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New Binary Linear Codes From Algebraic Curves

Ka Hin Leung, San Ling, and Chaoping Xing

Abstract—Many new binary linear codes (compared with Brouwer’s
table) are found from a construction based on algebraic curves over finite
fields.

Index Terms—Algebraic function fields, binary linear codes, places.

I. INTRODUCTION

Constructing codes with good parameters is one of the important
problems in coding theory. Various tools and methods from algebra,
numbers theory, geometry, combinatorics, etc., are employed for the
construction of linear codes. Since binary codes do not only have a
longer history than codes over other fields but are also of the greatest
interest in practice, much more attention has been paid to binary than
nonbinary codes. Nowadays, it is believed that constructing new binary
linear codes of small lengths is becoming more and more difficult.

Algebraic geometry has been extensively used in the construction of
codes since the discovery of Goppa’s geometry codes [2], [4], [5]. In
order to get good Goppa’s geometry codes, one has to find algebraic
curves with as many rational points as possible. However, it seems im-
possible to obtain many goodq-ary linear codes by directly applying
Goppa’s construction for smallq since curves over small finite fields
have few rational points compared with their genera. In recent years,
several constructions using closed points of higher degrees have been
proposed [6]–[8], [3] and some new nonbinary linear codes with good
parameters have been found based on these constructions. Unfortu-
nately, these constructions do not provide any new binary linear codes
with good parameters even though closed points of higher degrees are
used. In this correspondence, we modify the concatenation construc-
tion in [8], namely, we employ curves over extensions of the ground
field and their closed points of higher degrees and apply the classical
concatenation method to construct linear codes. It turns out that many
new binary linear codes with good parameters are produced from this
construction. The main objective of this correspondence is to find new
binary codes with good parameters rather than to focus on new con-
structions of codes.

II. CONSTRUCTION OFCODES

Since it is more convenient to use notations of function fields, we
switch from the language of curves to that of function fields from now
on.

Let q be a prime power. For the finite fieldFFF q, letF be an algebraic
function field with the full constant fieldFFF q . We express this fact by
simply saying thatF=FFF q is a function field. The genus ofF=FFF q is
denoted byg(F ). A placeP of F has degreem if its residue class
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field FP is an extension ofFFF q of degreem. A place of degree1 is also
calledrational. For Goppa’s construction, one is interested in function
fields with as many rational places as possible for a given genus. For our
purpose, function fields with many rational places are relevant as well.
However, function fields with many rational places and many places of
other small degrees are more interesting for us.

For an arbitrary divisorG of F , we form the vector space

L(G) = fx 2 Fnf0g: div(x) +G � 0g [ f0g:

Then,L(G) is a finite-dimensional vector space overFFF q, and we de-
note its dimension bỳ(G). By the Riemann–Roch theorem we have

`(G) � deg(G) + 1� g (1)

and equality holds ifdeg(G) � 2g � 1.
For a placeP ofF of degreem and a functionf 2F with �P (f)�0;

the residue classf(P ) of f in the residue class fieldFP of P is identi-
fied with an element ofFFF q . For more background on curves and their
function fields, we refer to the books [4], [5].

Now let q = re for some integere � 1 and prime powerr. Let
F=FFF q be a function field of genusg. We chooses distinct places
P1; . . . ; Ps and a divisorG of F such that

supp(G)\ fP1; . . . ; Psg = ;:

For each1 � i � s, we also choose anr-ary linear codeCi with
parameters[ni; eki; di], whereki = deg(Pi). For each1 � i � s,
we fix anFFF r-linear isomorphism�i mapping the residue class field
FP ' FFF q ontoCi.

Now we consider the map

�: L(G) �! FFFn
r

f 7�! (�1(f(P1)); �2(f(P2)); . . . ; �s(f(Ps)))

wheren is equal to s

i=1
ni. It is easy to verify that� is anFFF r-linear

map.
The image of� is obviously a linear code overFFF r of lengthn. We

denote it byC(P1; . . . ; Ps; G; C1; . . . ; Cs).

Lemma 2.1: Let the notations be the same as above. Ifdeg(G) <
s

i=1
ki then� is injective.

Proof: Suppose that�(f) = �(h) for f; h 2 L(G), then

�i(f(Pi)) = �i(h(Pi)) (2)

for all 1 � i � s. Hencef(Pi) = h(Pi) for all 1 � i � s since the
�i are isomorphisms. It thus follows that

f � h 2 L G�
s

i=1

Pi : (3)

By the conditiondeg(G) < s

i=1
ki (3) implies thatf � h = 0, i.e.,

f = h.

Theorem 2.2:With the notation above, suppose thatdeg(G) <
s

i=1
ki anddi � eki for all 1 � i � s. Then the dimensionk and

the minimum distanced of the codeC(P1; . . . ; Ps; G; C1; . . . ; Cs)
satisfy

k � e(deg(G)� g + 1) and d �
s

i=1

di � edeg(G):

Furthermore, we havek = e(deg(G)� g + 1) if deg(G) � 2g � 1.
Proof: It directly follows from the Riemann–Roch theorem that

the dimensiondimFFF L(G) satisfies

dimFFF L(G) = `(G) � deg(G)� g + 1

with equality if deg(G) � 2g � 1. By Lemma 2.1, the di-
mension dimFFF C(P1; . . . ; Ps; G; C1; . . . ; Cs) is equal to
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dimFFF L(G) = edimFFF L(G): Therefore, the desired result on the
dimension ofC(P1; . . . ; Ps; G; C1; . . . ; Cs) follows.

Choose an arbitrary nonzero functionf in L(G) and letR be the
subset off1; 2; . . . ; sg satisfying

f(Pi) = 0; if and only if i 2 R:

Let T be the complement ofR in f1; 2; . . . ; sg. With wt(�) denoting
the Hamming weight of a vector, it follows that

wt(�(f)) =
i2T

wt(�i(f(Pi))) �
i2T

di

=

s

i=1

di �
i2R

di �
s

i=1

di �
i2R

edeg(Pi): (4)

On the other hand, it follows fromf 2 L(G�
i2R Pi) that

deg(G) �
i2R

deg(Pi): (5)

Adding (4) ande�(5), we obtain

wt(�(f)) + edeg(G) �
s

i=1

di

which gives the desired lower bound ond.

Remark: We note that the construction in this section is a modifi-
cation of the earlier construction of new types of algebraic-geometry
codes given in [8]. We will see in the next section that this modification
produces a lot of new binary linear codes with good parameters.

III. EXAMPLES

In this section, we present two examples forr = 2 from our con-
struction in Section II. These examples provide many new binary linear
codes compared with Brouwer’s table [1], while it seems impossible to
obtain such good binary linear codes from Goppa’s construction and
the construction in [8].

Let F=FFF q be an algebraic function field of genusg. Then the zeta
function ofF=FFF q is a rational function of the form

Z(t) =
L(t)

(1� t) (1� qt)

whereL(t) is a polynomial of degree2g with integral coefficients.
L(t) is called theL-polynomial ofF=FFF q . Suppose thatfwig2gi=1 are
all reciprocal roots ofL(t). Then the absolute value of eachwi is

p
q

and the numberBr of the places ofF=FFF q of degreer is given by (see
[4, Proposition V.2.9])

Br =
1

r
djr

�
r

d
(qd � Sd) (6)

for all r � 2, where�(�) denotes the Möbius function andSd is given
by

Sd :=

2g

i=1

wd
i :

If F=FFF q is the rational function field, then the genus is0. Thus, the
L-polynomial is1. In this case,B1 = q + 1 andBr (r � 2) is the
number of monic irreducible polynomials of degreer overFFF q.

If F=FFF q is the function field of an elliptic curve, then theL-polyno-
mial is of the form1 + at + qt2 for some integera since the genus is
1. Furthermore, we havea = q + 1� B1 by (6).

Note that for sufficiently large� there exist placesQ� andQ�+1 ofF
of degrees� and�+1, respectively [4, Corollary V.2.10(c)]. We always

TABLE I

chooseG = m(Q�+1 �Q�), so thatsupp(G) \ fP1; . . . ; Psg = ;
for sufficiently large� anddeg(G) = m.

In both examples, we writeZ(t) for the zeta function of the function
field F=FFF 16 andBi, i � 1, for the number of places ofF of degreei.

Example 3.1: Let q = 16, so e = 4. Let F = FFF 16(x) be the
rational function field. Theng(F ) = 0 and

Z(t) =
1

(1� t) (1� 16t)
:

Furthermore,B1 = 17 andB2 > 1.

a) Takes = 18, ki = 1 for 1 � i � 17, andk18 = 2. For1 � i �
17, let the parameters ofCi be[ni; e �ki; di] = [8; 4; 4] and let
the parameters ofC18 be[n18; e � k18; d18] = [17; 8; 6]. Then,
by Theorem 2.2, we obtain binary linear codes with parameters

[153; 4m+ 4; �74� 4m]; for 1 � m � 18:

b) Takes = 18, ki = 1 for 1 � i � 17, andk18 = 2. For1 � i �
17, let the parameters ofCi be[ni; e �ki; di] = [8; 4; 4] and let
the parameters ofC18 be[n18; e � k18; d18] = [20; 8; 8]. Then,
by Theorem 2.2, we obtain binary linear codes with parameters

[156; 4m+ 4; �76� 4m]; for 1 � m � 18:

Example 3.2: Let q = 16, soe = 4. Let F = FFF 16(x; y) be the
function field defined by

y2 + y = x3 + �x

where� is a primitive element ofFFF 4. Then,g(F ) = 1 andB1 = 25.
Thus, the zeta-function is

Z(t) =
(4t+ 1)2

(1� t) (1� 16t)
:

A simple calculation based on (6) shows thatB2 > 1.

a) Takes = 26, ki = 1 for 1 � i � 25, andk26 = 2. For1 � i �
25, let the parameters ofCi be[ni; e �ki; di] = [8; 4; 4] and let
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TABLE II

the parameters ofC26 be [n26; e � k26; d26] = [9; 8; 2]. Then,
by Theorem 2.2, we obtain binary linear codes with parameters

[209; 4m; �102� 4m]; for 1 � m � 25:

b) Takes = 26, ki = 1 for 1 � i � 25, andk26 = 2. For1 � i �

25, let the parameters ofCi be[ni; e �ki; di] = [8; 4; 4] and let
the parameters ofC26 be[n26; e � k26; d26] = [13; 8; 4]. Then,
by Theorem 2.2, we obtain binary linear codes with parameters

[213; 4m; �104� 4m]; for 1 � m � 25:

c) Takes = 26, ki = 1 for 1 � i � 25, andk26 = 2. For1 � i �

25, let the parameters ofCi be[ni; e �ki; di] = [8; 4; 4] and let
the parameters ofC26 be[n26; e � k26; d26] = [17; 8; 6]. Then,
by Theorem 2.2, we obtain binary linear codes with parameters

[217; 4m; �106� 4m]; for 1 � m � 26:

d) Takings = 26, ki = 1 for 1 � i � 25, andk26 = 2. For
1 � i � 25, let the parameters ofCi be [ni; e � ki; di] =
[8; 4; 4] and let the parameters ofC26 be [n26; e � k26; d26] =
[20; 8; 8]. Then, by Theorem 2.2, we obtain binary linear codes
with parameters

[220; 4m; �108� 4m]; for 1 � m � 26:

The above examples produce a series of new binary linear codes. We
list some new codes from Examples 3.1 and 3.2 in Table I. The numbers
n; k; d in Table I stand for the three parameters of binary linear codes
from our examples, whereasdB denotes the lower bound on the largest
d for binary linear codes, with given lengthn and dimensionk, from
Brouwer’s table [1] (as of November 4, 2000).

Note that some simple propagation rules will yield a lot of other new
binary codes from those in Table I. We list only a few of these new codes
in Table II as illustrations.
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Error Performance Analysis for Reliability-Based Decoding
Algorithms

Marc P. C. Fossorier, Senior Member, IEEE,and Shu Lin, Fellow, IEEE

Abstract—In this correspondence, the statistical approach proposed by
Agrawal and Vardy to evaluate the error performance of the generalized
minimum distance (GMD) decoding is extended to other reliability-based
decoding algorithms for binary linear block codes, namely Chase-type,
combined GMD and Chase-type, and order statistic decodings (OSDs). In
all cases, tighter and simpler bounds than those previously proposed have
been obtained with this approach.

Index Terms—Block codes, decoding, order statistics, reliability-based
decoding, soft-decision decoding.

I. INTRODUCTION

A difficult task related to suboptimum decoding algorithms is their
error performance analysis at practical signal-to-noise ratio (SNR)
values. It has long been believed that a good criterion to design a
suboptimum soft-decision decoding algorithm was to prove that
the algorithm considered achieves bounded distance decoding (or is
asymptotically optimum). However, recent studies indicate that this
simple criterion usually does not reflect the behavior of the algorithm
considered at practical SNR values. In particular, an approach based
on the union bound is often highly misleading and more sophisticated
bounding methods are needed.

In [1], a tight upper bound on the error performance of generalized
minimum distance (GMD) decoding [2] was derived based on order
statistics. In this correspondence, we extend the approach of [1] to
other reliability-based decoding algorithms. First, Chase-type decoding
is considered. For Algorithm 2 introduced in [3], the obtained bound
falls on top of the simulated results at all SNR values. The bounding
method is then applied to the order statistic decoding (OSD) algorithm
of [4]. The computational complexities of the corresponding bounds
are much smaller than those of the bounds derived in [4]. They are also
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