorem 3 shows that (v x¢¥) ™' (Z(LM))=Z(LM")’.
By the inductive hypothesis, (¢') ' (X(LM'))=Z(L)* . Therefore,
¢~ "(Z(LM))y=2(L)*.

If L is even, then Theorem 3 shows that the index of Z(LM')? in
(vF xo¥) ! (Z(LM)) is at most two.

By the inductive hypothesis, (¢") ' (2(LM')} and 2(L)? are equal up
to a 2-group. Therefore, ¢ "(Z(LM)) and X(L)* are equal up to a

2-group. |}

THEOREM 7. Let N be a positive integer and let p =5 be a prime not
dividing N. Let M=q,---q, (q; distinct primes) be relatively prime to Np.
Let ¢ be the map

d: Jo(Np) ' = Jo(Np"M).

(i) If Ne{l, 3,5 9} or if Ne{2, 4, 6, 8} and M=1, then
¢~ (Z(Np"M)) = Z(Np)™ ™

(i) IfNel{2,4,6, 8 and M1, then ¢ "(Z(Np'M)) and Z(Np) ¥
are equal up to a 2-group.

Proof. We prove this theorem in two cases. We also assume throughout
this proof that Ne {1, 2, 3, 4, 5, 6, 8, 9}.

(I) When M=1 (+t=0). In this case, ¢ becomes the map
v Jo(Np) — J( Np”), the kernel of which is given in Theorem 2.
Consider the composition of maps

ur xo*

Jo(Np)" x J( NpY —Ls Jo(Np") x Jo( Np©) T Jo( Np¥).

It is clear that this composition is the map y": Jo(Np)* — J(Np*) defined
analogously to y.

Now suppose yeZ(Np") is y(x) for some xeJy(Np). The element
(x, —x) e Jo(Np) x Jo(Np} yields (y, —p)=(y xy)(x, —x) and, since the
degeneracy maps coincide on the Shimura subgroup ([9], Theorem 4),



Yix, —=x)=(vfxvy)(y, —y)=0. Then by Theorem 2, we deduce that
xe X(Np), ie., y (Z(Np))=Z(Np).

(II) When M=¢q,---q,(t=1). Let 1 =d,<d, < --- <dy=M be all
the positive divisors of M, and let ¢': Jo(Np")? = Jo(Np'M) be the map
VE X Uk

As above, let y be the map vf x --- xvk-1:Jo(Np) = Jo(Np"). Let
¢: Jo(Np) ¥ = J(Np"M) be the map

(0F X oo X0G ) X (UE X oo X0F 1) X e X(DF X XU -).

Then the diagram

Jo(Np)" x - x Jo(Np)’

l \
FX Xy

Jo(Np") % - X Jo(Np") —L— Jo(Np"M),

1s clearly commutative.

If N is odd, then (¢') ' (X(Np"M))=X(Np")* by Theorem 6. Since
" NE(Np")) = Z(Np), it follows that ¢ ""(Z(Np"M))=Z(Np)"?.

If N is even, then (¢')"' (X(Np'M)) and Z(Np")*" are equal up to a
2-group, so ¢~ YZ(Np'M)) and X(Np)"'? are also equal up to a
2-group. |

As a corollary to Theorems 6 and 7, we can compute the kernel of ¢.

Let K, be the kernel of ¢: Jo(LY = Jo(LM), where M =gq, ---q, (g, dis-
tinct primes) is relatively prime to L. We shall prove that K, is as described
in Theorem 4.

The case where M =g, is a prime is precisely Theorem 4.3 of [12].

Since the degeneracy maps coincide on Z(L) ([9], Theorem 4), we
clearly have X(L)2 c K.

If L is odd, then K,< X(L)* by Theorem 6. Let x=(x, .., X») € K,.
Then O=¢(x})=v¥(x,+ --- +x) by [9], Theorem 4. Therefore,
X+ - +xu=0,1e, xe Z(L)?. Hence, K,=Z(L);.

If L 1s even, then up to a 2-group we have K¢§E('L)2'. The same
argument then shows that K, and (L) are equal up to a 2-group.

This proves Theorem 4.

Similarly we can prove

THEOREM 8. Let N be a positive integer and let p>=5 be a prime not
dividing N. Let M =q,---q, (q, distinct primes) be such that (Np, M)=1.
Let K, be the kernel of the map ¢: J(Np)™ ¥ — Jo(Np"M).



(1) If Ne{l, 3,5 9} orif Ne{2, 4, 6, 8} and M=1, then K, =
I(Np)y ™.

(i) IfNe{2, 4,6 8 and M#1, then K, and Z(Np)y * are equal up
to a 2-group.

6. BEHAVIOUR OF SHIMURA SUBGROUPS UNDER DEGENERACY MAPS

In this section we study the restriction of degeneracy maps to Shimura
subgroups and the interaction between different Shimura subgroups under
such maps.

THEOREM 9. Let M, ..., M, be pairwise relatively prime positive integers,
and let N be any positive integer. Then the map

o Z(M)x - xE(M,) = Z(M, - M_N),

defined by the formula o(x,, .., x,)=v¥x,+ --- +v{x,, is injective.

Remarks. 1. Since the degeneracy maps coincide on the Shimura sub-
groups [9, Theorem 4]), « is actually independent of the choice of the
degeneracy maps used in its definition.

2. Theorem 9 may be viewed as a generalisation of [8, Section 1].

Proof. The obvious projection map
(Z/M,-- M NZ)" »(Z/M,Z)" x --- x(L/M, L)~ (12)

1s surjective. Applying Hom( , U) to (12), we may obtain the following
diagram (which is easily checked to be commutative)

S(M )% - x Z(M,) — Z(M,---M,N)

| |

0— Hom{{Z/M,Z)" , U)x ... xHom{(Z/M ,Z)*, U) — Hom((Z/M,..-M NZ)". U},

where the vertical maps are the canonical injection
2(L) —— Hom({Z/LZ)*, U) (14)

in [9], (2).
Injectivity of « follows immediately from (13). |

We derive immediately two corollaries.
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CoRrROLLARY 1. Let M, .., M, and N be as in Theorem 9. Let t, be the
number of divisors of (M, ---M _N)/M.. Then the map

P E(M)"x - xZ(M,)r—>X(M, .- M,N),
defined via all the possible degeneracy maps, has as its kernel
Z(Mpix - xZ(M,);.

Proof. This follows immediately from Theorem 9 and the fact that the
different degeneracy maps, acting on the Shimura subgroup, have the same
action. |

Remark. Corollary 1 is a generalisation of [ 8, Theorem 1].

COROLLARY 2. Let L, M be relatively prime positive integers, and let N
be any positive integer. Then the map

2 (L) x (M} — ZX(LMN)
Is injective.

Corollary 2, which is obtained from Theorem 9 by setting r =2, serves
as a motivation for the following theorem.

THEOREM 10. Given positive integers L, M and N. Let P=lem(L, M)
and G=gcd(L, M). Then the kernel of

x: Z(L) x Z(M)— E(PN)

contains Z(G);, where X(G) is regarded as a subgroup of E(L)} (resp. X(M))
through the degeneracy maps. Moreaver, the prime-to-6 part of ker x is equal
to the prime-to-6 part of X(G);.

Proof. Clearly X(G); is contained in ker a.

For the second statement, let p,, .., p, denote all the common prime
divisors of L and M. Then we write L=([]p¢) L', M =(T1p] )} M', where
a;,b,>0and (L', p,)=1=(M', p;} for all i Moreover, (L', M'})=1.

For each 1 €i<t, let ¢;=max(a,, b;) and let d,=min(«,, b;). Then

P= (H p}") L'M and G=]]p%

Since the map a: Z(L) x Z(M)— X(PN) factors through Z(P), we may
assume N = 1. For each positive integer Z, let m(Z) be as in subsection 2.1.
Let Z=Z/m(Z). Let

0, (Z/LZ)* x(Z/MZ)* - (Z/GZL)")}


http://dx.doi.org/10.1103/PhysRevB.86.184404

be defined by 8,(x,y)=(xy 'mod G, (xy ') 'mod G). It is clear that &,
1s surjective.
Let

0, (Z/PZ)* ~(ZJ)LZ)* x (Z/MZ)"

be the obvious projection map #,(x) = (x mod L, x mod M). We claim that
the sequence

(Z/PL)* — s (ZJLL)* X (Z/MT) " s (Z/GL) )2 — 0 (15)

1s exact. To verify this, we only need to check that (15) 1s exact at
(Z/LZ)* x(Z/MZ)*.

It follows immediately from the definition of #, and @, that
Im 0, S ker #,. Conversely, suppose that (x, y)e(Z/LZ)* x(Z/MZ)* is
such that x=ymod G. We want to find ze(Z/PZ)* such that
c=xmod L and z =y mod A7.

In other words, we want z & (Z/PZ) " such that

r=xmod [’
z=xmod p~ (a2l 1<i<t
z=ymod M’
z=y mod pb b2 1<igt

The existence of z is guaranteed by the facts that x =y mod p%~1%?] and

p=rir (TTpte),

and applying the Chinese Remainder Theorem to L', A7’ and p< <] for
1 <i<t Therefore we have shown that (15) is exact.
Applying Hom(, U) to (15), we obtain an exact sequence

0 - [Hom((Z/GZ)*, U}]2— Hom((Z/LZ)*, U) x Hom((Z/M Z)*, U)

— Hom((Z/PZ)*, U). (16)

From [9, Section 2.3], we see that for every positive integer N, there
exists a subgroup J'(N) of (Z/NZ)* of exponent dividing six such that

X(N)~Hom({(Z/NZ)* /J'(N), U). (17)



Observing that the prime-to-6 parts of Hom((Z/NZ)”,U) and
Hom((Z/NZ)*/J(N), U) are isomorphic, we obtain from (16) and (17)
the exact sequence

00— (Z(G)3)is) — (Z(L) x Z(M));6,——> Z(P)),

where the subscript ¢, denotes the prime-to-6 part. This completes the
proof of Theorem 10. ||

Remark. Actually, the quotient
Hom((Z/NZ)*, U)/Hom((Z/NZ)" /J'(N), U)

has exponent dividing six. The argument above then shows that ker a is
equal to X(G)} up to a group of exponent dividing six.

7. SOME CONSEQUENCES

In this final section, we discuss some applications of the above results to
the study of the action of degeneracy maps on Jacobians of modular
curves.

PROPOSITION 4. Let L be a positive integer. Let N> 1 be a square-free
integer relatively prime to L. Let M be any divisor of LN. Let t be the
number of prime divisors of N, and let s be the number of divisors of LN/M.
Let & be the map

O Jy LY x Jo(M)* — J(LN),

obtained from all the possible degeneracy maps. Let
H= {(x,, oy X1y Vs V) EZ(L) T x Z(MY Y x,= =Y }’_,-EZ(G)},

where G = ged(L, M).

Then H is contained in (ker 6) n{(Jo(L)* x Z(M)*), and the prime-10-6
parts of these two groups are equal,

Proof. 1t is clear that H is contained in (ker ) N (Jo{L)* x Z{M)*).

Let d,: Jo(L)> = Jo(LN) be the restriction of 6 to Jo(L)* x0, and let
05: Jo(M) = J(LN) be the restriction of § to 0xJ,(M)". Therefore,
0=10,X0,.



Suppose (x, 1) e Jo(L)* x Z(M)" satisfies 5(x, y) = 0. Since y € Z(M)*, we
have J,( v) e Z(LN). Hence §,(x)e Z(LN). By Theorem 6, 6, (X(LN)) =
(LY if L is odd, and this equality is true up to a 2-group if L is even.
Therefore, the prime-to-2 part of (ker ) n (J(,{L)z' x Z(M)") 18 contained in
Z(LY' x Z(M)*. Proposition 4 then follows readily from Theorem 10. ||

By taking M = N, we obtain immediately

COROLLARY |. Let L he a positive integer and let M =gq,---q, (q, dis-
tinct primes) be an integer such that (L. M)=1. Let s be the number of
divisors of L. Then for

O Jo( L) X J( M) — Jo(LM),

we have (ker 0) 0 (Jo(L) x Z(M )Yy =Z(L)Y x Z(M)3 if L is odd, and the
same is true up to a 2-group if L is even.

Proof. Proposition 4 shows that Z(L)f,'x Z(M);, 1s contained In
(ker 6) N (Jo(L)* x Z(M)").

From the proof of Proposition 4, we see that {ker ¢) n (JO(L)Z' x Z{M)")
is contained in Z(L)* x Z(M)* if L is odd, and the same is true up to a
2-group if L is even. This corollary then follows from Corollary 2 of
Theorem 9. |

ProrosITION 5. Let Ne{l,2,3,4,5,6,8 9} and let p=5 be a prime
not dividing N. Let M=q, ---q, (g, distinct primes) be relatively prime to
Np. Let L be a divisor of N. For an integer ¥ 2 1, let 0 <k <r be an integer.
Let

5: Jo(Np) 2 x J(Lp*M)* — J(Np"M)

be the map defined via all the degeneracy maps. Let

H= (-\-] [ERERE} .\.r_zl, _y| CERTET J]y) EZ(NP)YE" X E(kaM)‘

Y xi=—Y yjeE(Lp)}.

Then H is contained in (ker ) m (Jo(NpY ¥ x Z(Lp*M)*), and the prime-
t0-6 parts of the two groups are equal.

The proof is similar to that of Proposition 4, with Theorem 7 replacing
Theorem 6.
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