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Quantum Codes From Concatenated
Algebraic-Geometric Codes

Hao Chen, San Ling, and Chaoping Xing

Abstract—We apply Steane’s enlargement of the Calderbank–Shor–
Steane (CSS) codes and additive codes over to concatenated alge-
braic-geometric codes to construct many good quantum codes with fewer
restrictions on the parameters compared to some known quantum codes.
Some of the quantum codes we have constructed are either optimal or have
parameters as good as the best known codes, while some have parameters
better than those obtained from other known constructions.

Index Terms—Algebraic-geometric codes, concatenated codes, en-
largement of the Calderbank–Shor–Steane (CSS) codes, quantum
error-correcting codes.

I. INTRODUCTION AND PRELIMINARIES

Since the pioneering works in [4], [11], [10], the theory of quantum
error-correcting codes has been rapidly developing. A thorough
discussion of the principles of quantum coding theory is given in
[3], where it is shown that quantum error correction can be achieved
from additive codes over FFF 4. Many techniques for constructing good
quantum codes, such as the Calderbank–Shor–Steane (CSS) codes
or Steane’s enlargement of the CSS codes, etc., have been developed
(see [4], [11], [10], [3], [13], [7]), and good quantum codes have
been given by applying these constructions to Reed–Muller codes,
Bose–Chaudhuri–Hocquenghem (BCH) codes, and quadratic-re-
sudue (QR) codes ([2], [3], [7]), Reed–Solomon codes ([8]) and
algebraic-geometric codes ([5], [1], [6]). In [1], [5], the family of
asymptotically good quantum codes is constructed and a bound (the
Ashkhmin–Litsyn–Tsfasman bound) on the asymptotic parameters is
given in [1]. We improved this bound in some parameter interval by
concatenation technique in our earlier paper [6].

In this correspondence, the concatenated algebraic-geometric codes
are inserted into the construction of Steane’s enlargement of the CSS
codes in [13] to provide several families of good quantum codes (Con-
structions A, B, C in Section III). We also apply the construction of
quantum codes from additive codes over F4 ([3]) to concatenated alge-
braic-geometric codes to provide good quantum codes (Construction
D in Section III). Compared with known quantum codes, some of the
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quantum codes from our construction are either optimal or as good as
the best known ones, while some have parameters better than those ob-
tained from other constructions.
From the theory of algebraic curves over the finite field FFF q there are

quite complete results about the existence of the algebraic curves with
special values of the genus and the number of FFF q rational points. For a
very useful table of such curves we refer to [15]. Thus, it is easy to apply
ourmain results (Theorems 3.1, 3.4, 3.7, 3.10) to the algebraic curves in
the table [15] to get many good quantum codes from algebraic curves
over finite fields. We give many examples of such quantum codes in
this correspondence.
This correspondence is organized as follows.We recall first the basic

results of Steane’s enlargement of the CSS codes ([13]), quantum codes
from additive codes over FFF 4 ([3]), and some well-known facts about
algebraic-geometric codes. The description of the dual of a concate-
nated code under both the ordinary inner product and the symplectic
inner product is given in Section II. In Section III, new examples of
quantum codes are constructed and compared with previous results.
We recall the following results in [13] and [3].

Theorem 1.1 (Steane’s Enlargement of the CSS Codes [13]): Given
a classical [n; k; d] binary code C which contains its dual, C? � C ,
and which can be enlarged to an [n; k0 > k + 1; d0] code C 0, a pure
quantum code of parameters [[n; k+k0�n;min(d; d3d0=2e)]] can be
constructed.

We define the symplectic inner product on FFF 2n
2 as follows. For any

two vectors

aaa = (a1; . . . ; an; an+1; . . . ; a2n)

and

bbb = (b1; . . . ; bn; bn+1; . . . ; b2n)

haaa; bbbis = �n
i=1aibn+i +�n

i=1an+ibi = aaaS2nbbb
� (1)

where � denotes the transpose and S2n is the symplectic matrix of
size 2n

0 In
In 0

(2)

with In the n � n identity matrix.
For a vector aaa = (a1; . . . ; an; an+1; . . . ; a2n) 2 FFF 2n

2 , where FFF 2n
2

is equipped with the symplectic inner product, we define its weight as

wts(aaa) = #fij1 � i � n; ai 6= 0 or an+i 6= 0g:

The notation wt(aaa) is reserved to denote the usual Hamming weight
of aaa.

Theorem 1.2 ([3]): Suppose that C is a self-orthogonal [2n; n� k]
code in FFF 2n

2 under the symplectic inner product (1), that C?(s) is its
dual under (1), and that there are no vectors vvv 2 C?(s) n C with
wts(vvv) < d. Then there is a quantum code with parameters [[n; k; d]].

This is just equivalent to the main result in [3, Theorem 2] (see also
[3, Theorem 1]).
We also need to recall the following facts on algebraic-geometric

codes in [14] and [1]. LetX=FFF q be a smooth, projective curve of genus
g, let P1; . . . ; Pn be n rational points on X and let G be a rational
divisor with 2g�2 < deg(G) < n and supp(G)\fP1; . . . ; Png = ;.
LetD = P1+ � � �+Pn. The functional algebraic-geometric code and
residual algebraic-geometric code can be defined as in [14] and denoted

0018-9448/$20.00 © 2005 IEEE
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by CL(G;D) and C
(G;D). It is well known that CL(G;D) is an
[n; deg(G)� g + 1; n � deg(G)] code and C
(G;D) is an [n; n �
deg(G)+g�1;deg(G)�2g+2] code (overFFF q). Moreover, the dual of
CL(G;D) isC
(G;D) (see [14]). The codes in the following result of
[1] are constructed from equivalent codes of algebraic-geometric codes
(two codes C1; C2 � FFFn

q are said to be equivalent if and only if there
exists nonzero u1; . . . ; un 2 FFF q such that C1 = (u1; . . . ; un)C2).

Theorem 1.3 (see [1, Theorem 4]): Let FFF q be a finite field of
characteristic 2, let X=FFF q be a curve of genus g with at least
n0 � 4g FFF q-points. Then for any 2g � n � n0 � g and any
a = 2g�1; . . . ; (n=2)+g�1, there is an [n; n�a+g�1; a�2g+2]
code Ca over FFF q with C?

a � Ca.

Remark 1.1: Actually, the code Ca in Theorem 1.3 is equivalent to
the dual of the functional code corresponding to a divisor of degree a
(see [1, p. 4]).When the condition that there are at leastn0+1FFF q-points
on X is satisfied, the codes Ca’s, for a = 2g � 1; . . . ; (n=2)+ g � 1,
can be chosen in such a way that they satisfy Ca � Ca whenever
a � a0. In fact, we can choose theD andE in the proof of Theorem 1.3
(see [1, p. 4]) to be the divisors supported at the FFF q-point outside the
special set P 0 of FFF q-points in [1]. In this way, we can choose the same
corresponding E + 2D = E0 + 2D0 for different a and a0. Thus we
have the same ! 2 
(P 0 � 2D � E) = 
(P 0 � 2D0 � E0). Hence,
we can take P = P1 + � � � + Pn consisting of the pole points of !,
which is the same for both Ca and Ca .

FromTheorem 1.3 and the Remark 1.1 we have the following results.
It is clear that under the assumption of the Corollaries 1.4 and 1.5, the
codes can be chosen in such a way that they satisfyCa � Ca whenever
a � a0.

Corollary 1.4 (Generalized Reed–Solomon Codes): Let FFF q be as
above. For any 1 � n � q and 0 < m � (n � 2)=2, there exists a
code C over FFF q such that C? � C and with parameters [n; n�m�
1;m + 2].

Proof: We just take X to be the projective line with its
q + 1 FFF q-rational points in Theorem 1.3 and the conclusion follows
directly.

Corollary 1.5 (Algebraic-Geometric Codes From Elliptic Curves):
Let FFF q be as above. Suppose there is an elliptic curve (i.e., of genus

g = 1) with N � 4 FFF q-rational points. Then for any 2 � n � N � 1
and 1 � m � n=2, there exists a code C over FFF q such that C? � C
and with parameters [n; n �m;m].

Proof: We just take X in Theorem 1.3 to be this elliptic curve
and the conclusion follows directly.

II. THE DUAL OF A CONCATENATED CODE

In this section, we give a description of the dual of a concatenated
code under both the ordinary and symplectic inner products.

A. The Dual of a Concatenated Code Under the Ordinary Inner
Product

We first recall the results in [6] on the dual of a concatenated code
under the ordinary inner product.

Let C be an [s; t] code over FFF q and, for i = 1; 2; . . . ; s, let
�i : FFF q ! FFFn

q be an FFF q-linear injective map whose image
Ci = im(�i) is an [ni; k; di] code overFFF q . The image �(C ;...;C )(C)
of the following FFF q-linear injective map:

�(C ;...;C ) : C �!FFFn +���+n
q

(ccc1; . . . ; cccs) 7�! (�1(ccc1); . . . ; �s(cccs)) (3)

is an [n1 + � � � + ns; tk] linear (concatenated) code over FFF q .

Next, we describe the dual code of �(C ;...;C )(C) under the ordi-
nary inner product. Let C?

i � FFFn
q be the dual code of Ci under the

ordinary inner product and letD be the direct sum C?

1 � � � � �C?

s . It
is clear thatD � FFFn +���+n

q is an [n1+ � � �+ns; n1+ � � �+ns�sk]
linear code over FFF q .
On the other hand, let fe1; . . . ; ekg be an FFF q-basis of FFF q . A set

fe01; . . . ; e
0

kg ofFFF q is called the dual basis of fe1; . . . ; ekg if we have
TrFFF =FFF (eie

0

j) = �ij (Kronecker symbol). It is well known that the
dual basis always exists. We say that a basis is self-dual if it is its own
dual. When q = 2, it is well known that a self-dual basis of FFF 2 over
FFF 2 always exists.

Now we choose an FFF q-basis fe1; . . . ; ekg for FFF q and let
fe01; . . . ; e

0

kg be its dual basis. For each 1 � i � s, we define the
FFF q-linear injective map �0

i : FFF q ! FFFn
q by first defining the images

�0

i(e
0

j) for 1 � j � k, and then extending the map FFF q-linearly. For
each 1 � j � k and 1 � ` � k, we want �0

i(e
0

j) to satisfy

�i(e`)�
0

i(e
0

j)
� = �`j (4)

where � denotes the transpose of a matrix and �`j is the Kronecker
symbol. As ` runs through all values from 1 to k, (4) gives a linearly
independent system of k equations in ni variables. As k � ni, the
system admits a solution, we define as our �0

i(e
0

j). In general, this
choice of �0

i(e
0

j) is not unique, but is unique up to addition by a
vector in C?

i .
It is clear that �0

i is an FFF q-linear injective map whose image C 0

i is
an [ni; k] linear code over FFF q . It is proved in [6] that C?

i \ C 0

i = 0.
Let C? � FFF s

q be the dual code of C under the ordinary inner
product. This is an [s; s � t] linear code over FFF q . We define
�(C ;...;C )(C

?) to be the concatenated code defined through C? and
�0

1; . . . ; �
0

s, similar to the way �(C ;...;C )(C) was defined through C
and �1; . . . ; �s. This is an [n1 + � � � + ns; (s� t)k] linear code over
FFF q . We know that D \ �(C ;...;C )(C

?) = 0.

Theorem 2.1 (see [6]): The dual code �(C ;...;C )(C)? of
�(C ;...;C )(C) is the direct sum �(C ;...;C )(C

?)�D.

Corollary 2.2 (see [8], [1], [6]): Let fe1; . . . ; ekg be a self-dual
basis of FFF 2 over FFF 2 and let C be a linear code over FFF 2 . Then the
dual of the binary image of C with respect to the above basis is the
binary image of the dual code C? with respect to the same basis.

Proof: Note the fact that the binary image is just the concatena-
tion of C under the trivial �(C ;...;C ), where, for each 1 � i � s,
�i : FFF 2 ! FFF k

2 is the trivial map that sends each element of FFF 2 to
the coefficients of its binary expansion with respect to fe1; . . . ; ekg,
thus, the conclusion follows from Theorem 2.1.

We also need the following result on the minimum distance of the
dual of a concatenated code.

Lemma 2.3: LetD be a code overFFF 2 with parameters [s; t; d0] and
let � : FFF 2 ! FFFn

2 be a linear map such that its image C is a binary
code with parameters [n; k; d]. LetC 0 be an [n; k0; d0] binary code sat-
isfying C \ C 0 = 0 and let �(C;...;C)(D) be the binary concatenated
code defined as in (3). Then �(C;...;C)(D)� (C 0� � � � �C 0) has min-
imum distance d0.

Proof: For any nonzero

yyy = yyy1 + yyy2 2 �(C;...;C)(D)� (C 0 � � � � � C 0)

where yyy1 2 �(C;...;C)(D); yyy2 2 C 0�� � ��C 0, it is clear thatwt(yyy) �
d0 if yyy1 = 0. If yyy1 is not zero, write yyy1 = �(C;...;C)(xxx), where xxx =
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(xxx1; . . . ; xxxs) 2 D. Since D has minimum weight d0, there are i1 <
� � � < id such that xxxi ; . . . ; xxxi are nonzero. Since

yyy1 = (. . . ; �(xxxi ); . . . ; �(xxxi ); . . .)

with each �(xxxj) 2 C while each corresponding component of the
second part yyy2 is in C 0, the assumption that C \ C 0 = 0 shows that
the components of yyy = yyy1 + yyy2 at the positions corresponding to
xxxi ; . . . ; xxxi are nonzero, thus wt(yyy) � d0.

B. The Dual of a Concatenated Code Under the Symplectic Inner
Product

Let C be an [s; t] code over FFF 2 and, for i = 1; 2; . . . ; s, let �i :
FFF 2 ! FFF 2n

2 be an FFF 2-linear injective map whose image Ci =
im(�i) is a [2ni; k; di] code over FFF 2. The image �(C ;...;C )(C) of
the following FFF 2-linear injective map

�(C ;...;C ) : C �!FFF 2n +���+2n
2

(ccc1; . . . ; cccs) 7�! (�1(ccc1); . . . ; �s(cccs)) (5)

is a [2n1 + � � � + 2ns; tk] linear (concatenated) code over FFF 2.
Here Ci � FFF 2n

2 is equipped with the symplectic inner product as
in (1) and let C?(s)

i be its dual under the symplectic inner product. Let
D(s) be the direct sum of C?(s)

1 ; . . . ; C
?(s)
s . This is a

[2n1 + � � �+ 2ns; 2n1 + � � �+ 2ns � sk]

linear code over FFF 2.
We extend the notion of the weight wts to the concatenated code

�(C ;...;C )(C) by

wts(�1(ccc1); . . . ; �s(cccs)) = wts(�1(ccc1)) + � � �+ wts(�s(cccs)):

Let fe1; . . . ; ekg be a basis of FFF 2 =FFF 2 as above and let
fe01; . . . ; e

0

kg be its dual basis. Consider the generator matrix Gi

of Ci of size k � 2ni consisting of k rows �i(e1); . . . ; �i(ek). It
is easy to verify that there exists a matrix (not unique) G0

i of size
k � 2ni and rank k such that GiS2n G0�

i = Ik , where � denotes
the transpose. Let C 0

i be the [2ni; k] code over FFF 2 with generator
matrix G0

i. Let �
0 : FFF 2 ! FFF 2n

2 be the FFF 2-linear map that sends
e0j to the jth row of the matrix G0

i. As in [6], it can be proved that
C 0

i \C
?(s)
i = 0. In fact, if x = rG0

i 2 C 0

i \C
?(s)
i , where r 2 FFF k

2 is
a length-k row vector. We know that x is orthogonal to each row ofGi

under the symplectic inner product and thus, GiS2n G0�
i r

� = 0. This
implies r = 0 since GiS2n G0�

i = Ik . Similarly, we can define the
concatenated code �(C ;...;C )(C

?), where C? is the dual of C under
the ordinary inner product (an [s; s� t] linear code over FFF 2 ). This is
a [2n1 + � � � + 2ns; (s � t)k] code over FFF 2. We have the following
result, whose proof is similar to the proof of Theorem 2.3 in [6], so
we omit it.

Theorem 2.4: Under the following symplectic inner product on
FFF 2n +���+2n

2 :

h(aaa1; . . . ; aaas); (bbb1; . . . ; bbbs)iS = aaa1S2n bbb�1 + � � �+ aaasS2n bbb�s (6)

where aaai, bbbi are vectors in FFF 2n
2 for i = 1; . . . ; s, the dual of

�(C ;...;C )(C) is the direct sum �(C ;...;C )(C
?)�D(s).

Remark 2.1: There is an analog of Lemma 2.3 where the minimum
distance (or Hamming weight) wt is replaced by the minimum weight
wts. The proof is similar.

TABLE I
[[3n; 3(n � m � m0 � 2); minfm + 2; d3(m0 + 2)=2eg]]

QUANTUM CODES

III. QUANTUM CODES FROM CONCATENATED

ALGEBRAIC-GEOMETRIC CODES

In this section, we give several constructions of quantum codes using
Theorems 1.1, 1.2, and concatenated algebraic-geometric codes.

A. Construction A

In this subsection, we present quantum codes constructed by ap-
plying Theorem 1.1 to the trivial concatenation (binary image) of alge-
braic-geometric codes. We note that even in this case some best known
quantum codes are obtained.

Theorem 3.1: LetX=FFF 2 (k � 2) be an algebraic curve of genus g
with n0 + 1 � 4g FFF 2 -rational points. Then for any 2g � n � n0 � g
and 2g � 1 � m0 < m � (n=2) + g � 1, there exists a

[[kn; k(n�m�m0+2g�2);minfm�2g+2; d3(m0�2g+2)=2eg]]

quantum code.
Proof: Take two codes Cm � Cm with parameters

[n; n�m+ g�1;m�2g+2] and [n; n�m0+ g�1;m0�2g+2]

respectively, as in Theorem 1.3 and Remark 1.1. Let fe1; . . . ; ekg be a
self-dual basis of FFF 2 =FFF 2, and let C , C 0 be the binary images of Cm,
Cm , respectively. Applying Theorem 1.1 to C and C 0, the conclusion
follows.

The next two results follows directly from Theorem 3.1 and Corol-
laries 1.4 and 1.5.

Corollary 3.2: Suppose k, n andm,m0 are integers satisfying k >
1, 1 � n � 2k, and 0 � m0 < m � (n� 2)=2. Then there exists a

[[kn; k(n�m�m0 � 2);minfm+ 2; d3(m0 + 2)=2eg]]

quantum code.

Example 3.1: Let k = 3, so FFF 2 = FFF 8. In this case we have
quantum codes with the parameters shown in Table I.

Comparing with [3, Table III], the above quantum codes have the
same parameters as the best known ones.

Corollary 3.3: Suppose there exists an elliptic curve overFFF 2 (k >
1)withN � 4 points, then there exist quantum codes with parameters

[[kn; k(n�m�m0);minfm; d3m0=2eg]]

where 2 � n � N � 1 and 1 � m0 < m � n=2.

Example 3.2: Let k = 3, so FFF 2 = FFF 8. There exists an elliptic
curve with N = 14 FFF 8-rational points ([15]). In this case we have
quantum codes with parameters shown in Table II.

We note that these quantum codes are not as good as the quantum
twisted codes constructed in [2].
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TABLE II
[[3n; 3(n � m � m0); minfm; d3m0=2eg]]

QUANTUM CODES

B. Construction B

Theorem 3.4: Let C be an [n; k] self-orthogonal binary code with
its dualC? an [n; n�k; d?] code, letX=FFF 2 be an algebraic curve of
genus g with n0 FFF 2 -rational points, and letm0 be the smallest integer
such that 3(m0� 2g+2)=2 � d?. Then for any d?+2g� 1 � N �
n0 � 1, there exists a

[[nN; nN � k(m0 + d?); d?]]

quantum code.
Proof: For 2g � 2 < m < N , let Dm denote a functional al-

gebraic-geometric code of parameters [N;m� g + 1] over FFF 2 , con-
structed usingX and a divisorG of degreem supported at one rational
point (evaluated at other rational points), in such a way thatD` � Dm

whenever ` � m. The concatenated code �(C;...;C)(Dm) (as in Sec-
tion II-A) is an [nN; k(m� g + 1)] binary code. From Theorem 2.1,
its dual is

(�(C;...;C)(Dm))? = �(C ;...;C )(D
?

m)� (C? � � � � � C?)

where C 0 is as described in Section II-A and there areN copies of C?

in the direct sum. It is clear that

�(C;...;C)(Dm)� C � � � � � C � C? � � � � � C?:

Hence, �(C;...;C)(Dm) is self-orthogonal. Its dual is an [nN; nN �
k(m � g + 1)] binary code.

Setm1 = d? + 2g � 2 and consider the dual code

�(C ;...;C )(D
?

m )� (C? � � � � � C?)

of �(C;...;C)(Dm ). It follows from Lemma 2.3 and the fact thatD?

m

has minimum distance at least m1 � 2g + 2 = d? (see [14]) that
(�(C;...;C)(Dm ))? has minimum distance d?.

Let t be the minimum weight of the [nN; nN � k(m0 � g + 1)]
binary code

(�(C;...;C)(Dm ))? = �(C ;...;C )(D
?

m )� (C? � � � � � C?):

An argument similar to that in the proof of Lemma 2.3 shows that
3t=2 � d?.

Applying Steane’s enlargement of the CSS codes (Theorem 1.1) to
(�(C;...;C)(Dm ))? and its enlargement (�(C;...;C)(Dm ))?, the con-
clusion follows.

We can apply Theorem 3.4 to genus 0 and 1 curves and thus have
the following results.

Corollary 3.5: Let C be an [n; k] self-orthogonal binary code with
its dualC? an [n; n�k; d?] code. Letm0 be the smallest integer such

TABLE III
[[7N; 7N � 9; 3]] QUANTUM CODES

that b3(m0+2)=2c � d?. Then for eachN satisfying d?�1 � N �
2k , there exists an [[nN; nN � k(m0 + d?); d?]] quantum code.

Corollary 3.6: Let C be an [n; k] self-orthogonal binary code with
its dual C? an [n; n � k; d?] code and let m0 be the smallest in-
teger such that b3m0=2c � d?. Suppose there exists an elliptic curve
X=FFF 2 with n0 FFF 2 -rational points. Then for eachN satisfying d?+
1 � N � n0 � 1, there exists an [[nN; nN � k(m0 + d?); d?]]
quantum code.

Example 3.3: Let C be the [7; 3] binary code with the following
generator matrix:

1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1

:

It is clear thatC is a self-orthogonal code with its dualC? a [7; 4; 3]
code. Thus, we have d? = 3 and m0 = 0 in Corollary 3.5. From
Corollary 3.5, [[7N; 7N � 9; 3]] quantum codes with 2 � N � 8 can
be constructed (see Table III).

Remark 3.1: Quantum codes with parameters [[21; 12; 3]],
[[28; 19; 3]] are found in [3, Table III]. From loc. cit., the upper bound
of d in these cases is 4. In Table III, the other entries of previously
known codes, among which [[32; 25; 3]] is an optimal one, are from
[13]. It is clear that our quantum code of parameters [[42; 33; 3]] is
better than the previously known [[46; 32; 3]] quantum code. Other
quantum codes in this new family are good when compared with
previously known quantum codes.

Example 3.4: Let C be the [7; 3] binary code as in Example 3.3.
Since there exists an elliptic curveX=FFF 8 with 14 rational points ([15]),
we can take n0 = 14, d? = 3, and m0 = 2 in Corollary 3.6. Thus,
quantum codes of parameters [[7N; 7N � 15; 3]] with 4 � N � 13
can be constructed.

Example 3.5: Let C be the [8; 4; 4] binary Hamming code with the
following generator matrix:

1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

:

It is clear that C = C?, i.e., C is a self-dual code. Thus, we have
d? = 4. From Theorem 3.4, with X the projective line over FFF 16, we
have m0 = 1 and hence [[8N; 8N � 20; 4]] quantum codes with 3 �
N � 16 are constructed. We note that the [[72; 52; 4]] quantum code in
our family is much better than Steane’s [[74; 45; 4]] in [13]. When the
length of the quantum code is 2m, there is a family of quantum codes
with parameters [[2m; 2m�2m�1; 4]] from [7, Theorem 3]. For these
special lengths, the quantum codes from [7] are better than ours forn =
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64; 128. The quantum [[88; 68; 4]], [[128; 108; 4]] codes when n =
11; 16are not as good as the quantum [[85; 69; 4]] code constructed in
[3] and the quantum [[128; 112; 4]] code constructed in [2].

Example 3.6: Let C = C? be the [32; 16; 8] self-dual binary code
as in [9]. Then from Corollary 3.5, we have [[32N; 32N � 192;8]]
quantum codes for 7 � N � 216. Our quantum codes with parameters
[[219; 219� 192;8]], [[220; 220� 192; 8]], [[221; 221� 192; 8]] are not
as good as the quantum BCH codes of parameters [[2r; 2r�5r�2; 8]]
with r > 4 constructed in [13].

Remark 3.2: As in Example 3.5, we can obtain quantum codes of
parameters [[8N; 8N � 28; 4]], for 5 � N � 24, when the maximal
elliptic curve X=FFF 16 (see [15]) is used in Corollary 3.6. We can even
use curves of higher genus in Theorem 3.4. The advantage is more
choices for the length and dimension of the quantum codes, although
the minimum distance is generally not good.

C. Construction C

Letn > 1. Suppose thatA is a binaryn�nmatrix such thatA = A�

and In + A is nonsingular. We consider the binary [2n; n] code C
with generator matrix (In; A). It is clear that its dual C? is the binary
code with generator matrix (A; In). Thus, C and C? have the same
minimum distance d = d?.

Now let fe1; . . . ; eng be a self-dual basis ofFFF 2 =FFF 2. Since In+A
is nonsingular, the n rows of the matrix (In+A)�1(In; A) are linearly
independent vectors inC . We define � : FFF 2 ! FFF 2n

2 by sending ei to
the ith row of this latter matrix, so the image of � is C . Thus, for any
code T over FFF 2 , we obtain the concatenated code �(C;...;C)(T ).

On the other hand, we have

(In + A)�1(In; A)(In; A)
� (In +A)�1 = In

thus, �(ei)�(ej)� = �ij . In the notation of Section II-A, we may take
�0i to be � and C 0

i to be C . Therefore, the dual (�(C;...;C)(T))
? of

�(C;...;C)(T) is

�(C;...;C)(T
?)� (C? � � � � � C?):

In the case where T is a self-orthogonal code over FFF 2 , �(C;...;C)(T)
is a self-orthogonal binary code.

Theorem 3.7: Let C , C? be as above, let X=FFF 2 be an algebraic
curve of genus g with n0 + 1 � 4g FFF 2 -rational points and let m0

be the smallest integer such that d3(m0 � 2g + 2)=2e � d. Then for
2(d+g�1) � N � n0�g, there exist [[2nN; 2nN �n(d+m0); d]]
quantum codes.

Proof: As in Theorem 1.3, take Dm to be the (equivalent) al-
gebraic-geometric code over FFF 2 with parameters [N;m1 � g + 1]
satisfying Dm � D?

m (i.e., Dm = C?

m ), where

2(m1 � g + 1) � N � n0 � g:

For our purpose, we takem1 = d+ 2g � 2, thus, �(C;...;C)(Dm ) is
a self-orthogonal binary code with dual

(�(C;...;C)(Dm ))? = �(C;...;C)(D
?

m )� (C? � � � � C?)

a [2nN; 2nN � n(d+ g � 1); d] binary code (cf. Lemma 2.3). With
m0 as in the statement of the theorem, Dm may be chosen in such
a way that �(C;...;C)(D

?

m ) � (C? � � � � � C?), with parameters
[2nN; 2nN � n(m0 � g + 1);m0 � 2g + 2], is an enlargement of
(�(C;...;C)(Dm ))?. Applying Steane’s enlargement of the CSS codes

TABLE IV
[[8N; 8N � 12; 3]] QUANTUM CODES

(Theorem 1.1) to this pair of codes, we obtain a [[2nN; 2nN � n(d+
m0); d]] quantum code.

The following two results are immediate consequences of The-
orem 3.7 when X=FFF 2 is taken to be the projective line or an elliptic
curve.

Corollary 3.8: Let C , C? be as above and let m0 be the smallest
integer such that d3(m0 + 2)=2e � d. Then for 2(d� 1) � N � 2n,
[[2nN; 2nN � n(d+m0); d]] quantum codes exist.

Corollary 3.9: Let C , C? be as above, let X=FFF 2 be an elliptic
curve with n0 � 4 FFF 2 -rational points and let m0 be the smallest
integer such that d3m0=2e � d. Then, for 2d � N � n0 � 2,
[[2nN; 2nN � n(d+m0); d]] quantum codes exist.

Example 3.7: We take A to be the following binary matrix:

0 1 1 0

1 0 0 1

1 0 1 0

0 1 0 1

:

Then C and C? are [8; 4; 3] codes and we have [[8N; 8N � 12; 3]]
quantum codes, for 4 � N � 16, from Corollary 3.8. We compare our
quantum codes with some of the best previously known quantum codes
in Table IV. All the previously known codes there are taken from [13].
Our quantum code with parameters [[104; 92; 3]] is better than Steane’s
[[106; 92; 3]]. Other examples are also good when compared with the
best previously known quantum codes.

Example 3.8: Let C , C? be [8; 4; 3] binary codes as in Example
3.7. OverFFF 16, there exists an elliptic curve with 25 rational points (see
[15]). Thus, from Corollary 3.9, we have quantum codes with parame-
ters [[8N; 8N � 20; 3]] codes with 6 � N � 23.

D. Construction D

Let C be a [2n; k] binary code. Suppose that its dual C?(s) under
the symplectic inner product (1) is a [2n; 2n� k; d?] code, where d?

is the minimum weight wts as in Section I. Suppose that C � C?(s).

Theorem 3.10: Let C , C?(s) be as above and let X=FFF 2 be an
algebraic curve of genus g with n0 FFF 2 -rational points. Then for any
d?+2g�1 � N � n0, there exists an [[nN; nN�k(d?+g�1); d?]]
quantum code.

Proof: TakeD to be the algebraic-geometric code (over FFF 2 ) of
parameters [N; d?+g�1] (the degree of the divisor is d?+2g�2).We
now consider the concatenated code �(C;...;C)(D). From Theorem 2.4,
its dual (�(C;...;C)(D))?(s) under the symplectic inner product (6) is

�(C ;...;C )(D
?)� (C?(s) � � � � � C?(s)):

Since

�(C;...;C)(D)� C � � � � � C � C?(s) � � � � � C?(s)



2920 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005

TABLE V
[[8N; 8N � 10; 3]] QUANTUM CODES

the code �(C;...;C)(D) is self-orthogonal under the symplectic inner
product (6). We note further that the code

�(C ;...;C )(D
?)� (C?(s)

� � � � � C?(s))

has minimum weight wts at least d?. The proof is similar to that for
Lemma 2.3, using the observation that the minimum weight wts of
�(C ;...;C )(D

?) is at least d? (this follows from the definitions of
wts and the concatenation). Applying Theorem 1.2 to �(C;...;C)(D),
the conclusion now follows.

The following two results are direct consequences of applying The-
orem 3.10 to the projective line or an elliptic curve.

Corollary 3.11: Let C , C?(s) be as above. Then for any d?� 1 �

N � 2k + 1, there exists an [[nN; nN � k(d? � 1); d?]] quantum
code.

Corollary 3.12: Let C , C?(s) be as above and let X=FFF 2 be an
elliptic curve with n0 FFF 2 -rational points. Then for any d? + 1 �

N � n0, there exists an [[nN; nN � kd?; d?]] quantum code.

Example 3.9: Let C be the direct sum of two [8; 4; 4] binary Ham-
ming codes. ThenC is a [16; 8; 4] (here 4 is the minimum weightwts)
self-dual code under the symplectic inner product.We have [[8N; 8N�
24; 4]] quantum codes, for 3 � N � 257, from Corollary 3.11. This
family of quantum codes are not as good as the quantum codes of pa-
rameters [[2m; 2m � 2m� 1; 4]] in [7] when the length is 2m.

Example 3.10: LetC be as in Example 3.9. Over FFF 256, there exists
an elliptic curve with 289 rational points [15]. Thus, we have quantum
codes with parameters [[8N; 8N � 32; 4]] for 5 � N � 289.

Example 3.11: Let C be the binary [16; 5] code generated by the
following binary matrix:

0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0

0 0 1 1 1 0 1 0 0 0 0 1 1 1 0 1

0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

:

It is easy to see that C is self-orthogonal under the symplectic inner
product (1) with its dual C?(s) a [16; 11; 3] code, where 3 means the
minimum weightwts. We have [[8N; 8N�10; 3]] quantum codes, for
2 � N � 33, from Corollary 3.11. We compare the quantum codes
in this family with some previously known quantum codes in Table V.
All the previously known codes in the table are from [13]. We note that
the quantum code of parameters [[256; 246; 3]] is an optimal code. In
this table, the other quantum codes in our family are better than the
corresponding previously known quantum codes.

Example 3.12: LetC be as in Example 3.11. There exists an elliptic
curve over FFF 32 with 44 rational points ([15]). Thus, we have quantum
codes with parameters [[8N; 8N � 15; 3]], 4 � N � 44.

IV. CONCLUSION

We have developed some methods of constructing quantum codes
from concatenated algebraic-geometric codes and calculated many ex-
amples of good quantum codes. It seems that techniques from algebraic
geometry not only yield asymptotically good quantum codes as in [5],
[1], [6], they also lead to some good short quantum codes.

Note Added in Proof

After this paper was submitted, we learned of the paper “Binary
construction of quantum codes of minimum distance three and four”
of Li and Li (IEEE Transactions on Information Theory, vol. 50, pp.
1331–1336, June 2004), in which the preprint form of our this paper
was cited and some of our constructed quantum codes were improved.
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