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Asymmetric Quantum Codes:
Characterization and Constructions

Long Wang, Keqin Feng, San Ling, and Chaoping Xing

Abstract—The stabilizer method for constructing a class of
asymmetric quantum codes (AQC), called additive AQC, has been
established by Aly et al. In this paper, we present a new charac-
terization of AQC, which generalizes a result of the symmetric
case known previously. As an application of the characterization,
we establish a relationship of AQC with classical error-correcting
codes and show a few examples of good AQC with specific param-
eters. By using this relationship, we obtain an asymptotic bound
on AQCs from algebraic geometry codes.

Index Terms—Algebraic geometry codes, asymptotic bounds,
classical codes, mappings, quantum codes.

I. INTRODUCTION

A FTER the works of Shor [13] and Steane [14], [15]
in 1995–1996, the theory of quantum error-correcting

codes has developed rapidly. In 1998, Calderbank et al. [4]
presented systematic methods to construct binary quantum
codes, called stabilizer codes or additive codes, from classical
error-correcting codes. At the same time, the stabilizer method
has been generalized to nonbinary quantum codes and new
methods have been found to construct nonadditive quantum
codes. Recently, a number of new types of quantum codes, such
as convolutional quantum codes, subsystem quantum codes,
and asymmetric quantum codes (AQC), have been studied and
the stabilizer method has been extended to these variations of
quantum codes. In particular, there has been intensive activity
in the area of AQCs [1], [2], [6], [10], [12].

This paper concentrates on the AQCs which deal with the
case where dephasing errors ( -errors) happen more frequently
than qubit-flipping errors ( -errors) [14], [15]. Such codes are
used in fault tolerant operations of a quantum computer carrying
controlled and measured quantum information over asymmetric
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channels [6]. Our aim in the paper is to extend the characteriza-
tion of nonadditive symmetric quantum codes given in [7] and
[8] to the asymmetric case and to show several examples of good
AQCs.

The paper is organized as follows. We introduce the basic no-
tations and definitions of symmetric and AQCs in Section II. In
Section III, we present the characterization of AQCs (Theorem
3.1) and establish a relationship between classical error-cor-
recting codes and AQCs (Theorem 3.2). Finally, in Section IV,
an asymptotic bound on AQCs is derived from algebraic geom-
etry codes based on the relationship between classical codes and
asymmetric codes given in Section III.

II. SYMMETRIC AND ASYMMETRIC QUANTUM CODES

Let be the finite field with , where is a prime
number and is an integer. Let be the complex number
field. We fix an orthonormal basis of

with respect to the Hermitian inner product. For a positive in-
teger , let be the th tensor of . Then,

has the following orthonormal basis

(II.1)

For two quantum states and in with

the Hermitian inner product of and is

where is the complex conjugate of . We say and
are orthogonal if .

A quantum error acting on is a unitary linear operator on
and has the following form:

The action of on the basis (II.1) of is

where
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with and being the trace
mapping

for

Therefore

and

where is the usual inner product in .
It can be checked that for and

hence the set

forms a (nonabelian) group, called the error group on .

Definition 2.1: For a quantum error

we define the quantum weight , -weight and
-weight by

Namely, is the number of quantum digits where the ac-
tion of is nontrivial by (identity);
( , respectively) is the number of quantum digits where the

-action ( -action, respectively) of is nontrivial. It is easy to
see that

Definition 2.2: A -ary quantum code of length is a sub-
space of with dimension . A quantum code
of dimension is said to detect quantum digits
of errors for if for every orthogonal pair , in
with and every with ,
and are orthogonal, i.e., . In this case, we call

a symmetric quantum code with parameters or
, where . Such a quantum code is called

pure if for any and in and any
with . A quantum code with is
always pure.

Let and be positive integers. A quantum code in
with dimension is called AQC with parameters

or if detects
quantum digits of -errors and, at the same time,

quantum digits of -errors. Namely, if for
, then for any such that

and . Such an AQC is called pure
if for any and such that

and . An AQC
with is assumed to be pure.

Remark 2.3: An AQC with parameters is a
symmetric quantum code with parameters , but the
converse is not true since for with and

, the weight may be bigger than .

The stabilizer method has been extended to AQCs and gives
the following result (Theorem 2.4) on the construction of AQCs
from classical error-correcting codes. Recall that a classical
linear code with parameters is a linear subspace of

with dimension over and is the
minimum distance of defined by

where (note that is the Hamming
weight of ). The dual code of is defined by

for each

Theorem 2.4 [1, Lemma 214], [2, Lemma 4]: Let be a
classical linear code with parameters and

(so that and ). Then, there
exists an AQC with parameters ,
where

and for a subset of

Moreover, such a quantum code with parameters
is pure if and

.

Theorem 2.4 has been proved by the stabilizer method in
[1] and [2]. AQCs constructed by Theorem 2.4 are called
additive codes. A sequence of additive AQCs has been obtained
from classical cyclic codes in [1] and [2]. To see whether a
quantum code is good in terms of its parameters, we have
to introduce some bounds. For a pure AQC with parameters

, we have the Hamming bound

(II.2)
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This is because for a pure code , the spaces with

are subspaces of with dimension and they are orthogonal
to each other. The code is called perfect if the inequality (II.2)
becomes equality.

On the other hand, from the Singleton bound of classical
codes we can get the following bound of any additive AQC with
parameters [2, Th. 19]:

(II.3)

It seems that this Singleton bound (II.3) may be true for all
AQCs. As in the classical case, we say an additive AQC is a max-
imum distance separable (MDS) code if the equality in (II.3)
holds.

Corollary 2.5: Let be a pure additive AQC constructed by
classical codes and in Theorem 2.4. Then:

i) is MDS if and only if both and are MDS;
ii) is perfect if and only if both and are perfect.

Proof: Since is pure, we know that
and hence . The Hamming bound and the
Singleton bound for the classical codes and are

(II.4)

and

(II.5)

respectively. Therefore

is MDS

[by (II.5)]

and are MDS

and

is perfect

[by (II.4)]

and are perfect

This completes the proof.

For instance, by taking a perfect code (for example, a
Hamming code or a Golay code) and , we get a perfect
AQC with . On the other hand, if both and are
Reed–Solomon codes, we obtain MDS AQCs [1, Th. 220].

III. A CHARACTERIZATION OF ASYMMETRIC QUANTUM CODES

In this section, we extend the results of [7, Th. 2.2] and [8,
Th. 3.1] to the asymmetric case, and present the following char-
acterization of AQCs.

For a vector and a subset of
, we denote .

Theorem 3.1:
i) There exists an AQC with parameters

if and only if there
exist nonzero mappings

(III.1)

satisfying the following conditions: for each
and partition of

(III.2)

and each , and , we
have the equality

for
for

(III.3)

where is an element of which is in-
dependent of .

ii) There exists a pure AQC with parameters
if and only if there

exist nonzero mappings as shown in
(III.1) such that:

ii.a) are linearly independent, namely,
the rank of the matrix is

;
ii.b) for each , a partition (III.2)

and , and

for
for

(III.4)

where stands for .
Proof: We follow the argument in the proof of [7, Th. 2.2]

and the following two simple facts on the Fourier transform. For
a mapping and its Fourier transform

Fact (I): if and only if .
Fact (II): for all if and only if
is a constant.



WANG et al.: ASYMMETRIC QUANTUM CODES: CHARACTERIZATION AND CONSTRUCTIONS 2941

i) Let be a -dimensional subspace of with an
orthonormal basis

then

if
if .

For two vectors in

we have

For each with and
, let

Then, , so that we can find a partition
(III.2) such that can be expressed by

(III.5)

The action of on is

By Definition 2.2, is an AQC with parameters
if and only if, under the condition

, we have

Since and are any vectors, from Fact (I) we know that
the above equality is equivalent to

for any , , , and . Consider the matrix

with

Our statement now becomes that for any ,
implies that . It is easy to see that under the

assumption , this statement is equivalent to ,
where is the identity matrix and

. Namely

for
independent of for

which is the condition (III.3).
ii) Let be a basis of
. Then, the condition ii.a) is satisfied. By Definition 2.2,

is a pure AQC with parameters if and only if
for each in the form

(III.5). By arguments similar to those in i), this requirement can
be transformed into

(III.6)

for each . If ,
then (III.6) is true for any and . Then, we get the first
equality of (III.4). If , then (III.6) becomes

for any . By Fact (II), this means

Note that is independent of and . Then

Therefore, . This completes the proof.

Now, we give an application of Theorem 3.1.

Theorem 3.2: Let and be positive integers. Let be
a classical linear code in . Assume that is the
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minimum distance of the dual code of . For a set
of distinct vectors in , define

If and , then there exists an AQC with
parameters .

Proof: For each , we define a mapping
by

if
otherwise.

We have to show that the condition (III.3) is true for the map-
pings .

For each partition (III.2), we have

and

and

(III.7)

Since , we know that
implies that . There-

fore

(III.8)
if .

For , from (III.7), we get

(III.9)

It is a well-known fact that, under the assumption ,
there exist exactly vectors for
any fixed . Then, from (III.9), we get

if
if

(III.10)

which is independent of . By Theorem 3.1, we have an AQC
with parameters .

Though the following corollary can be derived from Theorem
2.4, we are able to apply Theorem 3.2 to obtain it as well.

Corollary 3.3: Let be classical linear codes with param-
eters with . Then, there exists

an AQC with parameters , where
.

Proof: We take in Theorem 3.2. Since ,
we have , where is a subspace of and is
the direct sum so that .

Let where . Then

By using Corollary 3.3, we can get a sequence of asymmetric
MDS quantum codes for as shown in the following
result.

Corollary 3.4: Let . If , then there exists an asym-
metric MDS quantum code with parameters .

Proof: First, we prove the following claims.
For , there exist nonzero elements

such that .
In order to prove the claim, we take any nonzero elements

. From , we have such
that and .

Then, we take nonzero elements and such that
and we have

.
Now we come back to the proof of this corollary.
For and , by the claim, we have nonzero elements

such that
are orthogonal vectors in . Let and be

the 1-D subspaces of spanned by and , respectively. The
parameters of are and the parameters of are

. From ,
we have . By Corollary 3.3, we get an AQC with
parameters with

. Since ,
we know that is an MDS code.

Now we apply Theorem 3.2 to obtain Corollary 3.5.

Corollary 3.5: Let be an integer and let .
i) If is even, there exists a binary AQC with parameters

, where

and stands for the maximal cardinality of a
binary constant weight code of length , distance , and
weight .

ii) If is odd, there exists a binary AQC with parameters
, where

Proof: Let be the 1-D subspace of generated by
. Then, .
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Let denote the constant weight code of length , weight
, minimum distance , and size .
Define a set as follows.

Case 1) is even

Case 2) is odd:

Let . If we can prove that

is at least , then the desired result follows from Theorem 3.2.
We show this only for the case where is even. The other

case can be proved by the same argument.
It is sufficient to show that the Hamming weight
is at least for any with and .

We discuss it case by case.
Case 1) . Note that the Hamming weight of

every vector in is at most . Thus, we
have

Case 2) . Both and belong to the same
code for some . Then,

is bigger than or equal to the minimum
distance of .

Case 3) . and belong to two different
codes and , respectively,
for some . Then, we have

This finishes the proof.

Remark 3.6:
i) In Corollary 3.5, let . Then, we have

and hence get a binary -quantum code
with

if is even
if is odd.

This result coincides with [7, Example 2.7].

ii) In Corollary 3.5, let . Then, we have
(see [9]) and hence get a binary

-quantum code with

if is even

if is odd.

IV. ASYMPTOTICALLY GOOD ASYMMETRIC QUANTUM CODES

FROM AG CODES

For a given pair of real numbers and a family
of asymptotic quantum

codes with

we define the asymptotic quantity

where denotes the logarithm to the base . One of the cen-
tral asymptotic problems for quantum codes is to find families
of asymptotic quantum codes such that for a fixed pair ,
the value is as large as possible.

In this section, we are mainly interested in the above asymp-
totic problem of AQCs. In particular, two asymptotic lower
bounds on AQCs are given by applying algebraic geometry
codes to Theorem 3.2 and Corollary 3.3, respectively.

Before proceeding to the asymptotic bounds from algebraic
geometry codes, we recall some background on classical alge-
braic geometry codes.

Let be an algebraic curve of genus . We denote by
the function field of . An element of is called

a function. We write for the normalized discrete valuation
corresponding to the point of .

For a divisor , we form the vector space

Then, is a finite-dimensional vector space over , and we
denote its dimension by . By the Riemann–Roch theorem,
we have

and equality holds if .
Let be a subset of and label the points in as fol-

lows:

Choose a divisor such that . Then,
for all and any .
Consider the map
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Then, the image of forms a subspace of that was defined
as an algebraic geometry code by Goppa. The image of is
denoted by . If is bigger than the degree of , then

is an embedding and the dimension of is equal to
. The Riemann–Roch theorem makes it possible to estimate

the parameters of the code .

Proposition 4.1 [17, Th. 3.1.1]: Let be an algebraic
curve of genus and let be a set of points on . Choose a
divisor with and . Then,

is an -linear code over with

Moreover, the dimension is equal to if
. Furthermore, the minimum distance

of its dual code is at least .

Proposition 4.2: If there is an algebraic curve with at
least rational points and genus , then one has a -ary

-AQC with and
for any satisfying .

Proof: Let be distinct rational points
of . Putting , ,

and applying Corollary 3.3, we obtain the desired
result.

Remark 4.3: If is the projective line, i.e., ,
then we get -ary -asymptotic
quantum MDS codes.

Let denote the number of -rational points of a curve
of genus . According to the Weil bound

the following two definitions make sense.
For any prime power and any integer , put

where the maximum is extended over all curves with
.

We also define the following asymptotic quantity:

We know from [17] that if is a square.

Theorem 4.4: For a prime power and a pair of non-
negative real numbers satisfying , there
exists a family of asymptotic quantum codes from algebraic
geometry codes such that

(IV.1)

Proof: Let be a family of curves such that
and .

Define three families of integers ,
, and .

Then, , , and
.

By Proposition 4.2, from each curve in the family, we can
construct a -ary -AQC with
and . Thus

and

The proof is completed.

By using the same techniques as in [7] and applying Theorem
3.2, we can improve the bound (IV.1) to the following.

Theorem 4.5: For a prime power and a pair of non-
negative real numbers satisfying , there
exists a family of asymptotic quantum codes from algebraic
geometry codes such that

(IV.2)

We omit the proof of this theorem as one can use the same ar-
guments as in the proof of [7, Th. 3.8].
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