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New Binary Linear Codes From Algebraic Curves field Fp is an extension oF, of degreen. A place of degreé is also
calledrational. For Goppa'’s construction, one is interested in function
Ka Hin Leung, San Ling, and Chaoping Xing fields with as many rational places as possible for a given genus. For our
purpose, function fields with many rational places are relevant as well.
However, function fields with many rational places and many places of

Abstract—Many new binary linear codes (compared with Brouwer's . .
other small degrees are more interesting for us.

table) are found from a construction based on algebraic curves over finite

fields. For an arbitrary divisotz of F’, we form the vector space
Index Terms—Algebraic function fields, binary linear codes, places. L(G) ={x € F\{0}: div(x) + G > 0} U {0}.
Then,L(G) is a finite-dimensional vector space ou€r, and we de-
|. INTRODUCTION note its dimension by(G). By the Riemann—Roch theorem we have
Constructing codes with good parameters is one of the important UG) 2 deg(G)+1—-g (1)

problems in coding theory. Various tools and methods from algebigd equality holds ifleg(G) > 29 — 1.
numbers .theory,. geometry, combinat(?rics, etc., are employed for thgegr 4 placeP of F of degreen and a functiorf € F with vp(f) >0,
construction of linear codes. Since binary codes do not only haver residue clasg(P) of f in the residue class fielfir of P is identi-

longer history than codes over other fields but are also of the greatgs with an element oF . For more background on curves and their

interest in practice, much more attention has been paid to binary thgAction fields, we refer to the books [4], [5].

nonbinary codes. Nowadays, itis believed that constructing new binaryNow let ; = +* for some integee > 1 and prime power-. Let

linear codes of small lengths is becoming more and more difficult. F/F_ be a function field of genug. We chooses distinct places
Algebraic geometry has been extensively used in the constructiongf ... P, and a divisor@ of F such that

codes since the discovery of Goppa’s geometry codes [2], [4], [5]. In

order to get good Goppa’s geometry codes, one has to find algebraic supp(G) N {1 .o P} = 0.

curves with as many rational points as possible. However, it seems ifor eachl < i < s, we also choose arrary linear codeC; with

possible to obtain many goadary linear codes by directly applying parameter$n;, ek,, d;], wherek, = deg(P;). For eachl < i < s,

Goppa’s construction for smajl since curves over small finite fields we fix an F.-linear isomorphismr; mapping the residue class field

have few rational points compared with their genera. In recent year;, ~ F ., ontoC;.

several constructions using closed points of higher degrees have beaxow we consider the map

proposed [6]-[8], [3] and some new nonbinary linear codes with good a: L(G) — F?

parameters have been found based on these constructions. Unfortu-

nately, these constructions do not provide any new binary linear codes Jr= (m(f(P1)s mo(f(P2))s + oo we(f(P2)))

with good parameters even though closed points of higher degreeswiheren is equal to> ;_, n;. Itis easy to verify that is anF',-linear

used. In this correspondence, we modify the concatenation constro@p.

tion in [8], namely, we employ curves over extensions of the ground The image ofx is obviously a linear code ovdf, of lengthn. We

field and their closed points of higher degrees and apply the classidahote it byC( P, ..., Ps; G5 Ch, ..., Cs).

concaFenatlgn method to gonstruct linear codes. It turns out that many . 122 1: Let the notations be the same as abovelelf(G) <

new binary linear codes with good parameters are produced from t i thena is injective

construction. The main objective of this correspondence is to find n Z:tDrozof' Suppose thaﬁr(.f) — a(h)for £, h € £(G), then

binary codes with good parameters rather than to focus on new con- ' o o ’ '

structions of codes. m (f(P;)) = m:i(h(F;)) 2
forall1 < ¢ < s.Hencef(P;) = h(P;) foralll < i < s since the
Il. CONSTRUCTION OFCODES 7; are isomorphisms. It thus follows that
Since it is more convenient to use notations of function fields, we . s
switch from the language of curves to that of function fields from now f-heLl|G- Z B ®)
on. =1

Letq be a prime power. For the finite fielHl,, let F be an algebraic BY the conditiondeg(G) < 37, k: (3) implies thatf — 2 = 0, i.e.,
function field with the full constant field”,. We express this fact by = /. o

simply saying that"/F is a function field. The genus of/F; IS Tnegrem 2.2:With the notation above, suppose thits(G) <
denoted byy(F'). A place P of F' has degreen if its residue class S ki andd; < ek forall1 < i < s. Then the dimensiof and

the minimum distance of the code’ (P, ..., Ps; G5 Cq, ..., C5)

waatisfy

-112. s

fthe  J > ¢(deg(G)—g+1) and d> > di —edeg(Q).
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dimp, L(G) = edimp, L(G). Therefore, the desired result on the
dimension oC( Py, ..., Ps; G; Cy, ..., C,) follows.
Choose an arbitrary nonzero functignin £(G') and letR be the
subset of{1, 2, ..., s} satisfying
f(P) =0, ifand only if i € R.

LetT be the complementd® in {1, 2, ..., s}. With wt(-) denoting
the Hamming weight of a vector, it follows that

wt(o(f) = Y wt(m(f(P) > Y ds

el el

= di=d di>d di— Y edeg(P). (4
=1 tER =1 iER
On the other hand, it follows fronfi € £(G — >, Pi) that
deg(G) > Y deg(P). (5)
1ER
Adding (4) ande x (5), we obtain
wt(a(f)) + edeg(G) > Z d;
=1
which gives the desired lower bound én O

Remark: We note that the construction in this section is a modifi-
cation of the earlier construction of new types of algebraic-geometry
codes given in [8]. We will see in the next section that this modification
produces a lot of new binary linear codes with good parameters.

ch
Ill. EXAMPLES
In this section, we present two examples foe= 2 from our con- fie

codes compared with Brouwer’s table [1], while it seems impossible to

TABLE |
n | k|d>| dg| Example
153 | 32| 46 || 44 || 1(a) withm =7
156 | 32| 48 || 45 || 1(b) withm =7
209 241 78 || 76 || 2(a) with m =6
213 (24| 80 | 78 || 2(b) with m =6
217120 | 86 || 85 | 2(c) withm =75
217 124 | 82 | 80 || 2(c) withm =6
217 |28 | 78 || 76 || 2(c) withm =7
2171321 74 || 72 || 2(c) with m =8
217136 | 70 || 68 || 2(c) withm =9
217 140 | 66 | 64 | 2(c) with m = 10
217 | 44| 62 | 60 || 2(c) with m = 11
217 | 48 | 58 | 56 || 2(c) with m = 12
220 | 24 | 84 | 82 | 2(d) with m =6
220 128 | 80 || 78 || 2(d) withm =7
220 32| 76 || 73 | 2(d) with m =8
220 136 | 72 || 70 || 2(d) with m =9
220 | 40 | 68 || 65 || 2(d) with m = 10
220 | 44 | 64 | 61 || 2(d) with m = 11
220 | 48 | 60 | 58 || 2(d) with m = 12
00s6G = m(Qs+1 — Qs), SO thatsupp(G) N {P, ..., P.} =0

for sufficiently larges anddeg(G) = m.

In both examples, we writ&(t) for the zeta function of the function

struction in Section Il. These examples provide many new binary Iineflarld F/F:; andB;,i > 1, for the number of places df of degree'.

Example 3.1: Let ¢ 16, soe = 4. Let F = Fis(zx) be the

obtain such good binary linear codes from Goppa’s construction arational function field. The(F) = 0 and

the construction in [8].
Let F//F, be an algebraic function field of gengs Then the zeta
function of F/F, is a rational function of the form

L(t)
(1=1)(1—qt)
where L(t) is a polynomial of degre@g with integral coefficients.
L(t) is called theL-polynomial of F/F,. Suppose thafw;};?, are
all reciprocal roots of(t). Then the absolute value of eaeh is /¢

and the numbeB, of the places of '/ F', of degreer is given by (see
[4, Proposition V.2.9])

Z(t) =

1

s

r
d|r

B, =
d

)t = s0) (6)

for all » > 2, whereyu(-) denotes the Mobius function arttj is given
by

29

Sd:zz

=1

d
w; .

1
0= G Ten

FurthermoreB; = 17 andBy > 1.

a) Takes =18,k =1forl <i <17,andkis =2.Forl <i <
17, let the parameters @f; be[n;, e- k;, d;] = [8, 4. 4] and let
the parameters d@f'is be[nis, e- kis, dis] = [17, 8, 6]. Then,
by Theorem 2.2, we obtain binary linear codes with parameters

[153, 4m + 4, >74 — 4m], forl <m < 18.
b) Takes = 18,k; = 1for1 <i¢ < 17,andki;s = 2.Forl <i <
17, let the parameters @f; be[n;, e-k;. d;] = [8, 4, 4] and let

the parameters af' s be[nis, e- kis, dis] = [20, 8, 8]. Then,
by Theorem 2.2, we obtain binary linear codes with parameters

[156, 4m + 4, >76 — 4m], forl <m < 18.

Example 3.2:Let g = 16, soe = 4. Let F' = Fi4(x, y) be the

function field defined by

y2 +y= 2 + ax

If 7'/ F, is the rational function field, then the genug)isThus, the \wherea is a primitive element of;. Then,g(F) = 1 andB, = 25.
L-polynomial is1. In this caseB1 = ¢ + 1 andB, (r > 2) isthe Thus, the zeta-function is

number of monic irreducible polynomials of degreever F',.

If F'/F, is the function field of an elliptic curve, then tliepolyno-
mial is of the forml + at + qt* for some integew since the genus is
1. Furthermore, we have = ¢ + 1 — B, by (6).

Note that for sufficiently largé there exist placeQs and@ s, of F’
of degree$ andé +1, respectively [4, Corollary V.2.10(c)]. We always

(4t +1)*

2t = (I—#)(L—16t)

A simple calculation based on (6) shows tiiat > 1.
a) Takes = 26, k; = 1forl <i < 25,andkss = 2. Forl <i <

25, let the parameters @f; be[n;, e-k;, d;] = [8, 4, 4] and let



TABLE Il

n k 1d> | dg || Remark

152 |32 | 45 | 44 | by shortening of [153,32, > 46]
154 | 32| 46 | 44 || by lengthening of [153,32, > 46]
155 | 32| 47 || 44 || by shortening of [156, 32, > 48]

—
by
=1
o

[N\
-
o
I
D

by lengthening of [156, 32, > 48]

208 | 24| 77 | 76 | by shortening of [209, 24, > 78]

209 | 23| 78 || 76 | by taking subcode of [209, 24, > 78]
210 [ 24 | 78 || 76 || by lengthening of [209, 24, > 78]
216 | 32 | 73 | 72 | by shortening of [217,32, > 74]

217 | 31| 74 | 72 | by taking subcode of [217, 32, > 74|
218 [ 32| 74 | 72 || by lengthening of [217,32, > T4]

[NNe]
—
[New)
e
o
(@]
-1
(@]
g

by shortening of [220, 40, > 68§]
by taking subcode of {220, 40, > 68]

by lengthening of [220, 40, > 68]

<o
[o%]
o
[@}
e}
[op}
(e}

=
e
=}
(o7}
co
(@)
(@)

the parameters df'2s be[nas, e - ko, dag] = [9, 8, 2]. Then,
by Theorem 2.2, we obtain binary linear codes with parame

[209, 4, >102 — 4m], forl < m < 25.

b) Takes =26, k; = 1forl <i < 25,andkss = 2. Forl < ¢ <
25, let the parameters @f; be[n;, e- ki, d;] = [8, 4, 4] and let
the parameters @26 be[nas, € - kas, d2g] = [13, 8, 4]. Then,
by Theorem 2.2, we obtain binary linear codes with parame

[213, 4m, >104 — 4m], forl1 < m < 25.

c) Takes =26,k = 1forl <i < 25,andkos = 2. Forl <i <
25, let the parameters @f; be[n;, e-k;, d;] = [8, 4, 4] and let
the parameters @6 be[nas, e - kas, d2s] = [17, 8, 6]. Then,
by Theorem 2.2, we obtain binary linear codes with parame'

[217, 4m, >106 — 4m], forl < m < 26.

d) Takings = 26, k; = 1for1l < i < 25, andkss = 2. For
1 < i < 25, let the parameters df'; be [n;, e - ki, di] =
[8, 4, 4] and let the parameters 6k be[nas, e - kag, dag] =
[20, 8, 8]. Then, by Theorem 2.2, we obtain binary linear coc
with parameters

[220, 4m, >108 — 4m], for1 < m < 26.

The above examples produce a series of new binary linear code
list some new codes from Examples 3.1 and 3.2 in Table |. The nurr
n, k, d in Table | stand for the three parameters of binary linear cc
from our examples, whereds; denotes the lower bound on the large
d for binary linear codes, with given lengthand dimensiork, from
Brouwer's table [1] (as of November 4, 2000).

Note that some simple propagation rules will yield a lot of other r
binary codes fromthose in Table I. We list only a few of these new cc
in Table Il as illustrations.
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