This document is downloaded from DR-NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore.

Good self-dual quasi-cyclic codes exist

Ling, San; Sole, Patrick

2003

Ling, S., \& Solé, P. (2003). Good self-dual quasi-cyclic codes exist. IEEE Transactions on Information Theory, 49(4), 1052-1053.
https://hdl.handle.net/10356/96309
https://doi.org/10.1109/TIT.2003.809501

[^0]
Good Self-Dual Quasi-Cyclic Codes Exist

San Ling and Patrick Solé, Member, IEEE

Abstract

We show that there are long binary quasi-cyclic self-dual (either Type I or Type II) codes satisfying the Gilbert-Varshamov bound.

Index Terms-Cubing construction, Gilbert-Varshamov bound, quasicyclic codes, self-dual codes.

I. InTRODUCTION

It has been known for 30 years that good long self-dual codes exist [6], and for more than a quarter century [1] that there are good long quasi-cyclic codes of rate $1 / 2$.

In this correspondence, we show that good long self-dual quasicyclic codes exist. Building on well-known mass formulas for self-dual binary and quaternary codes, we derive a Gilbert-Varshamov bound for long binary self-dual quasi-cyclic codes.

The proof uses the cubing construction of [5], [3] and the proof technique of [6].

As suggested by one referee, it might have been possible to build on [1] to derive this asymptotic result. However, [1] uses quasi-cyclic codes of index 2 while we use quasi-cyclic codes of index $n / 3$, where n denotes the length. In some sense, we provide information on a different asymptotic ensemble of codes than [1].

II. Known Facts and Notations

A code is said to be quasi-cyclic of index ℓ or ℓ-quasi-cyclic if and only if it is invariant under T^{ℓ}, where T denotes the cyclic shift. If $\ell=1$, such a code is just a cyclic code. We assume that all binary codes are equipped with the Euclidean inner product and all the \boldsymbol{F}_{4}-codes are equipped with the Hermitian inner product. The latter condition is necessary, when using the cubing construction, to ensure that the resulting binary code is Euclidean self-dual. Self-duality in the following discussion is with respect to these respective inner products. A binary self-dual code is said to be of Type II if and only if all its weights are multiples of 4 and of Type I otherwise. We first recall some background material on mass formulas for self-dual binary and quaternary codes.

Proposition 2.1: Let ℓ be an even positive integer.
i) The number of self-dual binary codes of length ℓ is given by

$$
N(2, \ell)=\prod_{i=1}^{\frac{\ell}{2}-1}\left(2^{i}+1\right)
$$

ii) Let \boldsymbol{v} be a codeword of length ℓ and even Hamming weight, other than $\mathbf{0}$ and $\mathbf{1}$. The number of self-dual binary codes of length ℓ containing v is given by

$$
M(2, \ell)=\prod_{i=1}^{\frac{\ell}{2}-2}\left(2^{i}+1\right)
$$

S. Ling is with the Department of Mathematics, National University of Singapore, Singapore 117543, Republic of Singapore (e-mail: matlings@ nus.edu.sg).
P. Solé is with CNRS, I3S, ESSI, 06903 Sophia Antipolis, France (e-mail: ps@essi.fr).

Communicated by S. Litsyn, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2003.809501
iii) The number of self-dual \boldsymbol{F}_{4}-codes of length ℓ is given by

$$
N(4, \ell)=\prod_{i=0}^{\frac{\ell}{2}-1}\left(2^{2 i+1}+1\right)
$$

iv) The number of self-dual \boldsymbol{F}_{4}-codes of length ℓ containing a given nonzero codeword of length ℓ and even Hamming weight is given by

$$
M(4, \ell)=\prod_{i=0}^{\frac{\ell}{2}-2}\left(2^{2 i+1}+1\right)
$$

Proof: i) and iii) are well-known facts, cf. [7]. ii) is an immediate consequence of [6, Theorem 2.1] with $s=2$. (Note that every self-dual binary code must contain the all-one vector 1.) iv) follows from [2, Theorem 1] with $n_{1}=\ell$ and $k_{1}=1$.

Proposition 2.2: Let ℓ be a positive integer divisible by 8 .
i) The number of Type II binary codes of length ℓ is given by

$$
T(2, \ell)=2 \prod_{i=1}^{\frac{\ell}{2}-2}\left(2^{i}+1\right)
$$

ii) Let \boldsymbol{v} be a codeword of length ℓ and Hamming weight divisible by 4 , other than $\mathbf{0}$ and $\mathbf{1}$. The number of Type II binary codes of length ℓ containing \boldsymbol{v} is given by

$$
S(2, \ell)=2 \prod_{i=1}^{\frac{\ell}{2}-3}\left(2^{i}+1\right)
$$

Proof: i) is found in [7] and ii) is exactly [6, Corollary 2.4].

III. Main Result

Let C_{1} denote a binary code of length ℓ and C_{2} a quaternary code of length ℓ. We construct a binary code C of length 3ℓ by the cubing construction [3]. Define a map

$$
\Phi: C_{1} \times C_{2} \longrightarrow \boldsymbol{F}_{2}^{3 \ell}
$$

by the rule

$$
\Phi(\boldsymbol{x}, a+\boldsymbol{b} \omega):=(\boldsymbol{x}+\boldsymbol{a}, \boldsymbol{x}+\boldsymbol{b}, \boldsymbol{x}+\boldsymbol{a}+\boldsymbol{b})
$$

where $\boldsymbol{a}, \boldsymbol{b}$ are binary vectors of length ℓ, and we write $\boldsymbol{F}_{4}=\left\{0,1, \omega, \omega^{2}\right\}$. Then we can define the code C as $\operatorname{Im}(\Phi)$

$$
C:=\left\{\Phi(\boldsymbol{x}, \boldsymbol{a}+\boldsymbol{b} \omega) \mid \boldsymbol{x} \in C_{1}, \boldsymbol{a}+\boldsymbol{b} \omega \in C_{2}\right\}
$$

Now a direct calculation shows that

$$
\Phi\left(\boldsymbol{x}, \omega^{2}(\boldsymbol{a}+\boldsymbol{b} \omega)\right)=(\boldsymbol{x}+\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{x}+\boldsymbol{a}, \boldsymbol{x}+\boldsymbol{b})
$$

is a shift of $\Phi(\boldsymbol{x}, \boldsymbol{a}+\boldsymbol{b} \omega)$ by ℓ places. Therefore, C is ℓ-quasi-cyclic. Furthermore, it is easy to check that C is self-dual if and only if both C_{1} and C_{2} are, and C is of Type II if and only if C_{1} is of Type II and C_{2} is self-dual.

We assume henceforth that C is a self-dual code constructed in the above way. Any codeword \boldsymbol{c} in C must necessarily have even Hamming weight. Suppose that \boldsymbol{c} corresponds to the pair $\left(c_{1}, c_{2}\right)$, where $\boldsymbol{c}_{1} \in C_{1}$ and $\boldsymbol{c}_{2} \in C_{2}$. Since C_{1} and C_{2} are self-dual, it follows that
\boldsymbol{c}_{1} and \boldsymbol{c}_{2} must both have even Hamming weights. When $\boldsymbol{c} \neq \mathbf{0}$, there are three possibilities for the pair $\left(\boldsymbol{c}_{1}, \boldsymbol{c}_{2}\right)$:

1) $\boldsymbol{c}_{1} \neq 0, \boldsymbol{c}_{2} \neq 0$;
2) $\boldsymbol{c}_{1}=0, c_{2} \neq 0$;
3) $c_{1} \neq 0, c_{2}=0$.

We try to enumerate the number of words c in each of these categories for a given weight d (d even).

For type 2, if the Hamming weight of \boldsymbol{c} is d, then \boldsymbol{c}_{2} has Hamming weight $d / 2$. Since \boldsymbol{c}_{2} has even Hamming weight, it follows that d is divisible by 4 in order for this case to occur. It is easy to see that the number $A_{2}(\ell, d)$ of such words c is given by $\binom{\ell}{d / 2} 3^{d / 2}(4 \mid d)$. For d not divisible by 4 , set $A_{2}(\ell, d)=0$.
The argument to obtain the number of words of type 3 is similar. It is easy to show that the number $A_{3}(\ell, d)$ of such words is given by $\binom{\ell}{d / 3}$ $(6 \mid d)$. When d is not divisible by $6, A_{3}(\ell, d)=0$.

For $A_{1}(\ell, d)$, the number of words of type 1 , we simply give an upper bound. The total number of words in $\boldsymbol{F}_{2}^{3 \ell}$ of weight d is $\binom{3 \ell}{d}$, so

$$
A_{1}(\ell, d) \leq\binom{ 3 \ell}{d}-A_{2}(\ell, d)-A_{3}(\ell, d)
$$

Combining the preceding observations and Proposition 2.1, the number of self-dual binary ℓ-quasi-cyclic codes of length 3ℓ whose minimum weight is $<d$ is bounded above by
$\sum_{e<d, e \text { even }}\left(A_{1}(\ell, e) M(2, \ell) M(4, \ell)+A_{2}(\ell, e) N(2, \ell) M(4, \ell)\right.$

$$
\left.+A_{3}(\ell, e) M(2, \ell) N(4, \ell)\right)
$$

Theorem 3.1: Let ℓ be an even integer and let d be the largest even integer such that

$$
\begin{aligned}
\sum_{\substack{e<d \\
e \equiv 0 \bmod 2}}\binom{3 \ell}{e} & +\left(\sum_{\substack{e<d \\
e \equiv 0 \bmod 4}}\binom{\ell}{e / 2} 3^{e / 2}\right) 2^{\frac{\ell}{2}-1} \\
& +\left(\sum_{\substack{e<d \\
e \equiv 0 \bmod 6}}\binom{\ell}{e / 3}\right) 2^{\ell-1} \leq\left(2^{\frac{\ell}{2}-1}+1\right)\left(2^{\ell-1}+1\right) .
\end{aligned}
$$

Then there exists a self-dual binary ℓ-quasi-cyclic code of length 3ℓ with minimum weight of at least d.

If we are interested only in Type II ℓ-quasi-cyclic codes, using Proposition 2.2 , we see easily that the number of Type II binary ℓ-quasi-cyclic codes of length 3ℓ whose minimum weight is $<d$ is bounded above by

$$
\begin{aligned}
\sum_{e<d, e \equiv 0 \bmod 4} & \left(A_{1}(\ell, e) S(2, \ell) M(4, \ell)\right. \\
& \left.+A_{2}(\ell, e) T(2, \ell) M(4, \ell)+A_{3}(\ell, e) S(2, \ell) N(4, \ell)\right)
\end{aligned}
$$

Theorem 3.2: Let ℓ be divisible by 8 and let d be the largest multiple of 4 such that

$$
\begin{aligned}
& \sum_{\substack{e<d \\
e \equiv 0 \bmod 4}}\binom{3 \ell}{e}+\left(\sum_{\substack{e<d \\
e \equiv 0 \bmod 4}}\binom{\ell}{e / 2} 3^{e / 2}\right) 2^{\frac{\ell}{2}-2} \\
&+\left(\sum_{\substack{e<d \\
e \equiv 0 \bmod 12}}\binom{\ell}{e / 3}\right) 2^{\ell-1} \leq\left(2^{\frac{\ell}{2}-2}+1\right)\left(2^{\ell-1}+1\right) .
\end{aligned}
$$

Then there exists a Type II binary ℓ-quasi-cyclic code of length 3ℓ with minimum weight of at least d.

IV. Asymptotic Analysis

We will require the celebrated entropy function

$$
H(x):=-x \log _{2}(x)-(1-x) \log _{2}(1-x)
$$

defined for $x \in(0,1)$ and of constant use in estimating binomial coefficients of large arguments [5, pp. 309-310].

We are now in a position to state and prove the asymptotic versions of Theorems 3.1 and 3.2.
Theorem 4.1: There exists an infinite family of self-dual quasicyclic binary codes C_{i} of length $3 \ell_{i}$ and of distance d_{i} such that the limit δ of $d_{i} / 3 \ell_{i}$ for large i exists and is bounded below as

$$
\delta \geq H^{-1}(1 / 2)=0.110 \cdots
$$

Proof: The right-hand side (RHS) of the inequality of Theorem 3.1 is plainly of the order of $2^{3 \ell / 2}$ for large ℓ. We compare this in turn to each of the three summands in the left-hand side (at the price of a more stringent inequality, congruence conditions on the summation range are neglected). By [5, Ch. 10, Corollary 9], for large ℓ (with $\mu=\delta$ and $n=\ell$), the first and third summands are of order $2^{3 \ell H(\delta)}$ and $2^{\ell+\ell H(\delta)}$, respectively. They both are of the order of the RHS for $H(\delta)=1 / 2$. By [5, Ch. 10, Lemma 7], for large ℓ (with $\lambda=\delta$ and $n=\ell$), the second summand is of order $2^{\ell f(3 \delta / 2)}$ for $f(t):=0.5+t \log _{2}(3)+H(t)$, which is of the order of the RHS for

$$
\delta=0.1762 \cdots
$$

a value $>H^{-1}(1 / 2)$.
Similarly, for doubly even codes, we have the following.
Theorem 4.2: There exists an infinite family of Type II quasi-cyclic binary codes C_{i} of length $3 \ell_{i}$ and of distance d_{i} such that the limit δ of $d_{i} / 3 \ell_{i}$ for large i exists and is bounded below as

$$
\delta \geq H^{-1}(1 / 2)=0.110 \cdots .
$$

Proof: Since we neglected the congruence conditions in the preceding analysis, the calculations are exactly the same.

References

[1] T. Kasami, "A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2," IEEE Trans. Inform. Theory, vol. IT-20, p. 679, 1974.
[2] J. H. Conway, V. Pless, and N. J. A. Sloane, "Self-dual codes over $G F(3)$ and $G F(4)$ of length not exceeding 16," IEEE Trans. Inform. Theory, vol. IT-25, pp. 312-322, 1979.
[3] G. D. Forney, "Coset codes II: Binary lattices and related codes," IEEE Trans. Inform. Theory, vol. 34, pp. 1152-1187, 1988.
[4] S. Ling and P. Solé, "On the algebraic structure of quasi-cyclic codes I: Finite fields," IEEE Trans. Inform. Theory, vol. 47, pp. 2751-2760, Nov. 2001.
[5] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam, The Netherlands: North-Holland, 1977.
[6] F. J. MacWilliams, N. J. A. Sloane, and J. G. Thompson, "Good self-dual codes exist," Discr. Math., vol. 3, pp. 153-162, 1972.
[7] E. M. Rains and N. J. A. Sloane, "Self-dual codes," in Handbook of Coding Theory, V. S. Pless and W. C. Huffman, Eds. Amsterdam, The Netherlands: Elsevier Science, 1998, vol. I, pp. 177-294.

[^0]: © 2003 IEEE. This is the author created version of a work that has been peer reviewed and accepted for publication by IEEE Transactions on Information Theory, IEEE. It incorporates referee' s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1109/TIT.2003.809501].

