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Abstract This paper studies the steady-state queue length process of the MAP/G/1
queue under the dyadic control of the D-policy and multiple server vacations. We
derive the probability generating function of the queue length and the mean queue
length. We then present computational experiences and compare the MAP queue
with the Poisson queue.
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1 Introduction

The control of queueing systems has been the subject of vast amount of research
papers for the last thirty years. Readers are referenced to Crabill et al. (1977) and
Tadj and Choudhury (2005) for the discussions and references.

Among the control schemes, the N-policy of Yadin and Naor (1963), The D-policy
of Balachandran (1973) and the T-policy of Heyman (1977) (and vacation system
of Levy and Yechiali (1975) as a generalization) have received most attention. In
contrast with the well-known N-policy where the server begins to serve the customers
only when there are N customers accumulated in the system, the D-policy controls
the queueing system by the workload of the waiting customers. The T-policy was
developed based on the idea of utilizing the idleness of the server. These control
policies can be employed in actual manufacturing settings to control the number of
start-ups per unit time and thereby reduce the overall long-run average operating
cost per unit time.
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This paper studies the queue length of the MAP/G/1 queue under the mixed
control of the D-policy and multiple server vacations (i.e., generalized T-policy). In
our system, customers arrive according to the MAP (Markovian arrival process). It
is known that the MAP can represent a variety of processes which include, as special
cases, the Poisson process, the phase-type renewal processes, the MMPP (Markov
modulated Poisson process) and superpositions of these. Readers are advised to see
Lucantoni et al. (1990), Lucantoni (1991, 1993), Neuts (1981, 1989) and Ramaswami
(1980) for the formal definition of the MAP and early analyses of MAP-related
queues.

In our system under study, the server leaves for repeated vacations as soon as the
system becomes empty. It resumes its service only when the cumulative workload is
found to be greater than the predetermined threshold D at the end of a vacation.
Figure 1 shows both the workload process and the queue length process on the
synchronized time scale.

The behavioral complexity of our system is in the relationship between the service
times of the customers who arrive during the idle period (i.e., vacation period). For
example, suppose that the threshold D is crossed by the third customer and there
are four customers at the start of the busy period (see the upper part of Fig. 1).
Obviously the service times S1(4), S2(4) and S3(4) of the first three customers are not
independent. Moreover, they are stochastically different from the ordinary service
time random variable because S1(4) and S2(4) are smaller than D. The server must
spend UD = S1(4) + S2(4) + S3(4) + S4(4) amount of time on serving the four ‘special’
customers during each of which it is necessary to keep track of the arrivals of the
‘ordinary’ customers who have iid ordinary service times.

Due to the dependencies of the service times, the well-known decomposition
property of Fuhrmann and Cooper (1985), Shanthikumar (1988) and Doshi (1990)
for the M/G/1 queues with generalized vacations can not be applicable to the
D-policy queueing systems.

Fig. 1 The queue length and
workload process
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Studies on the D-policy queueing systems were pioneered by Balachandran
(1973), Balachandran and Tijms (1975), Boxma (1976), and Tijms (1976) for the
M/G/1 queue. Their primary concern was in the optimal control of D under a linear
cost structure. While these authors used the mean workload, Chae and Park (1999)
used the mean queue length to determine the optimal value of D.

Boxma (1976) showed that the optimal D-policy is superior over the optimal N-
policy for all service time distributions if the cost function consists of the startup cost
and linear workload holding cost. But, Artalejo (2002) showed that the same is no
longer true if the mean queue length is used in the cost function.

Gakis et al. (1995) derived the distributions of the idle and busy periods under
simple and dyadic policies. Sivazlian (1979) provided an approximate formula for
optimal D in terms of the first three moments of the service time. His formula was
exact under exponential service times. Rhee (1997) developed a new methodology
to find the expected busy periods for controllable M/G/1 queueing models.

Li and Niu (1992) considered the GI/G/1/D-policy queue and derived the waiting
time distributions in transform-free style. Lillo and Martin (2000) claimed the
superiority of the D-policy over the N-policy if the mean queue length is used, but
their argument was based on the erroneously derived mean queue length. Feinberg
and Kella (2002) considered switching costs, running costs and holding costs per unit
time and proved the optimality of the D-policies. Readers are referenced to Tijms
(1976, 1986) for approximate numerical results and related analysis.

Due to the behavioral and analytical complexities inherent in the D-policy
queueing systems, the study on the queue length could not be found until Rubin
and Zhang (1988) studied the switch-on policies for communication systems.

Dshalalow (1998) carried out an extensive study on the queue length process of
the batch-arrival modified-D-policy queues with vacations. Chae and Park (2001)
derived the probability generating function of the queue length of the M/G/1 queue
under the D-policy. Artalejo (2001) derived the complete queue length distribution.

Lee et al. (2006) developed a methodology that can be applied to obtain the queue
length and waiting time distributions under a unified framework.

Lee and Song (2004) and Lee et al. (2004) studied the queue length and the waiting
time of the MAP/G/1/D-policy queue.

2 The system, objective and notation

In this paper, we consider the queueing system with the following specifications:

(1) Customers arrive according to the MAP (Markovian Arrival process) with
parameter matrices (C, D). At their arrivals, they take a random sample from
the service time distribution function S(x).

(2) The idle server leaves for repeated vacations as soon as the system becomes
empty. It resumes its service only when the cumulative workload is found to be
greater than the predetermined threshold D at the end of a vacation.

(3) The service times and vacation times are identically and independently distrib-
uted (iid) and are independent of the arrival process. Without loss of generality
we assume that the service times and vacation times are absolutely continuous.



The objective of this paper is to derive the distribution of the queue length and
the mean value, and see the effects of the MAP arrivals.

Throughout the paper, we will use the notation as follows.

S: service time random variable,
S(x): distribution function (DF) of S,
S(n)(x) = Pr(S1 + S2 + · · · + Sn ≤ x), (S(0)(x) = 1): DF of the n-fold convolution
of S with itself,
s(n)(x): probability density function (pdf) of S(n)(x),
E(S): expected value of S,
V: vacation time random variable,
V(x): DF of V,
ND: queue length (i.e., number of customers) at the start of a busy period (point
1© in Fig. 1),

UD: workload at point 1© (UD > D),
(E)ij: (i, j)-element of matrix E,
(C, D): parameter matrices of the underlying Markov chain (UMC) of the MAP
arrival process,
m: dimension of the phase of the UMC,
J(t): phase of the UMC at time t,
πi = limt→∞ Pr[J(t) = i], (i = 1, 2, . . . , m),
π = (π1, π2, . . . , πm),
e: (m × 1) vector of 1’s,
λ = π De: customer arrival rate,
ρ = λE(S): traffic intensity.

3 Analysis of the idle period

For analytical simplicity, let us call the customers who arrive during the idle period
the Special Customers (SC) and the customers who arrive during the busy period
the Ordinary Customers (OC). The reason for this categorization is that, under the
condition that there are ND = n customers at the start of the busy period, the service
times of these SCs are neither identical nor independent. Moreover, their distribu-
tions are different from the ordinary service time S. Thus, the number of OCs who
arrive during the service time of a SC is different from the number of OCs who arrive
during an ordinary service time S. This fact is crucial to obtaining the queue length
distribution.

Deriving the queue length distribution of the MAP-related queueing systems
starts with the derivation of the queue length distribution at an arbitrary departure.
Consider an arbitrary SC (we will call this customer the test-SC) who departs the
system. The customers left behind by this test-SC are the SCs who arrive during the
remaining idle period since its arrival and the OCs who arrive until its service is
finished. The number of these customers again depend on the amount of work at the
arrival instance of the test-SC during the idle period. Thus, the analysis of the idle
period is a necessity to the analysis of the queue length process of the whole system.

With the presence of multiple vacations, we first need to find the workload at the
start of the vacation during which the test-SC arrives. For this purpose, we use the



Fig. 2 The workload grand
vacation process (WGVP)
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workload grand vacation process (WGVP) which is depicted in thick dotted lines in
Fig. 2. This WGVP was first used in Lee et al. (2006).

Let us take a look at Fig. 2. The server leaves for a vacation as soon as the
workload becomes zero (at a©) and this is the starting point of the first grand vacation
(GV) VG,1. VG,1 lasts until the change in the work level is observed at the end of a
vacation (Thus, a GV consists of one or more vacations. In the figure, VG,1 consists
of two vacations). At the end of VG,1, if the workload is still less than D, the second
GV VG,2 begins and lasts until the change in the work level is observed again after a
vacation (In the figure, VG,2 consists of three vacations). This process continues until
the workload at the end of a GV becomes greater than D. Then the idle period ends
and the busy period begins (at b©).

We note that during a grand vacation, the level of the grand vacation process do
not change. We also note that a grand vacation is stochastically equivalent to the idle
period in the simple MAP/G/1 queue with multiple vacations and D = 0.

Let us define the following joint probabilities.
(Ṽn)ij: the joint probability that n customers arrive during a vacation and the UMC

phase at the end of the vacation is j under the condition that the UMC phase at the
start of the vacation is i.

(GGV
n )ij: the joint probability that n customers arrive during a GV and the UMC

phase at the end of the GV is j under the condition that the UMC phase at the start
of the GV is i.

Let Ṽn and GGV
n be the matrices of (Ṽn)ij and (GGV

n )ij. Denoting Ṽ(z) as the
matrix generating function (GF) of {Ṽn}, we have (Lucantoni et al. 1990)

Ṽ(z) =
∞∑

n=0

Ṽnzn =
∫ ∞

0
e(C+Dz)xdV(x), (3.1)

GGV
n =

∞∑

k=0

(Ṽ0)
kṼn = (I − Ṽ0)

−1Ṽn. (3.2)

Let (n, x) be the state of the grand vacation process (GVP) with queue length n
and the workload x(< D). Let us define [Rn(x)]ij as the probability that the GVP
ever visits (n, x) and the UMC phase is j at the start of the GV under the condition



that at the end of the busy period (i.e., at the start of the first GV) the UMC phase is
i. Then (Rn)ij = ∫ D

0 (Rn(x))ij dx is the probability that the GVP ever visits the queue
length n. For the matrices Rn(x) and Rn of [Rn(x)]ij and (Rn)ij and the matrix GF
R(z) = ∑∞

n=0 Rnzn, we have the following theorem.

Theorem 3.1 We have, (R0 = I),

Rn =
n∑

k=1

Rn−k

(
I − Ṽ0

)−1
Ṽk, (n ≥ 1), (3.3)

Rn(x) = Rn · s(n)(x), (n ≥ 0, x < D), (3.4)

R(z) =
[

I −
(

I − Ṽ0

)−1 (
Ṽ(z) − Ṽ0

)]−1

. (3.5)

Proof Equation 3.3 can be obtained by conditioning on the state of the previous
GV. The GVP visits level (n, x) if and only if the sum of the service times of the
n customers is x which accounts for Eq. 3.4. Equation 3.5 can be obtained in a
straightforward manner from Eq. 3.3. ��

Now, the joint distribution of the queue length ND and the workload UD at the
start of the busy period are in order. They are necessary to find the distributions of
the queue length and the workload that pile up during the remaining idle period after
the arrival of the test-SC. Let J0 be the UMC phase at the end of the previous busy
period and JB be the UMC phase at the start of the current busy period. Let us define
�ij(n, x) as follows.

�ij(n, x)dx = Pr(ND = n, x < UD ≤ x + dx, JB = j |J0 = i), (n ≥ 1, x > D). (3.6)

Denoting �(n, x) as the matrix of �ij(n, x), we have the following theorem.

Theorem 3.2 We have,

�(n, x)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
I−Ṽ0

)−1
Ṽ1 · s(x), (n=1, x> D)

(
I−Ṽ0

)−1
Ṽn · s(n)(x) + ∫ D

w=0

∑n−1
k=1 Rk

(
I − Ṽ0

)−1
Ṽn−k

× s(k)(w)s(n−k)(x − w)dw. (n≥2, x> D).

(3.7)

Proof The first equation is for the case in which the threshold is crossed by the first
customer during the first grand vacation. The first term in the second equation is for
the case in which the threshold is crossed by the nth customer who arrives during the
first grand vacation. The second term is for the case in which there are two or more
grand vacations and is obtained by conditioning on the state of the previous grand
vacation. ��



Now, we have the mean length of the idle period, the busy period and the cycle in
the following theorem.

Theorem 3.3 Let κ be the phase probability vector at the end of a busy period. Let ID,
B and C be the lengths of the idle period, the busy period and the cycle. Then, we have

E(ID) =
[ ∞∑

n=0

κ Rn

(
I − Ṽ0

)−1
e

]
· E(V), (3.8a)

E(B) = ρE(ID)

1 − ρ
, E(C) = E(ID)

1 − ρ
. (3.8b)

Proof Equation 3.8a comes from the fact that
[(

I − Ṽ0

)−1
]

ij
is the mean number of

vacations contained in a grand vacation which ends with phase j under the condition
that the grand vacation starts with phase i. Equation 3.8b comes from the fact that
our system is work conserving and the server is idle with probability (1 − ρ). ��

κ in Eq. 3.8a will be obtained in Eq. 4.41.

4 Queue length at an arbitrary departure

In this section, we derive the queue length distribution at an arbitrary departure
point. Let us define the joint probabilities as follows:

xk,i = Pr (at an arbitrary departure, the queue length (i.e., the total number of
customers regardless of their types) is k and UMC phase is i),

xsc
k,i = Pr (at an arbitrary departure, the queue length is k, UMC phase is i and the

departing customer is a SC),
xoc

k,i = Pr (at an arbitrary departure, the queue length is k, UMC phase is i and the
departing customer is an OC).

Let us define the vectors:

xk =(xk,1, xk,2, . . . , xk,m), xsc
k =(xsc

k,1, xsc
k,2, . . . , xsc

k,m), and xoc
k =(xoc

k,1, xoc
k,2, . . . , xoc

k,m).

Then, we have

xk = xsc
k + xoc

k , (k ≥ 0). (4.1a)

Defining the vector GFs as follows,

X(z) =
∞∑

k=0

zkxk, Xsc(z) =
∞∑

k=0

zkxsc
k , Xoc(z) =

∞∑

k=0

zkxoc
k ,

we have

X(z) = Xsc(z) + Xoc(z). (4.1b)



4.1 Queue length at an arbitrary SC departure

In this section we derive the vector GF Xsc(z) of the queue length at an arbitrary SC
departure. The number of customers left behind by the departing test-SC is the sum
of the following two (see Fig. 3):

(1) the number NRI of SCs who arrive since the arrival of the test-SC, and
(2) the number of OCs who arrive during the sum UTC of the service times of the

SCs before and including the test-SC.

Obviously NRI and UTC are not independent. We first note that UTC depends on
the workload U0 at the start of the vacation V∗ during which the test-SC arrives. We
also note that U0 is equal to the workload U∗

GV at the start of the grand vacation V∗
G

to which V∗ belongs.
Let us define the joint probability as follows,

α(w, n, j )dw = Pr(w < UTC ≤ w + dw, NRI = n, JB = j ). (4.2)

α(w, n, j ) depends on different situations at the arrival instance of the test-SC as
follows:

Case-(1): Test-SC arrives during the first GV.
Case-(2): Test-SC arrives during the second GV or later.

For each case, we have three disjoint situations:

(a) Workload at the end of the GV does not exceed D.
(b) Workload just after the arrival of the test-SC (this includes the service time of

the test-SC itself) does not exceed D, but the workload at the end of the GV
exceeds D.

(c) The threshold D is crossed before the arrival of the test-SC or by the test-SC
itself.

Let UG,i(x) be the probability that the workload at the start of an arbitrary
GV is less than or equal to x(< D) and the UMC phase is i. Let UG(x) =(
UG,1(x), . . . , UG,m(x)

)
be the vector. We note that UG,i(0) is the probability that

an arbitrary GV is the first GV and the UMC phase is i at the start of the GV. We
have the following theorem.

Fig. 3 Situation at the arrival
instance of the test-SC
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Theorem 4.1 We have,

UG(0) = κ∑∞
n=0 κ Rne

, (4.3)

uG(x) = d
dx

UG(x) =
∑∞

n=1 κ Rn(x)∑∞
n=0 κ Rne

, (0 < x ≤ D). (4.4)

Proof We recall that [κ Rn(x)] j is the probability of visiting a GV which has n cus-
tomers and the workload of x that starts with UMC phase j. Thus, the denominator∑∞

n=0 κ Rne is the mean number of GVs during an idle period. Equation 4.3 comes
from the fact that zero workload exists only during the first GV. Equation 4.4 comes
from the definition of Rn(x). ��

We note that uG(x)dx is the vector probability that the workload is at the start of
an arbitrary GV belongs to [x, x + dx), (x > 0). Thus,

uG =
∫ D

0
dUG(x) =

∑∞
n=0 κ Rn∑∞

n=0 κ Rne
(4.5)

becomes the UMC phase probability at the start of an arbitrary GV.
If we define AG as the number of customers that arrive during an arbitrary GV,

we have

hn = Pr(AG = n) = uG

(
I − Ṽ0

)−1
Ṽne, (4.6)

AG(z) =
∞∑

n=1

zn Pr(AG = n) = uG

(
I − Ṽ0

)−1 [
Ṽ(z) − Ṽ0

]
e, (4.7a)

h = E(AG) = d
dz

AG(z)

∣∣∣
z=1

= uG

(
I − Ṽ0

)−1 [
λE(V)I + (eπ + C + D)−1 (Ṽ − I)D

]
e. (4.7b)

Now, let us define GV(x, k, l, j) as the probability that at the start of V∗
G, the

workload is less than or equal to x(< D), the test-SC is the kth customer among
those arriving during V∗

G, l customer arrives during the remaining time of V∗
G and the

UMC phase at the end of V∗
G is j. Then, we have the following theorem.

Theorem 4.2 We have,

GV(x, k, l, j) =
⎡

⎢⎣UG(x) ·
(

I − Ṽ0

)−1
Ṽk+l

h

⎤

⎥⎦

j

. (4.8a)

Proof Consider a discrete-time renewal process that is generated by iid random
variable AG. Let ak+l be the probability that the test-SC belongs to the group of

size (k + l). Then, we have ak+l = (k+l)hk+l
h . The test-SC is the kth customer with



probability 1
k+l . Thus, within an arbitrary grand vacation, the test-SC is the kth

customer and there are l additional customers behind it with probability ak+l · 1
k+l =

hk+l
h = uG

(
I−Ṽ0

)−1
Ṽk+le

h . Then, GV(x, k, l, j ) becomes

GV(x, k, l, j ) = UG(x) ·
uG

(
I − Ṽ0

)−1
Ṽk+le

h
·

[(
I − Ṽ0

)−1
Ṽk+l

]

j

uG

(
I − Ṽ0

)−1
Ṽk+le

which reduces to Eq. 4.8a. ��

Let us define the vectors GV(0, k, l) and gV(x, k, l), (x > 0) as follows:

GV(0, k, l) = (GV(0, k, l, 1), · · · , GV(0, k, l, m)) , (4.8b)

gV(x, k, l) =
(

d
dx

GV(x, k, l, 1), · · · ,
d

dx
GV(x, k, l, m)

)
. (4.8c)

We also define �
(n)

D as the matrix probability that there are n customers at the start of
the busy period given the UMC phase at the end of the previous busy period. Then,
from Eq. 3.7, we get �

(n)

D = ∫∞
D �(n, x)dx.

Now we are ready to express α(w, n, j)’s defined in Eq. 4.2 for those different
cases.

Case-(1-a) (See Fig. 4) The test-SC is the kth customer and l more customers arrive
during the first GV with probability GV(0, k, l). Then, the sum of the service times
of the k customers is w and the sum of service times of the l customers is r with
respective probabilities s(k)(w) and s(l)(r), and at the end of the GV, the idle period
starts all over again with threshold D − (W + r). Thus, we have

α(w, n, j) =
[ ∫ D−w

r=0

∞∑

k=1

n−1∑

l=0

GV(0, k, l)s(k)(w)s(l)(r)�(n−l)
D−(w+r)dr

]

j

, (n ≥ 1, w ≤ D),

(4.9)

Fig. 4 Case-(1-a)
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Fig. 5 Case-(1-b)
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where �(n)
x is the matrix probability of the queue length n at the start of the busy

period under the x-policy and multiple vacations.

In the analogous way, for the remaining cases, we get the followings:

Case-(1-b) (See Fig. 5)

α(w, n, j ) =
[∫ ∞

r=D−w

∞∑

k=1

GV(0, k, n)s(k)(w)s(n)(r)dr

]

j

, (n ≥ 1, w ≤ D), (4.10)

Case-(1-c) (See Fig. 6)

α(w, n, j ) =
[ ∞∑

k=1

GV(0, k, n)s(k)(w)

]

j

, (n ≥ 0, w > D), (4.11)

Fig. 6 Case-(1-c)
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Fig. 7 Case-(2-a)
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Case-(2-a) (See Fig. 7)

α(w, n, j ) =
[ ∫ D−w

r=0

∞∑

k=1

n−1∑

l=0

(∫ w

x=0
gV(x, k, l)s(k)(w − x)dx

)
s(l)(r)�(n−l)

D−(w+r)dr
]

j

,

(n ≥ 1, w ≤ D),

(4.12)

Case-(2-b) (See Fig. 8)

α(w, n, j )=
[ ∫ ∞

r=D−w

∞∑

k=1

(∫ w

x=0
gV(x, k, n)s(k)(w − x)dx

)
s(n)(r)dr

]

j

, (n ≥1, w ≤ D),

(4.13)

Case-(2-c) (See Fig. 9)

α(w, n, j ) =
[ ∞∑

k=1

(∫ D

x=0
gV(x, k, n)s(k)(w − x)dx

)]

j

, (n ≥ 0, w > D). (4.14)

Now, we are ready to derive the GF of the above α(w, n, j)’s. Recall that w in
α(w, n, j) denotes the total amount of work just after the arrival of the test-SC

Fig. 8 Case-(2-b)
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Fig. 9 Case-(2-c)
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(including the service time of the test-SC itself). We note that this is equal to the
time length from the start of the busy period until the end of the service of the test-
SC. Thus the matrix GF of the number of OCs that arrive until the end of its service
becomes (Lucantoni 1991)

e(C+Dz)w. (4.15)

Let us define �D(z) = ∑∞
n=1 �

(n)

D zn as the matrix GF of the queue length at the
start of the busy period. We use Eqs. 4.9–4.14 together with Eqs. 4.8a, 4.8b, 4.8c and
4.15 to obtain the vector GFs of the queue length just after the departure of the
test-SC for each of the above cases as follows.

Case-(1-a)

α1,a(z) =
∫ D

w=0

∫ D−w

r=0

∞∑

k=1

∞∑

l=0

zlUG(0)

(
I − Ṽ0

)−1
Ṽk+l

h

× s(k)(w)s(l)(r)�D−(w+r)(z)e(C+Dz)wdrdw,

(4.16)

Case-(1-b)

α1,b (z) =
∫ D

w=0

∫ ∞

r=D−w

∞∑

n=1

∞∑

k=1

znUG(0)

(
I − Ṽ0

)−1
Ṽk+n

h
s(k)(w)s(n)(r)e(C+Dz)wdrdw,

(4.17)
Case-(1-c)

α1,c(z) =
∫ ∞

w=D

∞∑

n=0

∞∑

k=1

znUG(0)

(
I − Ṽ0

)−1
Ṽk+n

h
s(k)(w)e(C+Dz)wdw, (4.18)

Case-(2-a)

α2,a(z) =
∫ D

w=0

∫ D−w

r=0

∞∑

k=1

∞∑

l=0

zl

⎡

⎢⎣
∫ w

x=0
uG(x)

(
I − Ṽ0

)−1
Ṽk+l

h
s(k)(w − x)dx

⎤

⎥⎦

× s(l)(r)�D−(w+r)(z)e(C+Dz)wdrdw, (4.19)



Case-(2-b)

α2,b (z) =
∫ D

w=0

∫ ∞

r=D−w

∞∑

n=1

∞∑

k=1

zn

⎡

⎢⎣
∫ w

x=0
uG(x)

(
I − Ṽ0

)−1
Ṽk+n

h
s(k)(w − x)dx

⎤

⎥⎦

× s(n)(r)e(C+Dz)wdrdw, (4.20)

Case-(2-c)

α2,c(z) =
∫ ∞

w=D

∞∑

n=0

∞∑

k=1

zn

⎡

⎢⎣
∫ D

x=0
uG(x)

(
I − Ṽ0

)−1
Ṽk+n

h
s(k)(w − x)dx

⎤

⎥⎦ e(C+Dz)wdw.

(4.21)

An arbitrary customer is a SC with probability

φsc = E(ND)

E(Ncycle)
, (4.22)

where E(ND) is the mean number of SCs served during a cycle and E(Ncycle) is the
mean number of total customers who are served during a cycle. We note that E(ND)

and E(Ncycle) can be obtained from

E(ND) = d
dz

[κ�D(z)]

∣∣∣∣
z=1

e, (4.23)

and Lucantoni (1991),

E(Ncycle) = κκ∗, (4.24)

where κ∗ is the mean number of customers that are served during a cycle given the
phase at the busy period ending point. κ∗ will be derived later in Eq. 4.35.

Now, finally the vector GF Xsc(z) of the queue length at the end of the departure
of an arbitrary SC (including the probability that the departure point is that of an
SC) can be obtained by summing Eq. 4.16–4.21

Xsc(z) = φsc · {α1,a(z) + α1,b (z) + α1,c(z) + α2,a(z) + α2,b (z) + α2,c(z)}. (4.25)

4.2 Queue length at an arbitrary OC departure

In this section, we derive the vector queue length GF Xoc(z) at an arbitrary OC-
departure contained in Eq. 4.1b. Note that the services of OCs begin only after the
services of all SCs are finished.

To obtain the probability vector xoc
k = (xoc

k,1, . . . , xoc
k,m) of the queue length just

after the ‘current’ OC-departure, we consider the queue length at the ‘previous’
departure. We have two possible cases.

(Case 1) (The previous departure is an OC-departure).
In this case, if the queue length is j at the previous departure, the queue
length at the current OC-departure becomes k if and only if (k− j+1)



customers arrive during the current service time. Thus, we have k cus-
tomers with probability

xoc
k =

k+1∑

j=1

xoc
j

∫ ∞

0
P(k − j + 1, x)dS(x), (4.26)

where P(n, x) is the matrix probability that n customers arrive during x.
(Case 2) (The previous departure is an SC-departure).

Let xsc
j,last be the vector probability that the previous departure is a SC-

departure (this is the last departure among the ND SC departures) and
the queue length is j. We have k customers at the current OC-departure
with probability

xoc
k =

k+1∑

j=1

xsc
j,last

∫ ∞

0
P(k − j + 1, x)dS(x). (4.27)

Combining Eq. 4.26 and 4.27, and defining the vector GF X last
sc (z) = ∑∞

k=0 zkxsc
k,last,

we get

Xoc(z) =
∞∑

k=0

zk
k+1∑

j=1

xoc
j

∫ ∞

x=0
P(k − j + 1, x)dS(x)

+
∞∑

k=0

zk
k+1∑

j=1

xsc
j,last

∫ ∞

x=0
P(k − j + 1, x)dS(x)

= z−1 · [Xoc(z) − xoc
0

] ∫ ∞

x=0
e(C+Dz)xdS(x)

+ z−1 · [X last
sc (z) − xsc

0,last

] ∫ ∞

x=0
e(C+Dz)xdS(x)

= [
X last

sc (z) − x0
]

A(z)
[
zI − A(z)

]−1
, (4.28)

where

A(z) =
∫ ∞

0
e(C+Dz)xdS(x) (4.29)

is the matrix GF of the number of customers that arrive during a service time.
Now, we need to obtain the vector generating function X last

sc (z) and the vector x0

contained in Eq. 4.28. To derive X last
sc (z), we note that the last special customer is the

one who arrive during the last grand vacation and the customers left by this SC are
the OCs who arrive during the total sum of the service times of the SCs. Thus, using
Eqs. 4.11 and 4.14, we get

X last
sc (z) = φsc ·

∫ ∞

w=D

∞∑

k=1

{
GV(0, k, 0)s(k)(w)

+
[∫ D

x=0
gV(x, k, 0)s(k)(w − x)dx

]}
e(C+Dz)wdw. (4.30)

GV(0, k, 0) and gV(x, k, 0) can be obtained from Eqs. 4.8b and 4.8c.



4.3 Obtaining x0

To obtain x0, we need to obtain K(z) which is the matrix GF of the number of
customers that are served during a cycle. We have the following theorem.

Theorem 4.3 We have,

K(z) =
∫ ∞

x=D

∞∑

k=1

zk
(

I − Ṽ0

)−1
Ṽk · e[C+DG(z)]xdS(k)(x)

+
∫ ∞

x=D

∞∑

l=1

∞∑

k=l+1

zk Rl

(
I−Ṽ0

)−1
Ṽk−l · e[C+DG(z)]x

∫ D

w=0
s(l)(w)s(k−l)(x−w)dwdx,

(4.31)

where G(z) is the matrix GF that represents the number of customers that are served
during a fundamental period (Neuts 1981, 1989).

Proof Let us define Qi, j(k1, k2) as the probability that there are k1 SCs at the busy
period starting point and there are k2 OCs at the end of the service of the last SC
with UMC phase j under the condition that the UMC phase is i at the start of the
idle period. Let Q(k1,k2)

be the matrix of Qi, j(k1, k2) with respect to i and j. Then,
using Eq. 3.7, we get

Q(k1,k2)
=
∫ ∞

D
�(k1, x) · P(k2, x)dx. (4.32)

Defining the matrix GF Q(z1, z2) of Q(k1,k2)
, we get

Q(z1, z2) =
∞∑

k1=1

∞∑

k2=0

Q(k1,k2)
zk1

1 zk2
2

=
∫ ∞

D

∞∑

k1=1

zk1
1 (I − Ṽ0)

−1Ṽk1 · e(C+Dz2)xdS(k1)(x)

+
∫ ∞

x=D

∞∑

l=1

∞∑

k1=l+1

zk1
1 Rl(I − Ṽ0)

−1Ṽk1−l · e(C+Dz2)x

×
∫ D

w=0
s(l)(w)s(k1−l)(x − w)dwdx, (4.33)

where we used
∑∞

k2=0 zk2
2 · P(k2, x) = e(C+Dz2)x. Now using z in place of z1 and G(z)

in place of z2 yields Eq. 4.31. ��



The matrix K that denotes the phase shift probability during the cycle can be
obtained as

K = K(z)|z=1 =
∫ ∞

D

∞∑

k=1

(
I − Ṽ0

)−1
Ṽk · e(C+DG)xdS(k)(x)

+
∫ ∞

x=D

∞∑

l=1

∞∑

k=l+1

Rl

(
I − Ṽ0

)−1
Ṽk−l · e(C+DG)x

×
∫ D

w=0
s(l)(w)s(k−l)(x − w)dwdx. (4.34)

The vector κ∗ that denotes the mean number of customers that are served during
a cycle becomes

κ∗ = d
dz

K(z)

∣∣∣∣
z=1

e =
∫ ∞

x=D

∞∑

n=1

n(I − Ṽ0)
−1Ṽne(C+DG)xedS(n)(x)

+
∫ ∞

x=D

∞∑

n=1

(I − Ṽ0)
−1Ṽn

[ ∞∑

k=1

xk

k! (C + DG)k−1 Dμ

]
dS(n)(x)

+
∫ ∞

x=D

∞∑

l=1

∞∑

n=l+1

Rl(I − Ṽ0)
−1Ṽn−le(C+DG)xe

∫ D

w=0
s(l)(w)s(n−l)(x − w)dwdx

+
∫ ∞

x=D

∞∑

l=1

∞∑

n=l+1

Rl(I − Ṽ0)
−1Ṽn−l

∞∑

k=1

xk

k! (C + DG)k−1 Dμ

×
∫ D

w=0
s(l)(w)s(n−l)(x − w)dwdx (4.35)

where we used

d
dz

e[C+DG(z)]x
∣∣∣
z=1

e =
∞∑

k=1

xk

k! (C + DG)k−1 Dμ (4.36)

in which μ is the mean number of customers that are served during a fundamental
period which is given by (Lucantoni 1991)

μ = d
dz

G(z)

∣∣∣
z=1

e = (I − G + eg)[I − A + (e − β)g]−1e. (4.37)

In Eq. 4.37, A = ∫∞
0 e(C+D)xdS(x) is the phase change probability during a service

time, G = G(z)|z=1, and g = (g1, g2, . . . , gm) is the stationary vector of G which
satisfies

g = gG, ge = 1. (4.38)

β in Eq. 4.37 is the mean number of customers that arrive during a service time
and is given by (Lucantoni 1991)

β = d
dz

A(z)

∣∣∣
z=1

e = ρe + (eπ + C + D)−1(A − I)De. (4.39)



Now, finally x0 can be obtained from (Lucantoni 1991)

x0 = κ

κκ∗ , (4.40)

where κ is the UMC phase probability at the end of an arbitrary busy period which
satisfies

κ = κ K, κe = 1. (4.41)

Using Eqs. 4.30 and 4.40 in Eq. 4.28 allows us to obtain the complete Xoc(z).
Now, at last, the vector GF X(z) of the queue length at an arbitrary departure can

be obtained by using Eqs. 4.25 and 4.28 in Eq. 4.1b.

5 The queue length at an arbitrary time

Let yk,i be the probability that the queue length is k at an arbitrary time in steady-
state and the UMC phase is i. Let yk be the vector

yk = (yk,1, . . . , yk,m). (5.1)

The vector GF Y(z) = ∑∞
k=0 ykzk can be obtained from Takine and Takahashi

(1998).

Y(z) (C + Dz) = λ(z − 1)X(z). (5.2)

6 The mean queue lengths

To derive the mean queue length, let us denote M and M(n) for the matrix GF
M(z) as

M = M(z)|z=1, M(n) = dn

dzn
M(z)

∣∣∣
z=1

.

The mean queue length Ld at an arbitrary departure can be obtained from
Eq. 4.1b as follows,

Ld = X(1)e = (
X(1)

sc + X(1)
oc

)
e. (6.1)

From Eq. 4.25, we get, after a tedious and laborious manipulation,

X(1)
sc e = φsc{A + B + C}, (6.2)



where

A =
∞∑

n=1

∞∑

k=1

n ·
[

UG(0) +
∫ D

x=0
uG(x)dx

]
(

I − Ṽ0

)−1
Ṽk+n

h
e

+
∫ D

w=0

∫ D−w

r=0

∞∑

n=0

∞∑

k=1

[
UG(0)s(k)(w) +

∫ w

x=0
uG(x)s(k)(w − x)dx

]

×
(

I − Ṽ0

)−1
Ṽk+n

h
�

(1)

D−(w+r)e · s(n)(r)drdw,

B =
∫ D

w=0

∫ D−w

r=0

∞∑

n=0

∞∑

k=1

[
UG(0)s(k)(w) +

∫ w

x=0
uG(x)s(k)(w − x)dx

]

×
(

I − Ṽ0

)−1
Ṽk+n

h
�D−(w+r)

[
d

dz
e(C+Dz)w

∣∣∣
z=1

]
es(n)(r)drdw

+
∫ D

w=0

∫ ∞

r=D−w

∞∑

n=1

∞∑

k=1

[
UG(0)s(k)(w) +

∫ w

x=0
uG(x)s(k)(w − x)dx

]

×
(

I − Ṽ0

)−1
Ṽk+n

h

[
d

dz
e(C+Dz)w

∣∣∣
z=1

]
es(n)(r)drdw,

C =
∫ ∞

w=D

∞∑

n=0

∞∑

k=1

[
UG(0)s(k)(w) +

∫ w

x=0
uG(x)s(k)(w − x)dx

]

×
(

I − Ṽ0

)−1
Ṽk+n

h

[
d

dz
e(C+Dz)w

∣∣∣
z=1

]
edw.

To derive X(1)
oc e, we rewrite Eq. 4.28 as follows

Xoc(z)
[
zI − A(z)

] = B(z), (6.3)

where

B(z) = [
X last

sc (z) − x0
]

A(z). (6.4)

Taking a derivative of Eq. 6.3 and using z = 1, we get

X(1)
oc (I − A) + Xoc

(
I − A(1)

)
= B(1). (6.5)

Adding X(1)
oc eπ to both sides of Eq. 6.5 and using π(I − A + eπ)−1 = π , we get

X(1)
oc = X(1)

oc eπ +
[

B(1) − Xoc(I − A(1))
]
(I − A + eπ)−1. (6.6)

Taking the second derivative of Eq. 6.3 and using z = 1, we get

X(1)
oc β = X(1)

oc e − 1

2

[
Xoc A(2)e + B(2)e

]
. (6.7)



Postmultiplying Eq. 6.6 by β and using πβ = ρ (Neuts 1989), we get

X(1)
oc β = ρX(1)

oc e +
[

B(1) − Xoc(I − A(1))
]
(I − A + eπ)−1β. (6.8)

From Eqs. 6.7 and 6.8, we get

X(1)
oc e = 1

2(1 − ρ)

{
B(2)e + Xoc A(2)e

+ 2
[

B(1) − Xoc(I − A(1))
]
(I − A + eπ)−1β

}
. (6.9)

Using Eqs. 6.2 and 6.9 in Eq. 6.1 yields the mean queue length Ld.
The mean queue length at an arbitrary time can be obtained by using Eq. 5.2.

From Eq. 5.2, we get

Y (1)(C + D) = λX − π D. (6.10)

Adding Y (1)eπ to Eq. 6.10 and using π(eπ + C + D)−1 = π , we get

Y (1) = Y (1)eπ + [λX − π D] (eπ + C + D)−1 . (6.11)

Taking the second derivative of Eq. 5.2 and using z = 1 yields

Y (2) (C + D) = 2
[
λX(1) − Y (1) D

]
. (6.12)

Multiplying Eq. 6.12 by e and using (C + D) e = 0, we get

Y (1) De = λX(1)e. (6.13)

Multiplying Eq. 6.11 by De, we get

Y (1) De = λY (1)e + [λX − π D] (eπ + C + D)−1 De. (6.14)

Using Eqs. 6.13 and 6.14, we have the mean queue length

L = Y (1)e = X(1)e −
[

X − π D
λ

]
(eπ + C + D)−1 De, (6.15)

where X can be obtained from

X = Xsc + Xoc. (6.16)

Xsc in Eq. 6.16 can be obtained from Eq. 4.25. To derive Xoc, we add Xoceπ to
Eq. 6.3 and use 6.4 to get

Xoc − Xoceπ = (
X last

oc − x0
)

A (I − A + eπ)−1 . (6.17)

Using Eq. 6.16 and adding Xe = 1 to Eq. 6.17 yields

Xoc = π − Xsceπ + (
X last

oc − x0
)

A (I − A + eπ)−1 . (6.18)

7 Computational experience

In this section, as a computational experience, we compare our system with the
M/G/1 queue under the same threshold values, mean arrival rates and mean service



Table 1 Comparison with the
Poisson queue (D = 0.5) ρ L(MAP) L(Poisson)

L(MAP)
L(Poisson)

0.1 8.5001 9.3012 0.9139
0.3 5.3712 4.9879 1.0771
0.5 7.1998 4.6778 1.5391
0.7 13.1761 5.6474 2.3331
0.9 44.7232 12.1177 3.6907
0.95 92.4706 22.0821 4.1876

times. We will assume the following parameter matrices C =
(−10.0 1.0

0.4 −0.8

)
, D =

(
9.0 0
0 0.4

)
. From π(C + D) = 0 and πe = 1, the stationary vector probability of

the UMC becomes π = (π1, π2) = (2/7, 5/7) and the arrival rate becomes λ = π

De = 20/7.
For simplicity, we assume that the vacation time follows the exponential distri-

bution with mean E(V) = 1.0. We also assume that the service times follows the
exponential distribution. We will change the mean service time E(S) so that we have
different values of traffic intensity ρ = λE(S).

Tables 1 and 2 show the comparison of the mean queue lengths of the two different
systems when D = 0.5 and D = 2.0. The last columns show the ratio of the two mean
queue lengths.

Tables 1 and 2 are sketched in Figs. 10 and 11. We see in the figures that when the
traffic intensity ρ is very low, increased traffic intensity does not necessarily mean
increased mean queue length. This peculiar phenomenon can not be seen in usual
queueing systems. This occurs when the mean service time is very small compared
to the threshold value D. To be more specific, when ρ is very low, it takes many
arrivals to surpass the threshold and we have larger mean queue lengths during the
idle period, which, in turn, increases the total mean queue length.

It is seen in the figures that when the traffic is heavy, a naive Poisson assumption
results in a severe underestimation of the mean queue length.

8 Summary, discussion and further research

In this paper, we analyzed the MAP/G/1 queue under the D-policy and multiple
vacations. We first derived the queue length distribution at an arbitrary departure

Table 2 Comparison with the
Poisson queue (D = 2.0) ρ L(MAP) L(Poisson)

L(MAP)
L(Poisson)

0.1 29.1618 30.5761 0.9537
0.3 11.6143 11.7878 0.9853
0.5 10.6584 8.5033 1.2534
0.7 15.5118 8.1661 1.8995
0.9 46.4949 13.8942 3.3464
0.95 94.3903 23.7201 3.9793



Fig. 10 MAP vs Poisson
(D = 0.5)
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and then obtained the queue length distribution and the mean queue length at an
arbitrary time.

We lastly presented computational experiences and compared the MAP queue
with the Poisson queue. Our computation shows that naive Poisson assumptions may
lead to a severe underestimation of the mean queue length.

The major computational obstacles of the results presented in this paper seems
to reside in the multiple integrations and summations that are encountered in the
computational process of the mean queue length. Our experience shows that if the
service times follow the exponential or the Erlang distribution of low order, they
did not pose serious problems. But if the service time distribution is in a complex

Fig. 11 MAP vs Poisson
(D = 2.0)
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functional form, we may need some numerical integrations which may be a time-
consuming job.

A future extension of this work would be to discuss the approximate numerical
analysis of queueing models operating under the D-policy when the arrival flow is
modelled as a MAP.
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