
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Storage codes : managing big data with small
overheads

Datta, Anwitaman; Oggier, Frederique

2013

Datta, A., & Oggier, F. (2013). Storage Codes: Managing Big Data with Small Overheads. IEEE
International Symposium on Network Coding (NetCod 2013).

https://hdl.handle.net/10356/96936

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
[http://sands.sce.ntu.edu.sg/CodingForNetworkedStorage/].

Downloaded on 20 Mar 2024 18:22:05 SGT



Storage Codes: Managing Big Data with Small
Overheads

Anwitaman Datta, Frédérique Oggier
Nanyang Technological University, Singapore
{anwitaman,frederique}@ntu.edu.sg

WWW: http://sands.sce.ntu.edu.sg/CodingForNetworkedStorage/

Abstract—Erasure coding provides a mechanism to store
data redundantly for fault-tolerance in a cost-effective manner.
Recently, there has been a renewed interest in designing new
erasure coding techniques with different desirable properties,
including good repairability and degraded read performance, or
efficient redundancy generation processes. Very often, these novel
techniques exploit the computational resources available ‘in the
network’, i.e., leverage on storage units which are not passive
entities supporting only read/write of data, but also can carry
out some computations. This article accompanies an identically
titled tutorial at the IEEE International Symposium on Network
Coding (NetCod 2013), and portrays a big picture of some of the
important processes within distributed storage systems, where
erasure codes designed by explicitly taking into account the
nuances of distributed storage systems can provide significant
performance boosts.

Index Terms—Erasure codes, Storage systems, Fault-tolerance,
Repairability, Degraded reads, Data-insertion.

I. INTRODUCTION

Erasure codes, originally invented for fault-tolerant com-
munication over lossy channels, have long been adapted for
storage centric applications and systems - starting from the
CD technology. When a data object o is stored, it is first
split into say k pieces o1, . . . , ok, which are then mapped
into n pieces x1, . . . , xn, n > k. These n encoded pieces
x1, . . . , xn are then stored across the storage device. When
failures of the storage device occur, some of the xi are lost.
The erasure code then ensures that o can be recovered from
the remaining xi, similarly as in the case of a lossy channel,
assuming enough xi are left. Under many practical settings,
erasure codes then provide desirable levels of resilience while
incurring significantly lower storage overhead with respect to
a naive strategy of replicating the data many-folds. In other
words, there are erasure codes with a good erasure recovery
capability and a higher rate than repetition codes.

In distributed storage systems, ranging from decentralized
peer-to-peer systems to well administered data-centers, data is
spread over multiple interconnected storage nodes: typically,
every encoded piece xi of an object o is stored in a distinct
node. Many of the storage nodes are augmented with comput-
ing power. This provides an opportunity of exploiting these
‘storage network’ resources in order to achieve functionalities

A. Datta’s work was funded by A*STAR SERC TSRP Grant 102 158 0038.
F. Oggier’s work was funded by the Nanyang Technological University under
Research Grant M58110049.

and performance boosts not achievable in systems where the
storage nodes play a passive role. Erasure coding techniques
were not originally designed to either leverage on the network
resources, nor were they intended to suit the needs of dis-
tributed storage systems. Instead, they were designed for the
recovery of the whole message (or data object), and so were
the corresponding coding and decoding processes.

While the recovery of the data object in case of failures
remains a crucial concern (that of fault-tolerance), many other
properties are desirable, and have motivated the study of
novel codes for distributed storage systems, among which (not
necessarily by order of importance):

a) Repairability: When some nodes fail, the recovery
ability of the code protects the stored data. However over
time, more and more failures may occur, and data needs to
be replenished to maintain the level of redundancy across the
storage system. For example, if the data is simply replicated
three times, once a first node fails, a repair consists of copying
the data over a live node, so that three copies are again
available. Note that the reason behind three copies is that once
the first one is gone, it is too dangerous to have only one copy
left, in case of another failure, there might not be enough time
to safely copy the data. Repairability encompasses a variety of
subproblems: how to detect a failure, when to trigger a repair,
how many live nodes are needed to be contacted to perform a
repair, how long does it take, how much bandwidth is needed,
to name a few.

b) Degraded reads: Many failures in a storage system
are transient, but these failures may still delay job processes,
and actually form a key bottleneck. Suppose a job tries to
access a block of data which is not available, it will have to
wait. Alternatively, it may compute the data it wanted to read
by accessing different live nodes, which is called a degraded
read. Degraded reads are somehow treated as repairs, however
with the following main differences: (1) they are repairs that
do not need to be written on the storage medium, (2) they are
referring to actual pieces of data, not encoded pieces of data.

c) Decentralized encoding: In a theoretical model, one
just assumes that the storage system is keeping encoded pieces
of data objects. However, the encoding needs to be actually
computed. This may happen in two different scenarios. (1)
One node might be in charge of computing the encoded
pieces before injecting them into the network, bearing the
computational burden of the encoding, and that of uploading



Fig. 1. Erasure coding techniques for different distributed storage system
functions and processes: The data is inserted in the storage system. Pipelined
insertion leads to the insertion of several replicas, which are in turn archived
using a distributed encoding process, or encoded data can be directly inserted
and computed using an in-network coding process. Once the data is erasure
encoded, it needs to support repair, degraded reads, fault-tolerance, without
too much cost in storage overhead.

not only k pieces of data, but n > k of them. (2) Most
systems store replicas of the data as long as it is “hot”, and
manipulated, e.g. for analytics purposes. Once the data gets
“cold”, it is archived using erasure codes. Typically a single
node carries out the encoding process per object. In both cases,
decentralizing the encoding process by distributing it across
several nodes may speed it up, and reduce the network cost.

The above properties all help boost the performance of
a distributed storage system in different manners. Figure 1
provides a big picture of some of the core functionalities and
processes within distributed storage systems, and how, many
of these can benefit from novel coding techniques. While at
the moment, there is arguably no single code instance which
achieves all these properties simultaneously, in this article we
will explore the individual novel codes in a piecemeal manner,
which together lay the foundations for the search of codes that
would satisfy all the desirable properties together.

Specifically, we will look at codes designed to achieve good
repairability & degraded reads (see Section III), and codes
designed to improve the throughput for populating the storage
system with erasure coded data - either by converting already
existing replicated data, or immediately at the time of data
insertion (Section IV). While most of these works assume
a trusted and collaborative environment, tolerance against
Byzantine faults - where data is corrupted - either during the
process of storage or repair, is also becoming an important
topic of study, which we will briefly highlight.

Complementing the coding theoretical results, we also dis-
cuss some of the systems issues (in Section V), which give rise
to the study of, and in turn, harness, the above mentioned novel
code properties. Scalability as well as fault-tolerance needs
may dictate different degrees of distribution - spanning across
multiple storage nodes spread over a single data-center or
multiple data-centers (both administered centrally by a single
trusted entity), or even across multiple cloud service providers

Fig. 2. Peer-to-Peer storage systems design choices: Many of the tech-
niques developed in the context of P2P storage are also relevant in other
environments, while some others are not. For instance, centrally administered
data-centers exhibit significantly different workload and environment charac-
teristics, and typical P2P issues such as user churn or trust relations, etc. are
not relevant.

(thus involving multiple trusted entities administering the
subparts) or over a peer-to-peer system (decentralized, with no
trusted entity or global knowledge and control). We will look
at some representative erasure coding based storage system
designs which span the spectrum of distribution.

II. ERASURE CODES FOR DISTRIBUTED STORAGE

The idea of adding some non-replication based redundancy,
e.g. parity bits (adding one bit which is the sum of all/some
data bits), has long been used in storage systems, prominently
in RAID [29] (Redundant Arrays of Inexpensive Disks) sys-
tems. RAID systems are devised for creating a single logical
unit comprising of multiple disks. The parity based redundancy
employed, say in RAID-4, can be seen as a very simple erasure
code. More recently, specifically in RAID-6, variations of
Reed-Solomon erasure codes [33] are explicitly being adopted.

Erasure codes have also enjoyed a particularly high level
of attention and usage in peer-to-peer (P2P) storage systems,
especially in the OceanStore project [19], and many follow-up
works since then [3], [14]. Because of high churn (membership
dynamics of users going offline and coming back online), a
critical issue with applying erasure codes in P2P systems is
the problem of maintaining a desirable level of redundancy
efficiently. Several approaches (which are not necessarily
mutually exclusive) have been pursued in the literature, which
roughly define the design-space of P2P storage systems, as
illustrated in Figure 2. The prominent aspects include: how
much redundancy to initialize the system with [3], what
strategy to apply to replenish redundancy (reactive: eager or
lazy [3], [5], versus proactive [7]), what strategy to carry out
garbage collection in case unnecessary redundancy is created
in the system [21], or how to choose the peers where the
erasure coded data is stored (based on history of availability,
trust, locality). These works typically address the problem by
considering the underlying coding technique as a “black box”,
which takes k data symbols as input, outputs n symbols, which



have the property that any choice of k of them allows the data
object to be recovered. This property, called the MDS property,
is the best recovery capability that an erasure can enjoy.

An alternative approach to address the issue of P2P storage
system maintainability is to rethink the underlying coding
technique itself. Several independent initiatives, prominently
on Regenerating codes [6], Pyramid codes [17] and Hier-
archical codes [8] pioneered this line of work - that of
designing new codes rather than assume a black box model.
While Regenerating and Hierarchical codes focused on the
repairability issue, Pyramid codes were aimed at degraded
reads rather than repairability, but implicitly, the property
could be harnessed for improved repairability as well.

In the meanwhile, erasure codes have transcended P2P and
RAID storage systems, and have become an integral part of
off-the-shelf solutions such as CleverSafe [4] and Pivot3 [30],
and of major industry players, including the new version of
Google file system (GFS) and Microsoft’s Azure system [10]1.
Accordingly, the problem of designing codes for distributed
storage systems is now addressed to suit the different nuances
of various storage systems, ranging from RAID and P2P
storage, to data centers.

III. REPAIRABLE ERASURE CODES

The lack of ability to repair lost data efficiently is arguably
one of the main reasons that slowed down the adoption of
erasure codes in distributed storage systems. This is also
probably why most of the focus in designing new codes
has been on providing codes which enable repairs. Different
families of codes have targeted different desirable features of
the repair processes.

Regenerating codes [6] are a family of codes designed to
reduce the bandwidth needed to repair a node failure. Roughly
speaking, they consist of an erasure code (typically MDS) to
store the data across different nodes, and of a network code,
that enables repairs. A trade-off between the storage capacity
of the nodes and the amount of repair bandwidth needed was
established in [6], and regenerating codes achieve this trade-
off. They bring improvements in terms of bandwidth needed to
perform a repair with respect to a naive strategy that consists
of recovering the data object first. They however require a
large number of live nodes to be contacted per repair.

In contrast, the ability to carry out a repair using a low
number of nodes necessitate a non-MDS code, but may offer
several benefits including lower number of I/O operations,
possibility to carry out multiple repairs in parallel, reduction
in the network bandwidth usage (w.r. to the naive strategy),
naturally enabling better degraded reads, etc. We will next
discuss representative classes of codes which require a small
number of live nodes to carry out a repair process.

A. Pyramid/local reconstruction codes

Take an erasure code that maps o = [o1, . . . , o8] to x =
[x1, . . . , x11], where x is computed from o using an 8 × 11

1Many of these cloud-centric and data-center based systems nevertheless
leverage on the design principles matured while developing P2P systems.

(generator) matrix G, that is x = oG. The matrix G can be
chosen so that

[x1, . . . , x11] = [o1, . . . , o8, c1, c2, c3],

that is the first 8 columns of G form an identity matrix.
Consider for example a Reed-Solomon code, which is an MDS
code, and thus any choice of 8 coefficients from x allows to
recover o.

A Pyramid code can be built from this base code, by
retaining the pieces o1, . . . , o8, and two of the other pieces
(without loss of generality, lets say, c2, c3). Additionally, split
the data blocks into two groups o1, . . . , o4 and o5, . . . , o8,
and compute some more redundancy coefficients for each of
the two groups, which is done by picking a first symbol c1,1
corresponding to c1 by setting o5 = . . . = o8 = 0 and c1,2
corresponding to c1 with o1 = . . . = o4 = 0.

This results in an erasure code which maps an object of
length 8 into 12 encoded pieces, looking like

[o1, . . . , o8, c1,1, c1,2, c2, c3]

where c1,1 + c1,2 is equal to the original code’s c1:

c1,1 + c1,2 = c1.

This example illustrates the idea behind the design of
Pyramid codes [17]. Redundancy is available in two forms:
“local redundancy” c1,1 and c1,2 which can be used to repair
a lost block without accessing blocks outside the subgroup
(in this example, using 4 blocks for repair when only any
one of o1, . . . , o4, c1,1 fails, instead of requiring 8 blocks),
while if there are too many errors within a subgroup, then
the “global redundancy” (c2 and c3 in this example) at that
level may be used. In a multi-level Pyramid, one can move
further up the Pyramid until repair is eventually completed.
Use of local redundancy means that a small number of nodes is
contacted, which translates into a smaller bandwidth footprint,
as well as fewer disk I/O operations. Furthermore, if multiple
isolated (in the hierarchy) failures occur, they can be repaired
independently and in parallel. A new version of Pyramid
codes, where the coefficients used in the encoding have been
numerically optimized, namely Locally Reconstructable Codes
[18] has more recently been proposed and is being used
(primarily for better degraded reads) in the Azure [10] system.

B. Locally/Self-Repairable codes

Pyramid codes provide locality to the ‘data’, but not so
much for the ‘parity’ blocks. Specifically, if any of the global
parity blocks are to be repaired, then the repair cost would be
equivalent to the naive strategy of repairing the base (MDS)
code used to create the Pyramid code. They are thus optimized
for degraded reads, but not so much for repairs per say.

Self-repairing codes (SRC) [23] (example shown in Fig
3), to the best of our knowledge, were the first codes of
length n designed to achieve d = 2 per repair for up to
n−1
2 simultaneous failures, irrespective of which encoded

blocks failed. Thus to say, all the encoded blocks are ‘locally
repairable’. The term ‘locally repairable’ is inspired from



Fig. 3. An example of self-repairing codes from [23]: the object o has length
12, and is cut into k = 3 pieces, which are encoding as shown, resulting in
a code stored across n = 7 nodes. If one of these nodes fail, say N7, then it
can be repaired in three independent manners, each using only two other live
nodes. This code can repair any three simultaneous failures, where each repair
process is carried out by contacting (distinct sets of) only two live nodes.

locally decodable and locally correctable codes, and was
coined in a subsequent work, [28]. Other families of locally
repairable codes based on projective geometric construction
(Projective Self-repairing Codes) [22] and puncturing of Reed-
Mueller codes [32], among many others have since been
proposed. Note that achieving a very small repair degree has
advantages in terms of repair time, parallelization, I/O accesses
and bandwidth, however, it also affects other code parameters
(such as its rate). Such trade-offs are yet to be fully understood,
though some early works have recently been carried out [13].

C. Security issues: Byzantine fault-tolerance

Since most of these novel repair approaches carry out
the process in a decentralized manner with only a partial
information, they are susceptible to poisoning attacks during
the repair process, which may affect not only a specific repair
operation, but also any future operations involving the affected
block(s). Generalization of the network flow based analysis
[6] of regenerating codes, taking into account such Byzantine
faults during the repair operations was carried out in [24], and
there has in the recent years been a growing interest (e.g.,
[15], [31]) in the security issues related to the repair process
of erasure coded storage.

IV. CREATING ERASURE CODED REDUNDANCY

When data is stored using replication, the redundant data
can be created using a pipelining process [12] so that no
single node becomes a bottleneck: the source passes the data
to a first storage node, which, in addition to locally keeping
a copy, relays the same to a second node, and so on. There
is no obvious analogous mechanism to create erasure coded
redundancy in a distributed manner. However, the local/self-
repairability property can be exploited not only to replace lost

Fig. 4. In-network redundancy generation for a locally (self) repairable code
of length 7.

redundancy, but also to create the redundancy to start with by
pursuing an ‘in-network’ decentralized encoding process.

A. In-network encoding for fast data insertion

Let us consider the locally repairable code of Fig 3. In Fig 4
we show an in-network redundancy generation example for
this code. The encoded pieces at the seven nodes are ci for
i = 1...7. Traditionally, a single node (the source) centrally
computes all these encoded blocks and transfers them to seven
different storage nodes, making the outgoing bandwidth at the
central node a bottleneck. Alternatively, the source can upload
a subset of this information (namely c1, c2, c3 in this example).
Then, nodes 1 and 2 send their respective fragments, c1 and c2,
to node 4, which computes and stores c4 = c1 + c2. The rest
of the nodes compute the fragments c6 = c2+c3, c5 = c4+c6
and c7 = c3 + c4 in a similar manner.

Note that the creation of c5 and c7 depends on the a priori
existence of c4 and c6. Although at a first glance it might
seem that symbols c5 and c7 can thus be created only some
time in the future after the generation of c4 and c6, practical
implementations can overcome this restriction by allowing
nodes 4 and 6 to start forwarding the first generated bytes
of c4 and c6 to nodes 5 and 7 in a pipelined way, similarly to
the mechanism described above for replication. By doing so,
blocks c4 to c7 can be generated quasi-simultaneously once
nodes 1 to 3 receive their blocks from the source node.

This example demonstrates how local repairability can be
exploited to generate the in-network redundancy generation,
by identifying encoded block dependencies to generate a
suitable flow of information as depicted in Figure 4. However,
obtaining such a flow graph, scheduling the flow of infor-
mation and orchestrating the decentralized coding accordingly
for any arbitrary locally repairable code is not trivial. More
details on these issues, as well as the resulting trade-offs such
as higher usage of network resources for better data insertion
throughput can be found in [25].

B. Rapid conversion of replicated data to erasure coded
redundancy

Often, when data is first acquired/instered in a system, it is
stored using replication, and subsequently it is archived using
erasure coding when it becomes ‘cold’, i.e., it is accessed
infrequently. Replication is preferred for the initial phase, since



Fig. 5. An example of migration of replicated data into an erasure coded
archive (e.g. as done in HDFS-RAID [1]). The squares represent storage nodes
and the arrows across boxes denote data (labels indicate the actual amount)
transferred over the network. The “X” symbol denotes the replicas that are
discarded once the archival finishes, and the symbol ⊗ denotes an encoding
operation. We see that this process requires a total of five network transfers.

Fig. 6. Decentralized encoding: An example of migration of replicated
data into an erasure coded archive (e.g. as done in RapidRAID [26]). The
squares represent storage nodes and the arrows across boxes denote data
(labels indicate the actual amount) transferred over the network. The “X”
symbol denotes the replicas that are discarded once the archival finishes, and
the symbol ⊗ denotes an encoding operation. We see that this process requires
only four network transfers (instead of five used in the traditional approach
depicted in Fig. 5). If each node has a upload/download bandwidth limit, then
the decentralized coding process can, besides saving network traffic, also yield
significant speed-up.

the replicas can then be accessed in parallel - yielding higher
read throughput, or computational tasks utilizing the data can
be assigned to the least loaded of the replicas, etc. Typically,
the whole encoding process is treated as an atomic process,
and is centrally carried out, as is the case, for instance in
HDFS-RAID [1]. This means, one node first needs to collect
all the relevant data blocks, and then carry out the coding.
This is illustrated in Fig 5.

Given the presence of multiple replicas of the data, an
interesting alternative is to decompose the hitherto atomic
encoding process, and carry it out in a distributed fashion.
This premise was explored recently, resulting in two new code
families, namely RapidRAID [26], and a follow-up variant
[27] where pieces of the original data are present among the
encoded pieces. Fig. 6 provides a high-level sketch of the
distributed coding process utilizing the existence of replicas.

V. REPRESENTATIVE ‘REPAIRABLE’ STORAGE SYSTEMS

While there was still some dilemma (at least in the public
domain, though there were likely several works in progress
in the industry) whether to use erasure codes in data-center
environments [35], DiskReduce [11] was one of the pioneering
works which integrated erasure coding with the popular open-
source Hadoop Distributed File System (HDFS), which was

followed by a mature version implemented by Facebook,
namely HDFS-RAID [1]. HDFS-RAID essentially uses a
hybrid strategy for achieving redundancy, namely replication
and erasure coding, and furthermore, it supports two kinds of
erasure coding - namely XOR based parity and Reed-Solomon
coding, which provide one or arbitrary number of parities,
respectively. Depending on how actively the data is being
read, the degree of replication is reduced, as erasure coded
redundancy is introduced in the system to achieve comparable
fault-tolerance but as significantly lower storage overhead. In
the meanwhile, several other major players including Google
and Microsoft have also integrated erasure coding in their pro-
prietary file/storage systems. Other commercial data-storage
centric applications and services using erasure codes include
products from CleverSafe, or Pivot3. HDFS-RAID separates
the data access from repair process. The former is carried out
in a fault tolerant manner by carrying out a decoding process
if any data block is unavailable or corrupted. The latter is
carried out periodically by a background daemon process, or
by manual triggers from the system administrator. The repair
process requires to carry out decoding/re-encoding.

Barring Microsoft’s Azure system [10], all the other sys-
tems mentioned above use traditional erasure code, and the
focus is only on achieving fault-tolerance while incurring
low storage overhead. As discussed previously, Azure de-
ploys an optimized variation of Pyramid codes, named Local
Reconstruction Code [18], which allows reconstruction of
unavailable data blocks using a small number of other data and
parity blocks, providing better degraded read performance with
respect to what could be achieved if MDS codes were to be
used, where a complete decoding becomes necessary even if a
single data block is missing. Though not specifically meant for
repairs, the reconstruction property of Local Reconstruction
Codes can be exploited to achieve better repairs in some fault-
scenarios involving data blocks. A very recent work, XORbas
[34] essentially does so. Another recent work explores the use
of a collaborative regenerating code to provide recovery of
multiple failures [20] in HDFS.

Though this article primarily explores novel erasure codes,
it is worth noting that engineering alternatives to the repair
problem using traditional codes is also possible. An example
is our HDFS-RAID compliant implementation called CORE
(Cross-object redundancy based) storage system [9], where
the idea (as shown in Fig 7) is to use HDFS-RAID’s Reed-
Solomon coding to create multiple parities for individual
data objects - which primarily provides redundancy for fault-
tolerance, while using HDFS-RAID’s XOR parity to create
another parity block for (both data and parity) blocks from
different objects in order to achieve very good repairability
even in presence of multiple failures.2

While there has been a flurry of systems research (though
a lot of ground still remains to be covered), particularly
many of them integrating the novel codes with HDFS, and

2[20] has incidentally an identical name and addresses the same problem
of multiple failures repair, but the approach is fundamentally different, and
inherits both the advantages and the drawbacks of regenerating codes.



Fig. 7. In this example of cross-object coding, a horizontal (9,6) Reed-
Solomon code is used per object, and XOR parity is computed on data as
well as parity blocks across three objects.

aimed at data-center environments, there have also been a few
prototypes which look at a higher level of abstraction, namely
distributing data across multiple cloud services. DepSky [2]
was an early system which, analogous to the data-center
related works (e.g. DiskReduce and HDFS-RAID), uses tra-
ditional erasure codes, while NCCloud [16] has incorporated
regenerating coding for repairs in such multi-cloud settings.

VI. CONCLUDING REMARKS

Codes achieving low degree repairs naturally realize recon-
struction of data blocks, which can be leveraged for good
degraded reads, and to a certain extent the converse is also true.
In that sense, these two functionalities can be simultaneously
achieved by many of the novel codes - particularly, local/self-
repairing codes (but not regenerating codes) and cross-object
coding. Likewise, the in-network coding technique to create
erasure coded data on the fly when data is being introduced
in the system leveraged on the local repairability property.

Thus, in order to realize a system achieving all the processes
outlined in Fig 1, the prominent outstanding issue is a code
which realizes good repairs and degraded reads, but simulta-
neously achieves RapidRAID like mechanism to benefit from
the existence of replicas in order to distribute and accelerate
the encoding process.

A code with all these desirable properties is the foremost
open issue in our opinion. For applicability in wide range of
environments (e.g. decentralized and P2P settings), codes with
inherent security properties would also be desirable.

Additionally, even if only a small fraction of the stored
data likely needs to be manipulated and mutated, mechanisms
to support efficient updates to mutable content is another
interesting aspect to be further explored. Likewise, depending
on the kind of data and applications, e.g., multimedia data,
marrying ideas from multi-resolution coding with those of
repairable codes poses another obvious yet interesting frontier.

REFERENCES

[1] Apache.org. HDFS-RAID. http://wiki.apache.org/hadoop/HDFS-RAID.
[2] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa. DepSky:

Dependable and secure storage in a cloud-of-clouds. In EuroSys, 2011.
[3] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M. Voelker. Total

recall: System support for automated availability management. In NSDI,
2004.

[4] Cleversafe. www.cleversafe.com/.
[5] A. Datta and K. Aberer. Internet-scale storage systems under churn – a

study of the steady-state using markov models. In P2P, 2006.

[6] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchan-
dran. Network coding for distributed storage systems. IEEE Transactions
on Information Theory, 56(9), 2010.

[7] A. Duminuco, E. Biersack, and T. En-Najjary. Proactive replication in
distributed storage systems using machine availability estimation. In
CoNEXT, 2007.

[8] A. Duminuco and E. W. Biersack. Hierarchical codes: How to make
erasure codes attractive for peer-to-peer storage systems. In P2P, 2008.

[9] K.S. Esmaili, L. Pamies-Juarez, and A. Datta. The core storage primitive:
Cross-object redundancy for efficient data repair & access in erasure
coded storage. In arXiv:1302.5192, 2013.

[10] B. Calder et al. Windows azure storage: A highly available cloud storage
service with strong consistency. In SOSP, 2011.

[11] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson. Diskreduce: Raid for
data-intensive scalable computing. In PDSW, 2009.

[12] S. Ghemawat, H. Gobioff, and S.T. Leung. The google file system. In
SOSP, 2003.

[13] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality of
codewords symbols. In ECCC, 2011.

[14] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: highly durable,
decentralized storage despite massive correlated failures. In NSDI, 2005.

[15] Y. S. Han, R. Zheng, and W. Mow. Exact regenerating codes for
byzantine fault tolerance in distributed storage. In INFOCOM, 2012.

[16] Y. Hu, H. Chen, P. Lee, and Y. Tang. NCCloud: Applying Network
Coding for the Storage Repair in a Cloud-of-Clouds. In FAST, 2012.

[17] C. Huang, M. Chen, and J. Li. Pyramid Codes: Flexible Schemes to
Trade Space for Access Efficiency in Reliable Data Storage Systems.
Trans. Storage, 9(1), 2013.

[18] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin. Erasure coding in windows azure storage. In USENIX
ATC, 2012.

[19] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. Oceanstore: An architecture for global-scale persistent storage.
In ASPLOS, 2000.

[20] R. Li, J. Lin, and P. Lee. Core: Augmenting regenerating-coding-based
recovery for single and concurrent failures in distributed storage systems.
In 29th IEEE Conference on Massive Data Storage, 2013.

[21] X. Liu and A. Datta. Redundancy maintenance and garbage collection
strategies in peer-to-peer storage systems. In SSS, 2009.

[22] F. Oggier and A. Datta. Self-repairing codes for distributed storage – a
projective geometric construction. In ITW, 2011.

[23] F. Oggier and A. Datta. Self-repairing homomorphic codes for dis-
tributed storage systems. In Infocom, 2011.

[24] F. E. Oggier and A. Datta. Byzantine fault tolerance of regenerating
codes. In P2P, 2011.

[25] L. Pamies-Juarez, A. Datta, and F. Oggier. In-network redundancy
generation for opportunistic speedup of backup. Future Generation
Computer Systems, 29, 2013.

[26] L. Pamies-Juarez, A. Datta, and F. Oggier. RapidRAID: Pipelined
Erasure Codes for Fast Data Archival in Distributed Storage Systems.
Infocom, 2013.

[27] L. Pamies-Juarez, F. Oggier, and A. Datta. Decentralized erasure coding
for efficient data archival in distributed storage systems. In ICDCN,
2013.

[28] D.S. Papailiopoulos and A.G. Dimakis. Locally repairable codes. In
ISIT, 2012.

[29] D. A. Patterson, G. Gibson, and R.H. Katz. A case for redundant arrays
of inexpensive disks (raid). SIGMOD Rec., 17(3), 1988.

[30] Pivot3. Pivot3: Converged storage and compute appliances. http://pivot3.
com/.

[31] A.S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath.
Optimal locally repairable and secure codes for distributed storage
systems. arXiv/1210.6954, 2012.

[32] A.S. Rawat and S.Vishwanath. On locality in distributed storage systems.
In ITW, 2012.

[33] I.S. Reed and G. Solomon. Polynomial codes over certain finite fields.
SIAM, 8(2), 1960.

[34] M. Sathiamoorthy, M. Asteris, D.S. Papailiopoulos, A.G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur. Xoring elephants: Novel erasure
codes for big data. In Proceedings of the VLDB Endowment, 2013.

[35] Z. Zhang, A. Deshpande, X. Ma, E. Thereska, and D. Narayanan. Does
erasure coding have a role to play in my data center? Technical Report
MSR-TR-2010-52, Microsoft Research, 2010.


