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Good Self-Dual Quasi-Cyclic Codes Exist

San Ling and Patrick Solé, Member, IEEE

Abstract—We show that there are long binary quasi-cyclic self-dual (ei-
ther Type I or Type II) codes satisfying the Gilbert–Varshamov bound.

Index Terms—Cubing construction, Gilbert–Varshamov bound, quasi-
cyclic codes, self-dual codes.

I. INTRODUCTION

It has been known for 30 years that good long self-dual codes exist
[6], and for more than a quarter century [1] that there are good long
quasi-cyclic codes of rate1=2.

In this correspondence, we show that good long self-dual quasi-
cyclic codes exist. Building on well-known mass formulas for self-dual
binary and quaternary codes, we derive a Gilbert–Varshamov bound for
long binary self-dual quasi-cyclic codes.

The proof uses the cubing construction of [5], [3] and the proof tech-
nique of [6].

As suggested by one referee, it might have been possible to build
on [1] to derive this asymptotic result. However, [1] uses quasi-cyclic
codes of index2 while we use quasi-cyclic codes of indexn=3, where
n denotes the length. In some sense, we provide information on a dif-
ferent asymptotic ensemble of codes than [1].

II. K NOWN FACTS AND NOTATIONS

A code is said to bequasi-cyclicof index ` or `-quasi-cyclic if and
only if it is invariant underT `, whereT denotes the cyclic shift. If
` = 1, such a code is just a cyclic code. We assume that all binary codes
are equipped with the Euclidean inner product and all theFFF 4-codes
are equipped with the Hermitian inner product. The latter condition
is necessary, when using the cubing construction, to ensure that the re-
sulting binary code is Euclidean self-dual. Self-duality in the following
discussion is with respect to these respective inner products. A binary
self-dual code is said to be of Type II if and only if all its weights are
multiples of4 and of Type I otherwise. We first recall some background
material on mass formulas for self-dual binary and quaternary codes.

Proposition 2.1: Let ` be an even positive integer.

i) The number of self-dual binary codes of length` is given by

N(2; `) =

�1

i=1

(2i + 1):

ii) Let vvv be a codeword of length̀and even Hamming weight, other
than0 and1. The number of self-dual binary codes of length`
containingvvv is given by

M(2; `) =

�2

i=1

(2i + 1):
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iii) The number of self-dualFFF 4-codes of length̀ is given by

N(4; `) =

�1

i=0

(22i+1 + 1):

iv) The number of self-dualFFF 4-codes of length̀ containing a given
nonzero codeword of length̀and even Hamming weight is given
by

M(4; `) =

�2

i=0

(22i+1 + 1):

Proof: i) and iii) are well-known facts, cf. [7]. ii) is an immediate
consequence of [6, Theorem 2.1] withs = 2. (Note that every self-dual
binary code must contain the all-one vector1.) iv) follows from [2,
Theorem 1] withn1 = ` andk1 = 1.

Proposition 2.2: Let ` be a positive integer divisible by8.
i) The number of Type II binary codes of length` is given by

T (2; `) = 2

�2

i=1

(2i + 1):

ii) Let vvv be a codeword of length̀and Hamming weight divisible
by 4, other than0 and1. The number of Type II binary codes of
length` containingvvv is given by

S(2; `) = 2

�3

i=1

(2i + 1):

Proof: i) is found in [7] and ii) is exactly [6, Corollary 2.4].

III. M AIN RESULT

Let C1 denote a binary code of length̀andC2 a quaternary code
of length`. We construct a binary codeC of length3` by the cubing
construction [3]. Define a map

�: C1 � C2 �! FFF 3`

2

by the rule

�(xxx; aaa+ bbb!) := (xxx+ aaa; xxx+ bbb; xxx + aaa+ bbb)

where aaa; bbb are binary vectors of length̀ , and we write
FFF 4=f0; 1; !; !

2g. Then we can define the codeC asIm (�)

C := f�(xxx; aaa+ bbb!) j xxx 2 C1; aaa+ bbb! 2 C2g:

Now a direct calculation shows that

�(xxx; !2(aaa+ bbb!)) = (xxx+ aaa+ bbb; xxx + aaa; xxx+ bbb)

is a shift of�(xxx; aaa + bbb!) by ` places. Therefore,C is `-quasi-cyclic.
Furthermore, it is easy to check thatC is self-dual if and only if both
C1 andC2 are, andC is of Type II if and only ifC1 is of Type II and
C2 is self-dual.

We assume henceforth that is a self-dual code constructed in
the above way.Any codewordccc inC must necessarily have even Ham-
ming weight. Suppose thatccc corresponds to the pair(ccc1; ccc2), where
ccc1 2 C1 andccc2 2 C2. SinceC1 andC2 are self-dual, it follows that
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ccc1 andccc2 must both have even Hamming weights. Whenccc 6= 0, there
are three possibilities for the pair(ccc1; ccc2):

1) ccc1 6= 0, ccc2 6= 0;
2) ccc1 = 0, ccc2 6= 0;
3) ccc1 6= 0, ccc2 = 0.

We try to enumerate the number of wordsccc in each of these categories
for a given weightd (d even).

For type 2, if the Hamming weight ofccc is d, thenccc2 has Hamming
weightd=2. Sinceccc2 has even Hamming weight, it follows thatd is
divisible by4 in order for this case to occur. It is easy to see that the
numberA2(`; d) of such wordsccc is given by `

d=2
3d=2 (4jd). Ford

not divisible by4, setA2(`; d) = 0.
The argument to obtain the number of words of type 3 is similar. It is

easy to show that the numberA3(`; d) of such words is given by `
d=3

(6jd). Whend is not divisible by6, A3(`; d) = 0.
For A1(`; d), the number of words of type 1, we simply give an

upper bound. The total number of words inFFF 3`
2 of weightd is 3`

d
, so

A1(`; d) �
3`

d
�A2(`; d)� A3(`; d):

Combining the preceding observations and Proposition 2.1, the
number of self-dual binarỳ-quasi-cyclic codes of length3` whose
minimum weight is< d is bounded above by

e<d; e even

(A1(`; e)M(2; `)M(4; `) + A2(`; e)N(2; `)M(4; `)

+A3(`; e)M(2; `)N(4; `)):

Theorem 3.1: Let ` be an even integer and letd be the largest even
integer such that

e<d
e�0mod2

3`

e
+

e<d
e�0mod4

`

e=2
3e=2 2 �1

+
e<d

e�0mod6

`

e=3
2`�1 � (2 �1 + 1)(2`�1 + 1):

Then there exists a self-dual binary`-quasi-cyclic code of length3`
with minimum weight of at leastd.

If we are interested only in Type II`-quasi-cyclic codes, using Propo-
sition 2.2, we see easily that the number of Type II binary`-quasi-cyclic
codes of length3` whose minimum weight is<d is bounded above by

e<d; e�0mod4

(A1(`; e)S(2; `)M(4; `)

+A2(`; e)T (2; `)M(4; `) +A3(`; e)S(2; `)N(4; `)):

Theorem 3.2: Let ` be divisible by8 and letd be the largest multiple
of 4 such that

e<d
e�0mod4

3`

e
+

e<d
e�0mod4

`

e=2
3e=2 2 �2

+
e<d

e�0mod12

`

e=3
2`�1 � (2 �2 + 1)(2`�1 + 1):

Then there exists a Type II binary`-quasi-cyclic code of length3`with
minimum weight of at leastd.

IV. A SYMPTOTIC ANALYSIS

We will require the celebrated entropy function

H(x) := �x log2(x)� (1� x) log2(1� x)

defined forx 2 (0; 1) and of constant use in estimating binomial co-
efficients of large arguments [5, pp. 309–310].

We are now in a position to state and prove the asymptotic versions
of Theorems 3.1 and 3.2.

Theorem 4.1: There exists an infinite family of self-dual quasi-
cyclic binary codesCi of length3`i and of distancedi such that the
limit � of di=3`i for largei exists and is bounded below as

� � H�1(1=2) = 0:110 � � � :

Proof: The right-hand side (RHS) of the inequality of Theorem
3.1 is plainly of the order of23`=2 for large`. We compare this in turn to
each of the three summands in the left-hand side (at the price of a more
stringent inequality, congruence conditions on the summation range are
neglected). By [5, Ch. 10, Corollary 9], for large` (with � = � and
n = `), the first and third summands are of order23`H(�) and2`+`H(�),
respectively. They both are of the order of the RHS forH(�) = 1=2. By
[5, Ch. 10, Lemma 7], for largè (with � = � andn = `), the second
summand is of order2`f(3�=2) for f(t) := 0:5 + t log2(3) + H(t),
which is of the order of the RHS for

� = 0:1762 � � �

a value> H�1(1=2).

Similarly, for doubly even codes, we have the following.

Theorem 4.2:There exists an infinite family of Type II quasi-cyclic
binary codesCi of length3`i and of distancedi such that the limit�
of di=3`i for largei exists and is bounded below as

� � H�1(1=2) = 0:110 � � � :

Proof: Since we neglected the congruence conditions in the pre-
ceding analysis, the calculations are exactly the same.
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