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Abstract: We propose an alternative method for solving the Transport
of Intensity equation (TIE) from a stack of through–focus intensity images
taken by a microscope or lensless imager. Our method enables quantitative
phase and amplitude imaging with improved accuracy and reduced data
capture, while also being computationally efficient and robust to noise. We
use prior knowledge of how intensity varies with propagation in the spatial
frequency domain in order to constrain a fitting algorithm [Gaussian process
(GP) regression] for estimating the axial intensity derivative. Solving the
problem in the frequency domain inspires an efficient measurement scheme
which captures images at exponentially spaced focal steps, significantly
reducing the number of images required. Low–frequency artifacts that
plague traditional TIE methods can be suppressed without an excessive
number of captured images. We validate our technique experimentally by
recovering the phase of human cheek cells in a brightfield microscope.

© 2014 Optical Society of America

OCIS codes: (100.5070) Phase retrieval; (100.3010) Image reconstruction techniques.
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1. Introduction

Quantitative phase imaging has found useful applications in biology, surface metrology and
X-ray imaging [1, 2]. Methods that use a series of through–focus intensity images (e.g., [3–9])
are especially popular due to their experimental simplicity. In–focus intensity images contain
no phase information; however, defocus introduces phase contrast. In fact, any imaging sys-
tem with a complex transfer function will provide some phase contrast. These images can then
be inverted to recover phase and amplitude quantitatively. In defocus–based methods, the ex-
perimental procedure involves simply moving the sample (or camera) axially while capturing
multiple images through–focus (see Fig. 1), or using any of the recently proposed schemes for
simultaneous multi-plane capture [10–13].

Recovering phase (and amplitude) from a series of defocused images is a nonlinear problem
because intensity is bilinear with phase and amplitude. One of the most successful methods for
this inversion is the iterative method, which takes a nonlinear convex optimization approach [14,
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z stage

Experimetal setup: Nikon TE300

Through-focus 

intensity stack zcamera

Fig. 1. Generalized experimental setup for an imaging system (e.g. a microscope) which
captures intensity images at a range of axial defocus distances in order to recover phase.

15]. Though the problem is non-convex, results usually converge, especially when multiple
images are used at various focal planes [5]. In another approach, where a direct solution is
desired, the problem is linearized for small defocus distances using the Transport of Intensity
Equation (TIE) [3, 4]. The TIE relates phase and amplitude to variations of intensity along the
optical axis z [3]:

∂ I(x,y,z)
∂ z

∣∣∣∣
z=0

=− λ

2π
∇⊥•[(I(x,y,0)∇⊥φ(x,y)], (1)

where I(x,y,0) is the intensity at focus, φ(x,y) is the phase, λ is the spectrally-weighted mean
wavelength of illumination and ∇⊥ denotes the gradient operator in lateral directions (x,y) only.
Besides being simple, the TIE method achieves phase accuracy equivalent to that of interfero-
metric methods, but it is much less sensitive to coherence in the illumination [16]. Numerical
solvers require no phase unwrapping and are computationally efficient, employing FFT–based
inversion solvers [17].

Numerical solutions for the TIE can be understood by considering the case of a pure–phase
object, where I(x,y,0) is constant [18]. In this situation, the right hand side of Eq. (1) simplifies
to a second derivative (Laplacian). Phase can then be recovered from a Laplacian inversion

Φ(u,v) = F(u,v)/[−4π
2(u2 + v2)], (2)

where Φ(u,v) is the Fourier transform of φ(x,y), F(u,v) is the Fourier transform of the meas-
ured first derivative ∂ I(x,y,z)

∂ z

∣∣∣
z=0

scaled by 2π/λ , and u,v are the spatial frequency variables.

When I(x,y,0) is not constant, two Laplacian inversions are required [3]. Note that the denom-
inator of Eq. (2) goes towards zero as the spatial frequency goes towards zero, and a small reg-
ularization parameter must be added in order to avoid division-by-zero instability. This means
that the DC phase term is lost and low frequency noise is amplified, resulting in phase errors
that give cloudy phase results. We discuss here strategies for mitigating these problems.

Limitations of the TIE method mainly stem from noise and nonlinearity in the intensity
derivative estimate, both of which we address here. Nonlinearity error comes from the estima-
tion of the intensity derivative, ∂ I(x,y,z)

∂ z

∣∣∣
z=0

, from through focus images. We cannot measure

this linear (first) derivative directly and so it is usually estimated by finite difference methods.
However, intensity is not linear through focus, due to diffraction, and so any nonlinearity in
the through focus intensity corrupts the derivative estimate [6, 19]. Nonlinearity error can be
removed by using higher order TIE [7], which performs polynomial fitting on each pixel’s in-
tensity vs. z plot, then extracts the first order derivative. This requires multiple images through–
focus, which provides some inherent noise stability; however, there is a danger of over-fitting
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(fitting to noise) and the optimal order to use will be phase dependent, making it a difficult pa-
rameter to optimize. The Savitzky-Golay differentiation filter (SGDF) TIE [20] was proposed
to solve this trade-off between the order of fitting and noise in higher order TIE. It recovers
phase images with different orders of polynomial fitting, then combines these phase images
into a final reconstructed phase with band-pass filters. Limitations are that the fitting becomes
unstable when the order is large [21] and the derivation assumes equally spaced focus steps,
which we show here to be non-ideal.

We propose here a new TIE phase recovery method in which we also perform through–
focus fitting of the data, except we do the fitting in Fourier space, rather than in real space.
The advantage of this method can be understood from Fig. 2. On the left, we show a stack of
through–focus intensity images, with a few example plots of the intensity vs. z behavior. These
are the curves that would be fit to polynomials in higher order TIE [7]. It is easy to see that
they do not conform to any particular functional form. On the right side of Fig. 2, we take 2D
Fourier transforms of the intensity images at each of the defocus steps (showing here only the
real part), then plot the intensity spectrum vs. z plots for a few example spatial frequencies. In
contrast to the real space plots, these curves display a distinct sinusoidal behavior which can
be predicted by the Contrast Transfer Function [22–24]. By using this a priori information of
how light propagates in spatial frequency space, we can simultaneously deal with nonlinearity
and noise in order to obtain a better derivative estimate. Here, we propose to fit the spectral
data with Gaussian process (GP) regression [25]. GP regression does not require that the inputs
are equally spaced and can suppress the unwanted high–frequency components in the fitted
function by using the squared exponential covariance function (see details in Appendix A). The
curves in Fig. 2 follow sinusoidal trajectories, but actual behavior may deviate from this model
due to breaking of the small phase approximation or unmodeled coherence effects. GP regres-
sion is able to flexibly fit the data to variations in the model using the Contrast Transfer Function
as a priori information to set a threshold for suppressing the unwanted high frequency compo-
nents in the fitted function. In this way, the over-fitting to noise is avoided without knowing or
fitting to the precise function of a sinusoid.
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Fig. 2. Intensity evolution in frequency space is more predictable than in real space,
demonstrating approximately sinusoidal behavior. (Top) Intensity images through–focus
and their corresponding Fourier spectra’s real part, from simulated data with dz = 1µm,
size 200µm×200µm using the object in Fig. 6. (Bottom left) Intensity variations over z for
4 sample pixels (x,y) denoted as dots above. (Bottom right) Real part of intensity spectrum
over z for 4 spatial frequency (u,v) values denoted as dots above.
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In studying the frequency behavior for through–focus images, we find that equally spaced
defocus steps in z are not ideal. Previous methods generally use images equally spaced in z,
though higher order TIE can accommodate arbitrary z steps [26]. In a recent study [27], an
exponentially-growing measurement scheme is proposed to deal with the regularization prob-
lem. Here, we show that exponentially spaced defocus steps can provide a large reduction in
the number of images required for a high quality phase result. We suggest an efficient scheme
for choosing the z plane distances (within the limits of the motion stage), from the perspective
of efficiently transferring phase information to intensity images, and show how our method can
achieve high quality phase results with far fewer images than equally spaced schemes.

The rest of the paper is structured as follows. In Section 2, we apply GP regression to TIE
phase recovery and propose an exponential spacing measurement scheme. In Section 3, we
compare the error performance of the proposed algorithm with traditional TIE methods. In
Section 4, we discuss the experimental results. We offer concluding remarks in Section 5.

2. Theory

2.1. Intensity spectrum fitting

We consider the intensity derivative estimation problem from the spatial frequency domain.
When the phase φ(x,y) is small, the variations of intensity over z can be approximated in
frequency space by the Contrast Transfer Function [22–24]:

I (u,v,z) = δ (u,v)−2U(u,v)cos[πλ (u2 + v2)z]−2Φ(u,v)sin[πλ (u2 + v2)z], (3)

where δ (u,v) denotes Dirac delta function, and I (u,v,z), U(u,v), and Φ(u,v) are Fourier
transforms of I(x,y,z), − 1

2 ln I(x,y,0), and φ(x,y), respectively. For each spatial frequency
(um,vn), I (um,vn,z) follows a sinusoidal pattern that oscillates with frequency πλ (u2

m + v2
n).

Thus, instead of fitting the intensity curves in real space to polynomials (as in higher order
TIE [7]), we use the sinusoids in the intensity spectra through–focus as prior in the fitting.

2.2. TIE using Gaussian process regression

To fit the data to our model, we employ Gaussian process regression. We estimate the derivative
of the intensity spectrum with respect to defocus ∂I (u,v,z)

∂ z

∣∣∣
z=0

from I (u,v,z1)...,I (u,v,zN),

which are the 2D Fourier transforms of the measured intensity images. For each spatial fre-
quency (um,vn),

∂I (um,vn,z)
∂ z

∣∣∣
z=0

can be obtained from the continuous function fitted from the

discrete data points I (um,vn,z1), ...,I (um,vn,zN).
GP regression is a suitable fitting method that allows us to fit the discrete points

I (um,vn,z1), ...,I (um,vn,zN) to a continuous sinusoidal function (see details in Appendix
A). In the fitted function, frequency components of the axial oscillation that are higher than a
threshold sc can be suppressed by initializing appropriate hyper-parameters in the regression
(see details in Appendix B). From the Contrast Transfer Function (Eq. (3)), I (um,vn,z), as a
function of z, does not contain frequency components higher than πλ (u2

m + v2
n). Therefore, the

threshold can be set just above πλ (u2
m + v2

n) in order to eliminate high–frequency noise while
fitting over the inputs I (um,vn,z1), ...,I (um,vn,zN). Although the Contrast Transfer Function
is derived under the weak phase assumption, it only serves as a guideline to pick a frequency
threshold, above which variations are treated as noise. Thus, large phase variations can still
be recovered, beyond the small phase approximation. Furthermore, by using GP regression,
other prior knowledge about the sinusoidal pattern could be incorporated into the regression -
for example, coherence effects of the illumination could be modeled in the Contrast Transfer
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Table 1. Algorithm of GP TIE.

For each frequency vm,vn:
(1) Inputs are N data points I (vm,vn,z1),I (vm,vn,z2), ...,I (vm,vn,zN).
(2) Set sc = γπλ (u2

m + v2
n), with γ = 1.1∼ 1.2.

(3) Initialize the hyper–parameters in GP regression, in order to suppress the
frequency components higher than sc.
(4) Output is obtained by calculating ∂I (vm,vn,z)

∂ z

∣∣∣
z=0

through Eq. (17).

Function as a product term, since reduced spatial coherence blurs defocused images and thus
reduces the amplitude of the oscillations away from the focus plane.

The resulting algorithm of GP TIE is summarized in Table 1. The scaling factor γ in Step (2)
of the table allows a trade-off between accuracy and noise filtering. Since the computational
complexity of GP regression is proportional to the cubic of the number of measurements [25],
the algorithm has a computational complexity of O(N(Nz)

3), where N is the number of pixels in
one image, and Nz is the number of measurements. This algorithm is very amenable to parallel
processing and can be implemented with Graphics Processing Units (GPUs) for near real-time
performance, in conjunction with GPU–based TIE solvers [28]. Further, GP regression does not
require the measuring positions z1,z2, ...,zN to be equally spaced, so any set of measurement
positions along the axial dimension can be used as input. We show in the next session why this
is not only convenient, but also leads to better phase recovery.

2.3. Exponential spacing measurement scheme

In looking at this problem from Fourier space, we see that equally spaced z steps are not the
ideal measurement scheme. The choice of z distances is crucial, since it defines how much phase
information from the object is transferred into intensity contrast in the defocused images [29].
Each z distance measurement can be thought of as having its own phase to intensity transfer
function, with its own set of preferred spatial frequencies. The low–frequency information of
phase is particularly poorly represented, as seen in the Laplacian inversion of Eq. (2). To better
capture this low frequency phase information, images with large z are required, ideally out to
the maximum range of the axial motion stage. However, the high–frequency components favor a
small z and are important for recovering fine detail in the phase result. We would like to capture
images both at the minimum z possible as well as at the maximum z possible. For linearly
spaced schemes, this will require excessive data capture in between. To avoid this, we introduce
an unequally spaced measurement scheme that balances these concerns. Since diffraction goes
as (∆x)2/λ z [18], with ∆x relating to the object size, we expect the ideal spacing to follow a
nonlinear trajectory.

To derive an ideal z sampling scheme, we start with Eq. (3) and extract the phase transfer
function, g(u,v,z):

g(u,v,z) = sin[πλ (u2 + v2)z]. (4)

This equation tells us how much phase information for a given spatial frequency is converted
into intensity contrast, and thus relates to the signal-to-noise ratio (SNR) of the measurement.
For a given position z, the phase transfer function is a sine function of πλ (u2 + v2) that will be
maximized for particular spatial frequencies, as shown in Fig. 3. Since each object contains a
different mix of spatial frequencies in its phase information, the theoretically optimal measure-
ment planes are object-dependent [29], so it is not possible to determine them without knowing
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the object itself. Thus, we aim not for the absolute optimal set of measurements, but rather for
the optimal coverage of sensitivity across all spatial frequencies that pass through the imaging
system, treating each equally.

Consider the goal of selecting a set of z planes such that the maximum phase measurement
sensitivity (set by the value of the transfer function) is at least α for the largest range of spatial
frequencies possible. In the following, we demonstrate an exponential spacing measurement
scheme that achieves this goal with the least number of measurement required. The highest
frequency that can be recovered is set by the diffraction limit as NA/λ , where NA is the nu-
merical aperture of the imaging system. This will define the minimum defocus distance from
which we can capture relevant information. We define f = πλ (u2+v2) and f ≤ πλ (NA

λ
)2. First,

we select the minimum defocus distance z1 such that the sensitivity g(u,v,z1) is α at frequen-
cies corresponding to the maximum frequency allowed f1 = πλ (NA

λ
)2, the solution of which is

z1 =
π−arcsin(α)

π(NA)2 λ . Defocus steps smaller than z1 will not provide useful information and are thus
unnecessary, though in practice the minimum z step size may be set by the axial motion stage.
As shown by the blue curve in Fig. 3, the sensitivity remains above α until f2 =

arcsin(α)π(NA)2

λ [π−arcsin(α)] .

Next, we select the second defocus distance z2 = β z1, where β = π−arcsin(α)
arcsin(α) > 1, such that the

sensitivity g(u,v,z2) is α at f2, and will remain at least α for a range of frequencies, as illus-
trated by the green curve in Fig. 3. By induction, the optimal measurement scheme that satisfies
a minimum phase measurement sensitivity α should satisfy the following exponential relation
for the defocus distances

zn+1 = β zn. (5)

The exponential spacing implies that a large z can be reached with far fewer measurements
as compared to the equal-spacing measurement schemes. Large z images are crucial for trans-
ferring low–frequency phase information, and the exponential spacing scheme enables us to
reach this without taking an excessive number of measurements or trading off high–frequency
information. The larger the maximum z, the better the low–frequency result, and we desire to
keep the minimum z as small as possible in order to maintain diffraction–limited phase resolu-
tion, both extremes being limited by the motion stage axial range. Accuracy can be traded off
against number of images through the choice of α . Larger values results in more accurate phase
retrieval, at the cost of requiring more images.
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Fig. 3. Rationale for exponential spacing measurement scheme. Plot shows phase transfer
functions for exponentially spaced z steps, which ensure a minimum sensitivity of α across
a range of frequencies. g(u,v,z1), g(u,v,z2), and g(u,v,z3) are the phase transfer functions
at z1, z2, and z3, respectively. The minimum sensitivity plot shows the frequencies which
are transferred at the sensitivity higher than α by choosing z1, z2, and z3. Larger z brings
more low–frequency sensitivity.
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3. Simulations

We compare the performance of various phase recovery methods that use equal spacing and
exponential spacing. In the simulation, the illumination wavelength is set as 632.8nm, and each
image has 100× 100 pixels (pixel size 2µm× 2µm). Equally Spaced Stack has 9 intensity
images simulated with a constant defocus step size of 5µm. Exponentially Spaced Stack also
has 9 images; however, they are exponentially spaced, at z positions around focus of ±5µm,
±20µm, ±80µm and ±320µm (see Fig. 4). Although both data sets use the same number of
images, the exponentially spaced data set contains more information about the low–frequency
phase information because it has a higher z range.SimulatedEquallySpa

ced

Equally spaced 

over optical axis z

-20 μm 20 μm

(a)

SimulatedNonequallyS

paced

Exponentially spaced 

over optical axis z

-320 μm 320 μm

(b)

Fig. 4. Simulated data sets for equal and exponential spacing of z steps. (a) Equally Spaced
Stack: images equally spaced by 5µm. (b) Exponentially Spaced Stack: images exponen-
tially spaced, with z of ±5µm, ±20µm, ±80µm, and ±320µm. The exponential spacing
data contains more low–frequency phase information due to the larger range of z steps.

In order to assess the error performance, the intensity images of the equally and exponentially
spaced stacks are corrupted by white noise with SNR ranging from 18.5 to 8 dB (noise variance
from 0 to 0.02). Fig. 5 shows the average mean square error (MSE) of the recovered phase
over 50 trials as SNR decreases. For the Equally Spaced Stack, higher order TIE performs
significantly worse than SGDF TIE, and GP TIE is slightly better than SGDF TIE. For the
Exponentially Spaced Stack, we show the results for two possible choices of Higher order
TIE: m = 9, which performs better in low noise, and m = 5, which performs better in high
noise. GP TIE with exponential spacing clearly exhibits the lowest MSE. This can be explained
by the fact that the exponentially spaced data contains more low–frequency phase content in
the measurements than the equally spaced data, and there is no trade–off between noise and
nonlinearity. Figure 6 gives an example of the recovered phase at SNR of 11.1dB.
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Fig. 5. Comparison of mean square error (MSE) in phase results for various methods as
noise level increases. GP TIE with exponential spacing yields the best error performance.
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Fig. 6. Phase images recovered from simulated data with SNR of 11.1dB. (Top) Results of
the Equally Spaced Stack, using higher order TIE (m=5, MSE 0.1194 in radian), SGDF TIE
(0.0295), and the proposed GP TIE (0.0279). (Bottom) Results for Exponentially Spaced
Stack, using Higher order TIE (m=5, MSE 0.0237) and GP TIE (0.0065). GP TIE using
exponential spacing provides the best phase result.

4. Experimental results

We tested our method experimentally in a microscope (magnification 20x, NA=0.5) with fil-
tered white light illumination (center wavelength 650nm, 10nm bandwidth). Data Set 1 com-
prises 129 images of human cheek cells, equally spaced by a constant small step size dz = 4µm
over a large defocus range [−252µm to 252µm] (Fig. 8(a)). In Fig. 7, the GP fitted intensity
spatial frequency variations along the propagation direction z for 3 different (u,v) values are
shown. Both the measured and fitted curves follow nearly sinusoidal patterns, as predicted by
Eq. (3). Note that the delay of each sinusoid is dependent on the absorption of the object at
the corresponding spatial frequency. When the frequency (u,v) is high, the intensity spectrum
variations diminish for large defocus distance (see plot of (u60,v60) in Fig. 7). This is due to the
effect of partially coherent illumination, which will be the subject of future work.
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Fig. 7. (Left) GP regression of the intensity spectrum’s real part over z for three sample
frequency points (u,v) (Data Set 1). (Right) The frequency (u,v) of the three components
depicted on real part of the recovered spectrum of phase (the image size is 945× 888 but
only the central part of the spectrum is shown for clarity). According to Eq. (3), the values
for πλ (u2 +v2) are 0.029×104m−1, 4.145×104m−1, and 17.299×104m−1, respectively.
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Fig. 8. Exponentially spaced defocus steps with GP TIE provide accurate phase results
using less images. (a) Data Set 1: equally spaced dz = 4µm, from −256µm to 256µm.
Each image has 945×888 pixels with effective size 0.31µm×0.31µm. (b) Phase recovered
with equally spaced z steps: (left) with all 129 images [−256µm to 256µm, dz = 4µm];
(middle) subset of 15 images using minimum z step size [−28µm to 28µm, dz = 4µm];
and (right) subset of 15 images using maximum z range [−252µm to 252µm, dz = 36µm].
With equal spacing, there is a forced trade–off between low–frequency noise and high–
frequency blurring, such that many images are required for good quality phase results. (c)
Phase recovered with exponentially spaced z steps: (left) subset of 15 images (β = 2), and
(right) subset of 9 images (β = 4). The minimum and maximum defocus distances are fixed
at ±4µm and ±256µm, respectively.

With our exponentially spaced measurement scheme, GP TIE requires fewer images to be
captured in order to obtain a high quality phase result. To demonstrate this, we compare the
recovered phase by GP TIE from different subsets of Data Set 1 (Fig. 8) by sampling the
image stack along z using various strategies. Figure 8(b) uses data subsets with equally spaced
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z–planes. First, we show the best possible phase result, when all 129 images are used. With
equally spaced planes, we have two possibilities for reducing the number of images: we can
either reduce the defocus range (keeping the step size small) or increase the step size (reducing
the defocus range). If we reduce the defocus range, the recovered phase becomes susceptible
to low–frequency noise (see the middle of Fig. 8(b)). This is due to the fact that the low–
frequency information of phase is not well captured at small defocus distances. If we instead
increase the step size (keeping the defocus range large), high-frequency components are lost
due to nonlinearity (see the right of Fig. 8(b)). In order to accurately capture both high and
low–frequency information with the same reduced number of images, we need nonlinearly
spaced measurements. Near the focus, the step size should be small, yet a large focus range can
still be covered with only a few measurements in our exponentially spaced scheme. In Fig. 8(c),
we extract images from Data Set 1 according to the exponential spacing scheme described in
Section 2.3. As can be seen from Fig. 8(c), the phase results are free of low-frequency noise
and also have high resolution. Even after further reducing the dataset to only 9 exponentially
spaced images, we obtain a similar result to that with all 129 images. Thus, we have reduced
the data capture requirement by more than an order of magnitude, without sacrificing quality.

Having shown that exponential spacing is advantageous, we now compare GP TIE with
Higher order TIE, both of which are capable of using unequally spaced data. Data Set 2 com-
prises 9 images of human cheek cells, exponentially spaced about focus at±5.7µm,±11.4µm,
±22.8µm, and ±45.6µm ( Fig. 9(a)). The imaging system has 10x magnification and NA of
0.5. Each image has 350×360 pixels of size 0.62µm×0.62µm. Figure 9(b) shows the recov-
ered phase of Data Set 2 obtained by Higher order TIE and GP TIE. We show the results for
higher order TIE with the order of polynomial fitting m equal to 2, 3, and 4. The phase images of
m = 2 and 3 have small low–frequency noise but appear blurred. The phase of m = 4 has strong
contrast in some regions, but contains low–frequency noise. In contrast, GP TIE does not suffer
from this tradeoff, so the phase recovered has less low–frequency noise and also exhibits high
contrast. We can see details inside cells in the phase image recovered by GP TIE.
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0.5

1

rad

Higher Order TIE m=2 Higher Order TIE m=3

20µµµµm

(a)

(b)

Data Set 2

 

-0.5

0

0.5

Exponential 

spacing

-45.6 μm 45.6 μm

Fig. 9. (a) Data Set 2: exponentially spaced, with z of ±5.7µm, ±11.4µm, ±22.8µm, and
±45.6µm. Each image has 350× 360 pixels of size 0.62µm× 0.62µm. (b) Phase images
of Data Set 2 by Higher order TIE (m = 2,3, and 4) and GP TIE.
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5. Conclusions

In this paper, we proposed a TIE phase recovery method that exploits prior knowledge of spatial
frequency variations of the intensity in order to yield more accurate phase images from expo-
nentially spaced images through–focus. Our proposed method estimates the intensity deriva-
tive by means of GP regression. It is robust and stable with noise, while incorporating the a
priori knowledge of the sinusoidal patterns predicted when fitting spectrum variations over z.
We derived an exponentially spaced measurement scheme which guarantees a minimum phase
measurement sensitivity across the full range of available spatial frequencies with the least pos-
sible number of images required. In future work, we will extend the current technique to add
more a priori information, such as partial coherence of the illumination and large phase effects.
With the freedom to choose nonlinearly spaced measurement positions, we can develop new
strategies to optimize measurements if any prior knowledge of the phase spectrum is known.

It should be noted that improving the TIE result by incorporating prior knowledge has been
previously considered in [30–32]. The difference is that the previous approach considers priors
over the phase [30, 31] or refractive index distribution [32], whereas here we use a prior on in-
tensity spectral evolution to improve the intensity derivative estimate. We expect the approach
considered here should have wide application as it not only can be directly apply to the special
cases in [30–32], but also to more general situations without constraints on the phase distribu-
tion. If any reader is interested in this algorithm, open source code can be obtained by emailing
the authors or visiting the website either www.laurawaller.com or www.dauwels.com.

Appendix A: review of Gaussian process regression

We review the basics of Gaussian process regression [25]. Consider the problem of 2-D re-
gression: given input/output pairs (zn, fn), where n = 1, ...,N, we would like to estimate f (z) at
arbitrary position z. Under the Gaussian process assumption, the outputs fn are drawn from the
zero-mean Gaussian distribution with the covariance as a function of zn:

( f1, f2, ..., fN |z1,z2, ...,zN)∼N (0,K(Z,Z)+σnI), (6)

where K(Z,Z) is the covariance matrix of the outputs given the input set Z, and σn is the
variance of additive Gaussian noise in outputs. Generally, the squared exponential covariance
function is used to model the covariance matrix:

Ki j = σ
2
f exp[− 1

2`2 (zi− z j)
2], (7)

where Ki j is the element at coordinate (i, j) of the matrix K(Z,Z). The parameters σ f , `, and
σn in Eq. (6) are defined as the hyper-parameters of the GP model. We can write the joint
distribution of the observed input/output pairs with the unknown value of f (z) at z as:[

f
f (z)

]
∼N

(
0,
[

K(Z,Z)+σnI K(Z,z)
K(z,Z) K(z,z)

])
, (8)

where f = [ f1, f2, ..., fN ]
T . The conditional distribution of the unknown output f (z) at z is cal-

culated as:

( f (z)| f1, f2, ..., fN ,z1,z2, ...,zN ,z)∼N ( f̄ (z),K̄), (9)

where

f̄ (z) = K(z,Z)(K(Z,Z)+σnI)−1f, (10)

K̄ = K(z,z)−K(z,Z)(K(Z,Z)+σnI)−1K(Z,z). (11)
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For convenience, we can define a vector of functions h(z):

h(z)T = K(z,Z)(K(Z,Z)+σnI)−1. (12)

Thus we have

f̄ (z) = h(z)T f. (13)

The predicted function f̄ (z) can be understood as a weighted combination of the shifted equiv-
alent kernel h(z) [25, 33]. In [33], the Fourier transform of the equivalent kernel h(z) for the
squared exponential covariance function is given as:

h̃SE(s) =
1

1+bexp(2π2`2|s|2)
, (14)

where b = σ2
n /ρ(2π`2)1/2 and ρ is the average number of observations per unit (for example

length). When b is small, h̃SE(s) is approximated by a step function. The rapid change from 1
to 0 happens at the point when

s2
c = log(1/b)/(2π

2`2). (15)

Therefore, the frequency components above the threshold sc in the fitted function f̄ (z) are sup-
pressed. From Eq. (15), we can set the desired threshold sc by changing the hyper-parameters.
The property of suppressing the unwanted high frequency components in the fitted function is
applied in the regression of the intensity images in TIE.

Appendix B: derivation of GP TIE

We have a 3D stack I (u,v,z1), ...,I (u,v,zN), which are the 2D Fourier transforms of
the measured intensity images. Our goal is to use regression to estimate the first deriva-
tive of the intensity spectrum at z = 0, ∂I (u,v,z)

∂ z

∣∣∣
z=0

. Instead of doing 3D regression,

we perform GP regression for each lateral spatial frequency (um,vn) on N data points
I (um,vn,z1),I (um,vn,z2), ...,I (um,vn,zN). It is easy to observe that I (um,vn,z) is taken
from I (u,v,z) at the same frequency coordinates (um,vn). From Eq. (3), I (um,vn,z) follows
a sinusoidal pattern with frequency πλ (u2

m + v2
n). The sinusoids prior is incorporated into the

GP regression by setting the frequency threshold sc as πλ (u2
m + v2

n). This is realized by setting
appropriate hyper-parameters σ f ,σn, and ` in the regression. The hyper-parameters σ f and σn
are initialized to keep b in Eq. (14) small. Next, the parameter ` is solved from Eq. (15) with sc
and σ f ,σn already known. The frequency threshold sc can be larger than πλ (u2

m + v2
n) to allow

trade-offs between accuracy and noise filtering.
Define ∂I (um,vn,z)

∂ z

∣∣∣
z=0

as the element of ∂I (u,v,z)
∂ z

∣∣∣
z=0

at the coordinate (um,vn). From Eqs.

(10)(12), the function Ī (um,vn,z) fitted by GP regression is expressed as:

Ī (um,vn,z) = h(um,vn,z)T Imn, (16)

where Imn = [I (um,vn,z1),I (um,vn,z2), ...,I (um,vn,zN)]
T and h(um,vn,z) can be obtained

from Eq. (12). The fitted function Ī (um,vn,z) is a function of the single variable z. Therefore,
its first derivative at z = 0, ∂I (um,vn,z)

∂ z

∣∣∣
z=0

, is approximated by:

∂I (um,vn,z)
∂ z

∣∣∣∣
z=0

=
∂h(um,vn,z)T

∂ z

∣∣∣∣
z=0

Imn, (17)
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where

∂h(um,vn,z)T

∂ z
=
[
−

σ2
f

`2 (z− z1)exp[− 1
2`2 (z− z1)

2], ...,−
σ2

f
`2 (z− zN)exp[− 1

2`2 (z− zN)
2]

]
· (K(Z,Z)+σnI)−1. (18)

In Eq. (17), the vector Imn is known from the measurements, and the vector
∂h(um,vn,z)T

∂ z

∣∣∣
z=0

can be derived from the GP regression with hyper-parameters already

known. Therefore, ∂I (um,vn,z)
∂ z

∣∣∣
z=0

is estimated by performing GP regression over data points

I (um,vn,z1),I (um,vn,z2), ...,I (um,vn,zN).
By repeating the same process, we can obtain all of the frequency components for the first

derivative of intensity spectrum at focus ∂I (u,v,z)
∂ z

∣∣∣
z=0

, then the phase is recovered with the

Laplacian inversion in Eq. (1)(2). Because the computational complexity of GP regression is
proportional to the cubic of the number of measurements [25], the algorithm has a compu-
tational complexity of O(N(Nz)

3), where N is the number of pixels in one image, and Nz is
the number of measurements. In order to save computational time, the frequency components
which have similar u2

m + v2
n values can share the same hyper-parameters and hence the same

∂h(um,vn,z)T

∂ z

∣∣∣
z=0

.
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