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We study dynamics of a two-level system coupled simultaneously to a pair of dissimilar reservoirs,
namely, a spin bath and a boson bath, which are connected via finite interbath coupling. It is found
that the steady-state population transfer in the two-level system increases with its coupling to the spin
bath, while optimal transfer occurs at intermediate coupling in the transient process. If the two-level
system is strongly coupled to the spin bath, the population transfer is unidirectional barring minor
population oscillations of minute amplitudes. If the spin bath is viewed as an atomic ensemble, robust
generation of macroscopic superposition states exists against parameter variations of the two-level
system and the boson bath. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817336]

I. INTRODUCTION

With a consequence that typically includes decoherence
and dissipation,1 any realistic quantum system is inevitably
coupled to its surrounding environment, which is believed
to play a detrimental role in processes such as resonant en-
ergy transfer, quantum information processing, and spin ma-
nipulation in semiconductors. Great efforts have been de-
voted to understanding the decoherence process in solid-state
spin nanodevices, one of the most promising candidates for
quantum information processing and computation.2, 3 A dom-
inant contribution to quantum decoherence in solid-state spin
nanostructures arises from nuclear spins. Several models have
been proposed to study the properties of a two-level sys-
tem (TLS) interacting with a spin environment,4–6 for which
a commonly used setup is a preferred central TLS coupled
homogeneously to a bath of surrounding spins with no in-
trabath interactions.7–10 Coupling of a central TLS to a spin
bath can in general lead to non-Markovian behavior, which,
as suggested in Ref. 9, may play an important role in energy
transport in biological systems. On the other hand, the spin-
boson model,11 an extensively studied system in the context
of quantum decoherence, has seen a large variety of applica-
tions in fields ranging from quantum information processing12

to light-harvesting systems.13–15

In this work, both types of environments, namely, a spin
bath and a boson bath, are included in assessing their ef-
fects on the central TLS. As illustrated in Fig. 1, our model
can be viewed as an extension of the conventional spin-boson
model11 to include an additional spin bath,8, 9 and is capable
to capture the interplay of the two baths. The interaction be-
tween the TLS and the spin bath is assumed to be of the Ising
type, and correlations between the two baths are taken into
account via linear coupling. We first focus on the polarization
dynamics of the TLS. By viewing the spin bath as a system of
interest, we also investigate the influence of the TLS and the
boson bath on the macroscopic superposition generation in
the spin bath, which is prepared, for example, with all spins

a)Electronic mail: YZhao@ntu.edu.sg

in the bath oriented along the +x̂ direction. In this context,
Ref. 7 examined the TLS-induced correlation and entangle-
ment in the spin bath, and Ref. 16 studied the macroscopic
superposition generation of an ensemble of atoms assisted by
a linearly coupled boson bath. In this work we investigate the
effect of the TLS on a tripartite system similar to that in Ref.
16. Robust generation of macroscopic superposition states is
found to exist against parameter variations of the TLS and the
boson bath.

The rest of paper is structured as follows. In Sec. II, we
introduce the model and methodology employed in this work.
In Sec. III, results on polarization dynamics of the TLS are
described in great detail. In Sec. IV, we discuss the macro-
scopic quantum-superposition states generation in the spin
bath. Conclusions are drawn in Sec. V.

II. THE MODEL

Our model Hamiltonian H is composed of four parts:

H = HT + HS + HI + HB,

HT = ε

2
σz + Jσx, HS = αLz + γLzσz, (1)

HI =
∑

k

(
Lzηk + σz

2
ξk

)
(bk + b

†
k), HB =

∑
k

ωkb
†
kbk.

Here, HT describes the TLS with energy level spacing ε (with
σ x,z being the Pauli matrices), J is the transfer integral be-
tween the two states. HB describes the boson bath with an-
nihilation (creation) operator bk (b†k) of the bath mode with
frequency ωk. HS is the Hamiltonian for the spin bath includ-
ing its interaction with the TLS, α is an energy proportionality
constant, and Lz = ∑N

j=1 σ z
j /2 is the z-component of the total

spin operator �L, describing a bath of N spin-1/2 noninteract-
ing spins (N is an even number). HI captures interactions of
the boson bath with the TLS and the spin bath: The TLS inter-
acts with the spin bath via the TLS-spin-bath (T-S) coupling
γ in addition to its coupling to the conventional boson bath
through the TLS-boson-bath (T-B) coupling ξ k; there are also

0021-9606/2013/139(5)/054118/11/$30.00 © 2013 AIP Publishing LLC139, 054118-1
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FIG. 1. Schematics of a TLS (blue, central spin) coupled to a spin bath and
a boson bath. The spin bath, which has no intrabath interactions, interacts
uniformly via Ising-like coupling to the TLS. Both the TLS and the spin bath
are coupled to the boson bath via conventional linear spin-boson coupling.

interactions between the spin bath and the boson bath (the S-B
coupling), which are denoted by ηk in our model. The effects
of the boson bath are fully captured by the spectral densities.
Cubic spectral densities are assumed here:

JTT(ω) =
∑

k

ξ 2
k δ(ω − ωk) = κ1ω

−2
ph ω3e−ω/ωc , (2)

JSS(ω) =
∑

k

η2
kδ(ω − ωk) = κ3ω

−2
ph ω3e−ω/ωc , (3)

JTS(ω) =
∑

k

ξkηkδ(ω − ωk) = κ2ω
−2
ph ω3e−ω/ωc , (4)

where ωc is the cutoff frequency, and ωph is the character-
istic phonon frequency and will be used as the energy unit.
JTT(ω) in Eq. (2) is the conventional spin-boson spectral den-
sity function with κ1 the coupling strength quantifying the
TLS coupling to the boson bath, while JSS(ω) in Eq. (3) de-
notes the corresponding spectral density for the interactions
between the spin bath and the boson bath with κ3 the cou-
pling strength. JTS(ω) in Eq. (4) describes the hybridization
of JTT(ω) and JSS(ω). Note that κ2 can be varied indepen-
dently of κ1 and κ3 through sign changes of ξ ′

ks or η′
ks. As we

will see below, the spectral density JSS(ω) does not effect the
reduced dynamics of the TLS within the framework of the po-
laron master equation approach used here, and the bath-bath
correlation is controlled by JTS(ω) alone. However, JSS will
be present in the reduced dynamics of the spin bath.

Note that H commutes with L2 = ∑
i L

2
i (i = x, y, z) and

Lz, so we can restrict ourselves in each (l, m)-sector, where l
is the total spin which runs from 0 to N

2 for even N, and m
is the eigenvalue of Lz. When the T-B coupling is absent, i.e.,
ξ k = 0, H can be divided into two commuting parts: H = H1

+ H2 with H1 = HT + HS, and H2 = Lz

∑
k ηk(bk + b

†
k)

+ HB. Noting that [H1, H2] = 0, the boson bath has no ef-
fect on the reduced dynamics of the TLS and we recover the
results of Ref. 9, and dynamics of H1 and H2 can both be
obtained analytically.9, 16 For finite T-B coupling, the dynam-
ics of Eq. (1) cannot be solved exactly. In Sec. III, we will
adopt the recently proposed time-convolutionless (TCL) po-
laron master equation approach17 to study the reduced dy-
namics of the TLS. The approach takes into account simul-
taneously correlated initial conditions and effects of strong
coupling and non-Markovian baths.

III. REDUCED DYNAMICS OF THE TLS

A. The polaron transformation

The polaron canonical transformation is generated by

S = LzB1 + σz

2
B2,

(5)

B1 =
∑

k

ηk

ωk

(b†k − bk), B2 =
∑

k

ξk

ωk

(b†k − kk),

resulting in the transformed Hamiltonian H̃ given by

H̃ = eSHe−S = H̃0 + H̃1 + HB, (6)

H̃0 = ε

2
σz + J̃ σx + αLz + γ̃ Lzσz − L2

zη, (7)

H̃1 = J [σx(cosh B2 − �) + iσy sinh B2], (8)

where γ̃ = γ − ∑
k ηkξk/ωk , � = 〈cosh B2〉, J̃ = J�, and

η = ∑
k η2

k/ωk . Here a finite transfer integral J is always as-
sumed, and the average 〈. . . 〉 is taken over the boson bath
in thermal equilibrium at temperature T. Note that only the
T-B coupling (ξ k) enters the expression of the renormalized
transfer integral J̃ , while both the T-B and the S-B couplings
(ξ k and ηk) show up in the expression of the effective T-S cou-
pling γ̃ . Furthermore, the interbath interaction will induce a
nonlinear term −L2

zη.
The technique of polaron transformation, helpful to iden-

tify Hamiltonian terms that remain small beyond the weak
exciton-phonon coupling regime, was employed earlier by
Munn and Silbey,18, 19 for example, to study transport prop-
erties of molecular crystals. In recent years, this approach has
been used in a variety of disciplines such as physical chem-
istry (to study excitation energy transfer in light-harvesting
systems),17, 20, 21 quantum optics,22 and biophysics.23 Note
that by construction, 〈H̃1〉 = 0. Below the renormalized hop-
ping term, H̃1, will be treated perturbatively, in an approxi-
mation that is believed to be valid even in the intermediate or
strong system-bath coupling regime, especially for fast baths
with ωc ≥ 2J.

To apply the TCL master equation to Eqs. (6)–(8), it is
convenient to work in the interaction picture with respect to
H̃0 + HB. We can diagonalize H̃0 in each (l, m)-sector:

H̃0 =
N
2∑

l=0

l∑
m=−l

H̃
(lm)
0 |l, m〉〈l, m|,

(9)
H̃

(lm)
0 = ε

2
σz + J̃ σx + αm + γ̃ mσz − m2η,

where |l, m〉 is the eigenstate of the spin bath. The two eigen-
states of H̃

(lm)
0 read

|φ+
m〉 = cos

θm

2
|1〉 + sin

θm

2
|1̄〉,

(10)

|φ−
m〉 = − sin

θm

2
|1〉 + cos

θm

2
|1̄〉.
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Here, |1〉 and |1̄〉 are the two eigenstates of σ z with eigenval-
ues ±1. The corresponding eigen-energies are

E±(m) = (αm − ηm2) ± εm

2
, (11)

where εm = E+(m) − E−(m) = (4J̃ 2 + ε̃2
m)1/2, with ε̃m

= ε + 2γ̃ m. The rotation angle θm is determined by
tan θm = 2J̃ /ε̃m. By further defining the pseudo-Pauli
matrices in the |φ±

m〉 basis,

τ z
m = |φ+

m〉〈φ+
m | − |φ−

m〉〈φ−
m |,

(12)
τ+
m = |φ+

m〉〈φ−
m |, τ−

m = (τ+
m )†,

we can get H̃1 in the interaction picture

H̃1,I (t) = J σ̃+(t)D(t) + H.c., (13)

where H.c. stands for Hermitian conjugate, and

σ̃+(t) =
N
2∑

l=0

l∑
m=−l

Kk
m(t)τ k

m|l, m〉〈l, m|,

D(t) = eeiHB t B2e
−iHB t − �,

Kx
m(t) = 1

4
[(1 + Cm)eiεmt − (1 − Cm)e−iεmt ], (14)

Ky
m(t) = i

4
[(1 + Cm)eiεmt + (1 − Cm)e−iεmt ],

Kz
m(t) = Sm

2
.

Here, we have defined Cm ≡ cos θm, Sm ≡ sin θm.

B. Observables and initial conditions

Before applying the projection operator technique1 to
trace out the boson degrees of freedom, we first build a con-
nection between density matrices and physical observables.
Let ρ(t) denote the Schrödinger picture total density matrix
of the entire system, and σ (t), the reduced density matrix af-
ter tracing ρ(t) over the boson degrees of freedom only. Their
counterparts in the polaron frame are labeled as ρ̃(t) and σ̃ (t).

We are interested in real-time dynamics of the observ-
ables,

〈σi〉 = TrT+S+B[ρ(t)σi], i = x, y, z, (15)

where the sub-indices of Tr, T, S, and B, indicate traces
over degrees of freedom of the TLS (T), the spin bath (S),
and the boson bath (B), respectively. In the projection oper-
ator approach, the polaron transformed total density matrix
in the interaction picture ρ̃I(t) can be divided into the rel-
evant part P ρ̃I(t) = TrB[ρ̃I(t)]ρB = σ̃IρB and the irrelevant
part Qρ̃I(t), where the super-operator P is defined by P(·)
= ρB ⊗ TrB(·) and Q = 1 − P . Correspondingly, the expec-
tation values 〈σ i〉 can be written as 〈σ i〉 = 〈σ i〉P + 〈σ i〉Q, i.e.,
the summation of the relevant part 〈σ i〉P and irrelevant part
〈σ i〉Q. In general, the TCL master equation only yields dy-
namics for the relevant part. However, thanks to the fact that
[σ z, S] = 0, the irrelevant contribution of 〈σ z〉 vanishes: 〈σz〉Q

= TrT+S+B[Qρ̃I(t)eiH̃0t σze
−iH̃0t ] = 0. It is easily seen that⎛

⎜⎜⎝
〈σx〉P
〈σy〉P
〈σz〉P

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�TrT+S[σ̃ (t)σx]

�TrT+S[σ̃ (t)σy]

TrT+S[σ̃ (t)σz]

⎞
⎟⎟⎠ . (16)

Note that in general 〈σ x〉Q and 〈σ y〉Q do not vanish. But they
do not participate in the closed system of equations of motion
for {〈σ i〉P} neither. Since the total angular momentum l of
the spin bath is conserved, it is convenient to introduce the
l-independent quantities

αi
m(t) = TrT[〈l, m|σ̃ (t)|l, m〉σi], i = x, y, z,

(17)
αe

m(t) = TrT[〈l, m|σ̃ (t)|l, m〉].
Using the trace formula over the spin bath

TrS(·) =
N
2∑

l=0

l∑
m=−l

ν

(
l,

N

2

)
〈l, m| · |l, m〉, (18)

where ν(l, N
2 ) ≡ C

l+N/2
N − C

l+1+N/2
N denotes degeneracy of

the spin bath,9, 24, 25 it can be seen that

TrT+S[σ̃ (t)σi] =
∑
lm

ν

(
l,

N

2

)
αi

m(t), i = x, y, z,

(19)∑
lm

ν

(
l,

N

2

)
αe

m(t) = 1.

A separable initial state is assumed in our model:

ρ(0) = ρT ⊗ ρS ⊗ ρB = |1̄〉〈1̄| ⊗ e−βαLz

ZS
⊗ e−βHB

ZB
, (20)

where β = 1/kBT is the inverse temperature, and the two baths
are in thermal equilibrium with partition functions for the spin
and boson baths given by ZS and ZB, respectively. Although
separable in the original frame, the two baths are entangled
after being transformed into the polaron frame:

ρ̃(0) = |1̄〉〈1̄|
∑
lm

|l, m〉〈l, m|ρ̃m
B

e−βαm

ZS
, (21)

where ρ̃m
B = emB1− 1

2 B2ρBe−mB1+ 1
2 B2 . Correspondingly, the ini-

tial values of α’s read

αx
m(0) = αy

m(0) = 0, αz
m(0) = −αe

m(0) = −e−βαm

ZS
. (22)

C. Polaron master equation for the TLS

Now we can apply the TCL master equation to σ̃I(t). The
standard projection operator technique leads to the following
master equation for σ̃I (t):1, 17

dσ̃I (t)

dt
=

∫ t

0
dsTrB{L̃1,I(t)L̃1,I(s)σ̃I(t)ρB}

+ TrB{L̃1,I(t)Qρ̃(0)}

+
∫ t

0
dsTrB{L̃1,I(t)L̃1,I(s)Qρ̃(0)}, (23)
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where L̃1,I (t)(·) = −i[H̃1,I (t), ·]. The last two terms in the
above equation are the first and second order inhomoge-
neous terms, respectively. It is obvious that α̇e

l (t) = 0, so
that αe

m = e−βαm/ZS is a constant. Transforming back to the
Schrödinger picture and using Eqs. (13), (17), and (21), we
find after a tedious but straightforward calculation the fol-
lowing set of Bloch equations, which is obeyed by the vector
�αm(t) = [αx

m(t), αy
m(t), αz

m(t)]T :

�̇αm(t) = M(t)�αm(t) + �Rm(t), (24)

with

�Rm(t) = �R(e)
m (t) + �R(1)

m (t) + �R(2)
m (t),

(25)

M(t) =

⎛
⎜⎜⎝

−G1−
my G1−

mx − ε̃m 0

G2+
my + ε̃m −G2+

mx −2J̃

G2+
mz G1−

mz + 2J̃ − (
G2+

mx + G1−
my

)
⎞
⎟⎟⎠ ,

where �R(κ)
m (t) = [Rκ

mx(t), Rκ
my(t), Rκ

mz(t)]
T for κ = e, 1, and

2. The homogeneous rates G
ξ+
mi = J 2(γ ξ

mi + γ
ξ∗
mi ) and G

ξ−
mi

= iJ 2(γ ξ

mi − γ
ξ∗
mi )(ξ = 1, 2; i = x, y, z) appearing in the Bloch

matrix M(t) are combinations of

γ 1
mi(t) = �2

∫ t

0
dsK̃i−

m (−s)[e−φ(s) − eφ(s)],

(26)

γ 2
mi(t) = �2

∫ t

0
dsK̃i+

m (−s)[e−φ(s) + eφ(s) − 2],

where the bath correlation function φ(s) has the form

φ(s) =
∑

k

(
ξk

ωk

)2 (
cos ωks coth

βωk

2
− i sin ωks

)
, (27)

and K̃i±
m (s) ≡ K̃i

m(s) ± K̃i∗
m (s) with K̃i

m(s) given explicitly by

K̃x
m(s) = CmKx

m(s) + SmKz
m(s),

K̃y
m(s) = Ky

m(s), (28)

K̃z
m(s) = −SmKx

m(s) + CmKz
m(s).

The inhomogeneous part �Rm(t) resulting from the entan-
gled initial state in the polaron frame has contributions:
(1) the R

(e)
mi terms proportional to αe

m,

R(e)
mx = G1+

mzα
e
m, R(e)

my = G2−
mzα

e
m,

(29)
R(e)

mz = − (
G1+

mx + G2−
my

)
αe

m,

and (2) the conventional first and second order inhomoge-
neous terms R

(1)
mi and R

(2)
mi , which are related to an auxiliary

function dm(t) given by

dm(t) = exp

[∑
k

iω−2
k ξk sin ωkt(2mηk − ξk)

]
− 1. (30)

The explicit expressions for these two contributions are listed
in Appendix A. We have mentioned that the dynamics of
the TLS is not affected by the boson bath if the T-B cou-
pling vanishes (ξ k = 0), which can be readily seen by setting
φ(t) = 0 and dm(t) = 0.

D. Polarization dynamics of the TLS

In this section, we focus on the polarization dynamics of
the TLS. We start with the steady state solutions, i.e., the TLS
polarization at long times, as it evolves from an initial down
state. As in the spin-boson model, coupling with the boson
bath plays a key role in driving the TLS into its steady states.
For ξ k = 0, the dynamics is always coherent, and there is no
steady state, as revealed by the singularity of the Bloch matrix
M(t) [by setting G

ξ±
mi = 0 in Eq. (25)]. In fact, Eq. (24) gives

the probability of finding the TLS in its up state,9

P1(t) = 1 + 〈σz〉(t)
2

= 1

ZS

∑
lm

J 2e−βαmν

(
l,

N

2

)
sin2 ωmt

ω2
m

, (31)

where ωm = [J 2 + ( ε
2 + γm)2]−1/2, and the summation is

over a series of nonnegative oscillating functions. In this case,
it was shown in Ref. 9 that the maximal amplitude of the os-
cillating transition rate can reach its maximum for some finite
optimal γ on proper times scales. Once the T-B coupling is
introduced, steady states can be built up. In general, for suffi-
ciently large t, the summation in the oscillating exponential of
dm(t) will average to zero, hence both the first and second or-
der inhomogeneous terms vanish (see Appendix A), and only
the R

(e)
mi part contributes to the inhomogeneous terms. How-

ever, the homogenous relaxation functions G
ξ±
mi (t) will be finite

even in the long-time limit. Thus, the R
(e)
mi part is responsible

for the steady state, with the solution

�αm(∞) = −[M(∞)]−1 �R(e)
m (∞). (32)

For the separable initial state given by Eq. (20), it can be eas-
ily shown that αe

m(0) = e−βαm/ZS holds for any initial TLS
density matrix ρT, i.e., the steady state of the TLS is indepen-
dent of its initial state.

Figure 2 displays the steady state value of the probability
P1(t) as a function of the T-S coupling strength γ . It can be
seen that for all cases considered, the steady-state occupation
probability P1(∞) of the upper level is an increasing func-
tion of γ . This is due to the dominance of the T-S coupling
at large γ . Thermodynamic considerations leave larger Boltz-
mann weights to spin bath states of negative m’s, driving 〈σ z〉
toward unity as γ increases. The steady-state probability is
robust against variations of the T-B coupling. However, same
is not true for variations in the S-B coupling κ2. To achieve
a given value of P(∞), a larger γ is needed for a larger κ2.
In this sense, the correlation between the two baths plays a
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FIG. 2. Steady-state probability of finding the TLS in its up state as a func-
tion of the T-S coupling strength γ after prepared in the down state initially.
Parameters used are ε = J = α = 1, T = 0.5, N = 10, and ωc = 2.

destructive role in the TLS flipping. This can be under-
stood from considering the renormalized T-S coupling γ̃ = γ

− 2κ2ω
3
c : a larger γ is needed to offset the effect of renormal-

ization due to the S-B coupling.
In most situations, especially under the Markovian ap-

proximation, a small system interacts with a sufficiently large
thermal bath, before reaching the eventual thermal equilib-
rium with the bath sharing the same temperature.26 However,
this may not be the case for an Ohmic spin-boson model with
weak system-bath coupling, for which it is found that the spin
does not settle to the Gibbs distribution of the uncoupled sys-
tem if only the first order Born approximation is made.27 In-
stead, the steady state is consistent with a Gibbs distribution
of the system-bath combination. For the TLS described by
HT in the thermal equilibrium with inverse temperature β, the
probability in its up state is found to be

P
eq
1 = 1

2

(
1 + TrT(e−βHTσz)

TrT(e−βHT )

)

= 1

2

[
1 − 1√

1 + (2J/ε)2
tanh β

√
J 2 +

(ε

2

)2
]

. (33)

It will be interesting to compare the above expression with
the case of γ = 0, where the TLS is only coupled to the boson
bath. For parameters used in Fig. 2, we have P

eq
1 = 0.2814,

which is very close to the steady state value for vanishing S-B
coupling (κ2 = 0, see, e.g., the solid blue line in Fig. 2). In
this case our model is reduced to the traditional spin-boson
model. The slight variance of P1(∞) with κ1 may be due to
non-Markovian effects related to the TCL master equation ap-
proach. However, even though there are no direct interactions
between the TLS and the spin bath, P1(∞) deviates from the
equilibrium value for finite κ2.

We can view the TLS and the spin bath as two sub-
systems that couple to a common boson bath. It is intriguing
that the spin bath with only 10 spins in our numerics and no
direct coupling with the TLS displays noticeable influences
over the thermalization of the TLS. Qualitatively, the inter-
bath S-B coupling will be dominant for large κ2. In contrast
to the T-S coupling term, γ Lzσ z, which drives the polariza-

FIG. 3. The TLS polarization 〈σ z〉(t) as a function of time t and the T-S
coupling strength γ for two values of κ2: κ2 = 0 (upper) and κ2 = 0.02
(lower). κ1 = 0.05 and other parameters are the same as those in Fig. 2.

tion of the TLS to be anti-parallel with respect to that of the
spin bath, the “effective magnetic field,” bk + b

†
k , will align σ z

and Lz into a parallel formation. Using the energy-based argu-
ment, it can be concluded that a larger S-B coupling strength
tends to yield a smaller P1(∞). In general, dynamics induced
by a spin bath is intrinsically non-Markovian,8 and the spin
bath may more likely drive the TLS out of thermalization in
a steady state. In fact, deviation of the steady state from the
Gibbs equilibrium is reported recently in Ref. 28 for a spin-
star system. Furthermore, due to the non-Markovian nature of
the spin bath, the steady state is more dependent on the initial
state of the TLS.

To study the time dependence of the population differ-
ence 〈σ z〉(t), we have solved Eq. (24) numerically. In the up-
per panel of Fig. 3, 〈σ z〉(t) as a function of time t and the T-S
coupling constant γ is presented for κ1 = 0.05 and κ2 = 0.
Similar results are displayed in the lower panel of Fig. 3 for κ1

= 0.05 and κ2 = 0.02. It is revealed that an optimized value
of 〈σ z〉(t) can be found in both cases: for κ2 = 0, it occurs at
γ ≈ 0.2; while for κ2 = 0.02, at γ ≈ 0.6. This phenomena is
also observed when the T-B coupling is absent.9 The shift of
optimal T-S coupling strength for different bath correlations
again results from the renormalized γ̃ . Interesting dynamics
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emerges in the large-γ regime, where the steady-state popula-
tion transfer increases monotonically with γ , and for a given
γ , the TLS flips unidirectionally barring minor population os-
cillations of minute amplitudes, as shown in Fig. 3. Overall,
the cooperative interplay of the T-B and T-S coupling facili-
tates efficient, unidirectional energy transport.

IV. MACROSCOPIC QUANTUM-SUPERPOSITION
STATES OF THE SPIN BATH

So far the reduced dynamics of the TLS has been our
focus. In this picture, the spin bath is viewed as an alterna-
tive bath which induces decoherence and dissipation along
with the conventional boson bath. On the other hand, the
spin bath in our system can also model an atomic ensemble
that is coupled to the boson bath. For example, the dynam-
ics of the two-mode Bose-Hubbard model can be obtained
by mapping the bosonic system onto one of the spins.29–31

Using an exactly solvable model, it was demonstrated that
the Hamiltonian H2 can drive an uncorrelated multi-spin sys-
tem into a macroscopic quantum-superposition (MQS) state
with high fidelity.16 The concept of MQS16, 29, 32 in multi-
(pseudo)spin or atomic systems is of great interest. For a
system made of N non-interacting spins-1/2 described by
the collective operator L = ∑N

j=1 �σj/2, take a spin coherent

state as its initial state such that ρsc(θ, φ, γ ) = |�̂〉〈�̂| with
|�̂〉 = e−iLzφe−iLyθ e−iLzγ |N/2, N/2〉, which is peaked along
the direction �̂ = (sin θ cos φ, sin θ sin φ, cos θ ). By setting
the gauge angle γ to zero, the spin coherent state can be writ-
ten in the |j, m〉 basis as33

|�̂〉 =
√

N !
N/2∑

m=−N/2

u
N
2 +mv

N
2 −m√(

N
2 − m

)
!
(

N
2 + m

)
!

∣∣∣∣N2 ,m

〉
, (34)

where u = cos θ
2 e−iφ/2, v = sin θ

2 eiφ/2. Specifically, states
|±x̂〉 with all spins in the spin bath pointing to the ±x̂ axis
can be obtained by choosing (θ, φ) = (π

2 , π
2 ∓ π

2 ):

|±x̂〉 =
N/2∑

m=−N/2

(±1)mqm

∣∣∣∣N2 ,m

〉
, (35)

where qm = 2−N/2
√

C
N/2+m

N . Within a model described by
H2, Ref. 16 examined the reduced dynamics of the spin bath
evolving from an initial state

�
( N

2 )
S (0) = |+x̂〉〈+x̂| =

∑
mn

qmqn

∣∣∣∣N2 ,m

〉 〈
N

2
, n

∣∣∣∣ , (36)

where �
(l)
S (t) denotes the reduced density matrix of the spin

bath in the l-subspace. It is found that, when the decoherence

rate caused by the boson bath is negligible, �
( N

2 )
S (t) can be

approximated by16

�
( N

2 )
S (t) ≈

∑
mn

qmqne
−itf (t)(m2−n2)

∣∣∣∣N2 ,m

〉 〈
N

2
, n

∣∣∣∣ ,
(37)

f (t) =
∑

k

η2
k

ωk

(
1 − sin ωkt

ωkt

)
.

Comparing Eq. (37) with Eq. (36), it is found that the system
returns to its initial state when t = 2π /f(t), that is, the state
�

( N
2 )

S (t) is periodic with a period of 2π /f(t). When t = π /f(t),
we have e−itf (t)(m2−n2) = (−1)m

2−n2 = (−1)m+n, then the state
evolves into the state | − x̂〉. If we defined τMQS ≡ π /2f(t), of
great interest is what happens at t = τMQS. It can be easily
checked that the state evolves into an entangled MQS state:32

|ψMQS〉 = 1√
2

(| + x̂〉 + i| − x̂〉), (38)

ρMQS ≡ |ψMQS〉〈ψMQS|. (39)

Apparently, a perfect MQS state has matrix elements
|[ρMQS]±±| = |〈±x̂|ρMQS| ± x̂〉| = 1

2 . When the decoherence
rate is included, the MQS can still be achieved with high prob-
ability at sufficiently low temperatures.16

Our goal here is to study the effects of the TLS on the
MQS generation. Along this line, TLS-induced correlations
and entanglements have been studied previously for a bath of
spins that is coupled to the TLS via XX-type coupling in a
spin-star configuration.7 In this work, the reduced dynamics
of the spin bath is probed by tracing out the degrees of free-
dom in the TLS and the boson bath. We are mainly interested
in the matrix elements:

�±±(t) = 〈±x̂|�( N
2 )

S (t)|±x̂〉

=
∑
mn

(±1)m(±1)nqmqn

[
�

( N
2 )

S (t)
]

mn
. (40)

Finite absolute values of the above matrix elements signify
the presence of an MQS state with high fidelity. In Eq. (40),
the matrix elements of the reduced density matrix �

( N
2 )

S (t) can
be evaluated as[

�
( N

2 )
S

]
mn

=
〈
N

2
,m

∣∣∣∣�( N
2 )

S

∣∣∣∣N2 , n

〉
= TrT+B

{〈
N

2
,m

∣∣∣∣ρ̃I (t)

∣∣∣∣N2 , n

〉
ei(Hn−Hm)t e(n−m)B1(t)

}
,

(41)

where the TLS operator Hm, satisfying H̃0|lm〉 = |lm〉Hm, is
given by

Hm = (αm − ηm2) + εm

τ z
m

2
. (42)

We leave the details of evaluating [�
( N

2 )
S ]mn using the TCL

master equation to Appendix B.
Following Ref. 16, we take our initial state of the whole

system as a separable state,

ρ(0) = |1̄〉〈1̄| ⊗ | + x̂〉〈+x̂| ⊗ ρB, (43)

or, after transforming into the polaron frame,

ρ̃(0) =
∑
mn

qmqn|1̄m〉〈1̄n|ρ̃mn
B ,

(44)
ρ̃mn

B = emB1− 1
2 B2ρBe−nB1+ 1

2 B2 .

In Fig. 4, we display for four sets of parameters the time-
dependent magnitudes of the four matrix elements |�++|,
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FIG. 4. Time-dependent magnitudes of matrix elements |�++| (red), |�+−|
= |�−+| (green), and |�−−| (blue). Parameters chosen: N = 10, J = 0.1, α

= 0, ωc = 1, β = 100, and κ3 = 0.5. The dotted lines are calculated in the
absence of the TLS16 and τMQS = 1.685.

|�+−| = |�−+|, and |�−−| in Eq. (40). Simultaneous devi-
ation of these matrix elements from zero signifies the forma-
tion of an MQS state with high fidelity, as mentioned earlier.
In the absence of the TLS, the MQS state can be reached
at τMQS ≈ 1.685 with a high probability,16 where the pa-
rameters chosen are J = 0.1, α = 0, ωc = 1, β = 100 and
κ3 = 0.5, in order to keep the temperature sufficiently low
for superposition generation. For comparison, results in the
absence of the TLS are shown as dotted lines in Fig. 4.
It is clearly seen that the initial state |+x̂〉 evolves into an
MQS state, as given by Eq. (38), with a high probability as
indicated by |�++(τMQS)| ≈ |�+−(τMQS)| ≈ |�−+(τMQS)|
≈ |�−−(τMQS)| ≈ 0.2, a much reduced value when compared
to 0.5 for a perfect MQS state. The considerable drop of the
matrix elements from 0.5 to 0.2 is attributed to the boson bath
decoherence, and at t ≈ 2τMQS, the state evolves to |−x̂〉 with
a high probability as indicated by |�−−(2τMQS)| ≈ 0.4, and
|�++(2τMQS)| ≈ |�+−(2τMQS)| ≈ |�−+(2τMQS)| ≈ 0.

Unlike in the study of the reduced dynamics of the TLS,
where the bath-bath correlation is reflected from the hy-
bridization of the T-B and S-B couplings through the spec-
tral function JTS(ω), direct bath-bath interactions play a role
via JSS(ω) in the present case. The nonlinear term, −L2

zη, in
Eq. (7) is the driving force for the formation of an MQS
state,16 while such a term has no effect on the reduced dy-
namics of the TLS. Comparison between Figs. 4(a) and 4(b)
indicates that the T-B coupling has only a minor impact on
the dynamics of the matrix elements before t = τMQS, except
for an inversion from state |−x̂〉 to |+x̂〉 at t ≈ 2τMQS, as the
T-B coupling is increased and the system goes from the weak
to strong coupling regime. A similar inversion can be found
in Fig. 4(c) when γ is increased to 5. Such inversions roughly
reduce the quasi-period of the evolution from 4τMQS to 2τMQS

without changing the onset time for the MQS state.

However, finite T-S coupling γ or energy difference ε

have considerable effects on the diagonal elements |�++| and
|�−−|. As shown in Figs. 4(c) and 4(d), the state evolves ap-
proximately into a maximally mixed state with a density ma-
trix in the {|+x̂〉, |−x̂〉} basis given by

ρmix =
(

1
2 0

0 1
2

)
. (45)

When the solid blue and red lines cross in Figs. 4(c) and 4(d),
one has approximately that |�++| = |�−−| ≈ 0.2 and |�+−|
= |�−+| ≈ 0. Such mixed states emerge even before the in-
version from |+x̂〉 to |−x̂〉 and the MQS generation (i.e.,
t < τMQS). Take Fig. 4(c) as an example, the state evolution
cycle is found to follow roughly

|+x̂〉〈+x̂|(t = 0)

→ ρmixed(t ≈ τMQS/4)

→ |+x̂〉〈+x̂|(t ≈ τMQS/2)

→ ρMQS(t ≈ τMQS)

→ |−x̂〉〈−x̂|(t ≈ 3τMQS/2)

→ ρmixed(t ≈ 7τMQS/4)

→ |+x̂〉〈+x̂|(t ≈ 2τMQS).

Despite the rich dynamical behavior of the diagonal elements
|�++| and |�−−|, the off-diagonal elements, |�+−| = |�−+|
(the green lines), are insensitive to the changes in control pa-
rameters, and to the removal or addition of the TLS, which
pins τMQS to roughly 1.7. It is thus concluded that the gen-
eration of macroscopic quantum superposition states is ro-
bust under various changes of parameter sets including the
removal of the TLS. Note that, as can be expected, the addi-
tional effect imposed by the TLS is of the order of O(1/N) and
will become negligible as the number of spins N in the spin
bath goes to infinite.

V. CONCLUSIONS

An extension to the spin-boson model has been proposed
by including an additional spin bath in a spin-star config-
uration in an effort to study: (1) the polarization dynamics
of the TLS under the influence of the two dissimilar baths;
and (2) the macroscopic quantum superposition state gener-
ation in the spin bath. By incorporating two limiting cases
in which the dynamics can be solved exactly, effects of the
two baths on the TLS have been investigated first. Steady
states can be reached in the presence of a boson bath with
a continuous spectral density. It is found that the steady flip-
ping of the TLS is aided by a finite TLS-spin-bath coupling
strength. This can be understood from thermodynamic con-
siderations as spin-bath states with a negative magnetic num-
ber m have a large Boltzmann weight favoring a unity value
of 〈σ z〉 with the increasing T-S coupling γ . Furthermore, the
bath-bath correlation κ2 plays a destructive role in the TLS
flipping. More interestingly, the spin bath has a sizable effect
on TLS thermalization even when there is no direct interaction
between the TLS and the spin bath. For the transient process,
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analogous to the findings in Ref. 9, optimal flipping occurs
at an intermediate T-S coupling strength, the value of which
is sensitive to the bath-bath correlation. For sufficiently large
T-S coupling, the TLS flips unidirectionally barring minor os-
cillations of minute amplitudes. Finally, we have studied the
MQS state generation in the spin bath under the influence of
the boson bath and the TLS. Given that MQS can be achieved
in the absence of the TLS, the effect of adding the TLS on
MQS has been investigated. In the presence of strong T-B cou-
pling, the quasi-period of evolution can be reduced roughly
by half. Rich dynamics may appear as the T-S coupling is in-
creased, such as the emergence of a fully mixed state of |+x̂〉
and |+x̂〉 before τMQS is reached, a phenomenon that is ab-
sent if the spin bath is only coupled to the boson bath (without
the TLS). It is also found that the generation of MQS states
is robust against parameter variance including the removal of
the TLS due to the insensitivity of the off-diagonal elements
of the reduce density matrix.
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APPENDIX A: INHOMOGENEOUS TERMS IN EQ. (25)

The first order inhomogeneous terms R
(1)
mi in Eq. (25) are

given by

R(1)
mx = −�d−

mαe
m

(
S2

m cos εmt + C2
m

)
,

R(1)
my = �d+

mαe
m

(
S2

m cos εmt + C2
m

)
, (A1)

R(1)
mz = �Smαe

m

[
sin εmtd+

m − Cm(cos εmt − 1)d−
m

]
,

where d+
m = dm + d∗

m, d−
m = i(dm − d∗

m).
The second order inhomogeneous terms R

(2)
mi in Eq. (25)

are given by

R(2)
mx = αe

m

[
G1−

QmxSmCm sin εmt − 2SmG1+
Qmx

+G1−
QmySmCm(1 − cos εmt) + 2G1+

QmzCm

+G1+
QmzS

2
m sin εmt

]
,

R(2)
my = αe

m

[ − G2+
QmxSmCm sin εmt − 2SmG2−

Qmx

−G2+
QmySmCm(1 − cos εmt) + 2G2−

QmzCm

−G2+
QmzS

2
m sin εmt

]
, (A2)

R(2)
mz = αe

m

[ − 2CmG1+
Qmx − S2

m sin εmtG1−
Qmx

+CmG2+
Qmx + (

C2
m + S2

m cos εmt
)
G1−

Qmy

− 2G2−
Qmy − 2SmG1+

Qmz + SmCm sin εmtG1−
Qmz

+ Sm cos εmtG2+
Qmz

]
,

where the inhomogeneous rates G
ξ+
Qmi = J 2(γ ξ

Qmi + γ
ξ∗
Qmi)

and G
ξ−
Qmi = iJ 2(γ ξ

Qmi − γ
ξ∗
Qmi) are combinations of

γ
1,2
Qmi

= �2
∫ t

0
ds

{
e−φ(t−s)

[
Ki

m(s − t)dm(t)dm(s) ∓ c.c.
]

+ (e−φ(t−s) − 1)
[
Ki

m(s − t)(dm(t) + dm(s)) ∓ c.c.
]}

+�2
∫ t

0
ds

{
eφ(t−s)

[
Ki∗

m (s − t)dm(t)d∗
m(s) ∓ c.c.

]
+ (eφ(t−s) − 1)

[
Ki∗

m (s − t)(dm(t) + d∗
m(s)) ∓ c.c.

]}
. (A3)

Note that, unlike R
(e)
mi , these two terms are directly related to

dm(t). Hence, the R
(1)
mi and R

(2)
mi terms will vanish once dm(t)

vanishes, which is the case in the long-time limit.

APPENDIX B: REDUCED DYNAMICS
OF THE SPIN BATH

In this Appendix we describe the calculations of the rel-
evant and irrelevant parts of the matrix elements [�( N

2 )]mn,
from which �±±(t) can be obtained from Eq. (40). Similar to
the bath correlation function φ(t) = φ1(t) − iφ2(t) in Eq. (27),
the following correlation functions,

ψ(t) = ψ1(t) − iψ2(t)

=
∑

k

(
ηk

ωk

)2 (
cos ωkt coth

βωk

2
− i sin ωkt

)
(B1)

and

ψmn(t) = (m − n)
∑

k

ηkξk

ω2
k

coth
βωk

2
cos ωkt, (B2)

are found to be useful. For the cubic spectral density used in
this work, we have

ψ1(t) = κ3

κ1
φ1(t),

(B3)
ψm−n(t) = (m − n)

κ2

κ1
φ1(t).

By applying the identity P + Q = 1 to ρ̃I (t) in Eq. (41),
we can divide [�(l)

S ]mn into the relevant part and the irrele-
vant part. It is known that the irrelevant part Qρ̃I(t) can be
determined from Qρ̃I(0) and P ρ̃I(t) as Qρ̃I(t) = [1 + A(t)]
Qρ̃I(0) + B(t)P ρ̃I(t), with A(t) and B(t) operators of the first
order in H̃1,I .1 In practice, an exact calculation of the irrele-
vant part can be very involved. Here, we will use the zeroth
order approximation Qρ̃I(t) ≈ Qρ̃I(0),21 so that[

�
( N

2 )
S

]
mn

=
[
�

( N
2 )

S

]P

mn
+

[
�

( N
2 )

S

]Q

mn
, (B4)

with [
�

( N
2 )

S

]P

mn
= TrT{〈m|σ̃I(t)|n〉ei(Hn−Hm)t }

TrB{ρBe(n−m)B1(t)} (B5)
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and

[
�

( N
2 )

S

]Q

mn

≈ TrT+B{〈m|Qρ̃I(0)|n〉ei(Hn−Hm)t e(n−m)B1(t)}. (B6)

The irrelevant part is evaluated directly for a given initial
state, while the relevant part can be obtained by using the TCL
master equation on matrix elements of σ̃I(t),

hsm,s ′m′(t) ≡ 〈sm|σ̃I(t)|s ′m′〉, (B7)

where we have defined the basis |sm〉 ≡ |s〉|N/2, m〉, with
s = 1, 1̄.

1. Calculation of [�( N
2 )]P

mn in Eq. (B5)

In order to evaluate the trace over the qubit in Eq. (B5),
we diagonalize Hn − Hm in the σ -basis:

Hn − Hm = α(n − m) − η(n2 − m2) + 1

2
Enmτz

nm, (B8)

where τ z
nm = |+〉nm nm〈+| − |−〉nm nm〈−|, with the two

eigenstates

|+〉nm = cos
θnm

2
|1〉 + sin

θnm

2
|1̄〉,

(B9)

|−〉nm = − sin
θnm

2
|1〉 + cos

θnm

2
|1̄〉,

where tan θnm = (εnSn − εmSm)/(εnCn − εmCm).
The corresponding eigen-energies read

Enm,± = α(n − m) − η(n2 − m2) ± 1

2
Enm, (B10)

with Enm =
√

(εnCn − εmCm)2 + (εnSn − εmSm)2.
By defining hsm,s ′m′ = 〈sm|σ̃I(t)|s ′m′〉, we obtain

[
�

( N
2 )

L

]P

mn
= e− (n−m)2

2 ψ1(0) ·[(
cos2 θnm

2
eiEnm,+t + sin2 θnm

2
eiEnm,−t

)
h1m,1n

+ cos
θnm

2
sin

θnm

2
(eiEnm,+t − eiEnm,−t )(h1m,1̄n + h1̄m,1n)

+
(

sin2 θnm

2
eiEnm,+t + cos2 θnm

2
eiEnm,−t

)
h1̄m,1̄n

]
. (B11)

Thus, we only need to calculate hsm,s ′m′ . Using the TCL mas-
ter equation, we can construct the equations of motion of
hsm,s ′m′ :

ḣsm,s ′m′ = [ḣsm,s ′m′]h + [ḣsm,s ′m′ ]ih1 + [ḣsm,s ′m′]ih2, (B12)

where [ḣsm,s ′m′ ]h, [ḣsm,s ′m′]ih1, and [ḣsm,s ′m′ ]ih2 are the homo-
geneous term, the first order inhomogeneous term, and the

second order inhomogeneous term, respectively:

[
ḣsm,s ′m′

]
h

= −
∫ t

0
dτTrB

{〈sm|[H̃1,I (t), H̃1,I (τ )σ̃I(t)ρB
]|s ′m′〉

+ 〈sm|[H̃1,I (t), H̃1,I (τ )σ̃I(t)ρB
]†|s ′m′〉}

= 2J 2
∫ t

0
dτ

{
ss ′hsm,s ′m′ · (�[

K̃z
m(τ )K̃z

m′(t)
]〈D(t)D(τ )〉

+�[
K̃z∗

m (τ )K̃z
m′(t)

]〈D(t)D†(τ )〉 + t ↔ τ
)

+ s ′hs̄m,s ′m′ ·[(�[
K̃z

m′ (t)K̃x
m(τ )

] − is�[
K̃z

m′(t)K̃y
m(τ )

])〈D(t)D(τ )〉
+ (�[

K̃z∗
m′ (t)K̃x

m(τ )
] − is�[

K̃z∗
m′ (t)K̃y

m(τ )
])〈D†(t)D(τ )〉

+ t ↔ τ
]

+ shsm,s̄ ′m′[(�[
K̃z

m(τ )K̃x
m′(t)

] + is ′�[
K̃z

m(τ )K̃y

m′(t)
])〈D(t)D(τ )〉

+ (�[
K̃z

m(τ )K̃x∗
m′ (t)

] + is ′�[
K̃z

m(τ )K̃y∗
m′ (t)

])〈D†(t)D(τ )〉
+ t ↔ τ

]
+hs̄m,s̄ ′m′

[(�[
K̃x

m(τ )K̃x
m′(t)

] − is�[
K̃y

m(τ )K̃x
m′(t)

]
+ is ′�[

K̃x
m(τ )K̃y

m′(t)
] + ss ′�[

K̃y
m(τ )K̃y

m′(t)
])〈D(t)D(τ )〉

+ (�[
K̃x

m(τ )K̃x∗
m′ (t)

] − is�[
K̃y

m(τ )K̃x∗
m′ (t)

]
+ is ′�[

K̃x
m(τ )K̃y∗

m′ (t)
] + ss ′�[

K̃y
m(τ )K̃y∗

m′ (t)
])〈D†(t)D(τ )〉

+ t ↔ τ
]

−hsm,s ′m′
[(�[ �̃Km(t)· �̃Km(τ )

] + is�[ �Mz
m(t, τ )

])〈D(t)D(τ )〉

+ (�[ �̃K∗
m(t) · �̃Km(τ )

] + is�[ �Nz
m(t, τ )

])〈D†(t)D(τ )〉]
−hs̄m,s ′m′

[(
s�[ �My

m(t, τ )
] + i�[ �Mx

m(t, τ )
])〈D(t)D(τ )〉

+ (
s�[ �Ny

m(t, τ )
] + i�[ �Nx

m(t, τ )
])〈D†(t)D(τ )〉]

−hsm,s ′m′
[(�[ �̃Km′(t)· �̃Km′(τ )

]−is ′�[ �Mz
m′(t, τ )

])〈D(τ )D(t)〉

+ (�[ �̃Km′(t) · �̃K∗
m′(τ )

] − is ′�[ �N∗z
m′ (t, τ )

])〈D†(τ )D(t)〉]
−hsm,s̄ ′m′

[(
s ′�[ �My

m′(t, τ )
] − i�[ �Mx

m′(t, τ )
])〈D(τ )D(t)〉

+ (
s ′�[ �N∗y

m′ (t, τ )
] − i�[ �N∗x

m′ (t, τ )
])〈D†(τ )D(t)〉]},

(B13)

where �Mm(t, τ ) = �̃Km(t) × �̃Km(τ ), and �Nm(t, τ ) = �̃K∗
m(t)

× �̃Km(τ ) with �̃Km(t) = (K̃x
m(t), K̃y

m(t), K̃z
m(t)).

The first order inhomogeneous terms are

[ḣ1m,1m′ ]ih1 = 0, (B14)
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[ḣ1m,1̄m′]ih1 = −iTrB{〈1m|[H̃1,I (t),Qρ̃I(0)]|1̄m′〉}
= −iJ qmqm′

([
K̃x

m(t) − iK̃y
m(t)

]〈D(t)〉Qmm′

+ [
K̃x∗

m (t) − iK̃y∗
m (t)

]〈D†(t)〉Qmm′
)
, (B15)

[ḣ1̄m,1m′ ]ih1 = −iTrB{〈1̄m|[H̃1,I (t),Qρ̃I(0)]|1m′〉}
= iJ qmqm′

([
K̃x

m′ (t) + iK̃
y

m′(t)
]〈D(t)〉Qmm′

+ [
K̃x∗

m′ (t) + iK̃
y∗
m′ (t)

]〈D†(t)〉Qmm′
)
, (B16)

and

[ḣ1̄m,1̄m′]ih1 = −iTrB{〈1̄m|[H̃1,I (t),Qρ̃I(0)]|1̄m′〉}
= iJ qmqm′

([
K̃z

m(t) − K̃z
m′(t)

]〈D(t)〉Qmm′

+ [
K̃z∗

m (t) − K̃z∗
m′ (t)

]〈D†(t)〉Qmm′
)
, (B17)

where 〈D(t)〉Qmm′ = TrB{D(t)δρmm′
B }. Direct calculation

gives

〈D(t)〉Qmm′ = �e− 1
2 (m−m′)2ψ1(0)

{e−ψmm′ (t)[(dm(t) + 1)(dm′ (t) + 1)]
1
2 − 1} (B18)

and 〈D†(t)〉Qmm′ = 〈D(t)〉∗Qm′m.
The second order inhomogeneous terms are

[
ḣ1m,1m′

]
ih2 = qmqm′J 2

∫ t

0
dτ

{(
K̃x

m(τ ) − iK̃y
m(τ )

) (
K̃x

m′(t) + iK̃
y

m′(t)
)〈D(t)D(τ )〉Qmm′

+ (
K̃x∗

m (τ ) − iK̃y∗
m (τ )

)(
K̃x

m′ (t) + iK̃
y

m′(t)
)〈D(t)D†(τ )〉Qmm′

+ (
K̃x

m(τ ) − iK̃y
m(τ )

) (
K̃x∗

m′ (t) + iK̃
y∗
m′ (t)

)〈D†(t)D(τ )〉Qmm′

+ (
K̃x∗

m (τ ) − iK̃y∗
m (τ )

)(
K̃x∗

m′ (t) + iK̃
y∗
m′ (t)

)〈D†(t)D†(τ )〉Qmm′

+ t ↔ τ
}
, (B19)

[ḣ1m,1̄m′]ih2 = −J 2qmqm′

∫ t

0
dτ

{[ (
K̃x

m(τ ) − iK̃y
m(τ )

)
K̃z

m′(t)〈D(t)D(τ )〉Qmm′

+ (
K̃x∗

m (τ ) − iK̃y∗
m (τ )

)
K̃z

m′(t)〈D(t)D†(τ )〉Qmm′

+ (
K̃x

m(τ ) − iK̃y
m(τ )

)
K̃z∗

m′ (t)〈D†(t)D(τ )〉Qmm′

+ (
K̃x∗

m (τ ) − iK̃y∗
m (τ )

)
K̃z∗

m′ (t)〈D†(t)D†(τ )〉Qmm′

+ t ↔ τ
]

+ [ �My
m(t, τ ) + i �Mx

m(t, τ )
]〈D(t)D(τ )〉Qmm′

+[ �Ny
m(t, τ ) + i �Nx

m(t, τ )
]〈D†(t)D(τ )〉Qmm′

+ [ �N∗y
m (t, τ ) + i �N∗x

m (t, τ )
]〈D(t)D†(τ )〉Qmm′

+ [ �M∗y
m (t, τ ) + i �M∗x

m (t, τ )
]〈D†(t)D†(τ )〉Qmm′

}
, (B20)

[ḣ1̄m,1m′ ]ih2 = −qmqm′J 2
∫ t

0
dτ

{[
K̃z

m(τ )
(
K̃x

m′(t) + iK̃
y

m′ (t)
)〈D(t)D(τ )〉Qmm′

+ K̃z∗
m (τ )

(
K̃x

m′(t) + iK̃
y

m′ (t)
)〈D(t)D†(τ )〉Qmm′

+ K̃z
m(τ )

(
K̃x∗

m′ (t) + iK̃
y∗
m′ (t)

)〈D†(t)D(τ )〉Qmm′

+ K̃z∗
m (τ )

(
K̃x∗

m′ (t) + iK̃
y∗
m′ (t)

)〈D†(t)D†(τ )〉Qmm′

+ t ↔ τ
]

+ [ �My

m′ (t, τ ) − i �Mx
m′ (t, τ )

]〈D(τ )D(t)〉Qmm′

+ [ �N∗y

m′ (t, τ ) − i �N∗x
m′ (t, τ )

]〈D†(τ )D(t)〉Qmm′

+ [ �Ny

m′ (t, τ ) − i �Nx
m′ (t, τ )

]〈D(τ )D†(t)〉Qmm′

+ [ �M∗y

m′ (t, τ ) − i �M∗x
m′ (t, τ )

]〈D†(τ )D†(t)〉Qmm′
}
, (B21)

and

[ḣ1̄m,1̄m′ ]ih2

= qmqm′J 2
∫ t

0
dτ

= {[
K̃z

m(τ )K̃z
m′(t)〈D(t)D(τ )〉Qmm′

+ K̃z∗
m (τ )K̃z

m′(t)〈D(t)D†(τ )〉Qmm′

+ K̃z
m(τ )K̃z∗

m′ (t)〈D†(t)D(τ )〉Qmm′

+ K̃z∗
m (τ )K̃z∗

m′ (t)〈D†(t)D†(τ )〉Qmm′

+ t ↔ τ
]

− ([ �̃Km(t) · �̃Km(s) − i �Mz
m(t, s)

]〈D(t)D(s)〉Qmm′

+ [ �̃K∗
m(t) · �̃Km(s) − i �Nz

m(t, s)
]〈D†(t)D(s)〉Qmm′

+ [ �̃Km(t) · �̃K∗
m(s) − i �N∗z

m (t, s)
]〈D(t)D†(s)〉Qmm′

+ [ �̃K∗
m(t) · �̃K∗

m(s) − i �M∗z
m (t, s)

]〈D†(t)D†(s)〉Qmm′

+ [ �̃Km′(t) · �̃Km′(s) + i �Mz
m′ (t, s)

]〈D(s)D(t)〉Qmm′

+ [ �̃Km′(t) · �̃K∗
m′(s) + i �N∗z

m′ (t, s)
]〈D†(s)D(t)〉Qmm′

+ [ �̃K∗
m′(t) · �̃Km′(s) + i �Nz

m′ (t, s)
]〈D(s)D†(t)〉Qmm′

+ [ �̃K∗
m′(t) · �̃K∗

m′(s) + i �M∗z
m′ (t, s)

]〈D†(s)D†(t)〉Qmm′
)}

,

(B22)

where the inhomogeneous correlation functions

〈D(t)D(s)〉Qmm′ = T r
{
δmm′

B D(t)D(s)
}
, (B23)

etc., with δmn
B = ρ̃mn

B − ρBTrB{ρBe(m−n)B1}.
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Direct calculation gives

〈D(t)D(s)〉Qmm′ = e− (m−m′ )2
2 ψ(0)e−φ(0)

{e−φ(t−s)e−ψmm′ (t)−ψmm′ (s)[(dm(t) + 1)(dm′ (t) + 1)

(dm(s) + 1)(dm′(s) + 1)]
1
2

− e−ψmm′ (t)[(dm(t) + 1)(dm′ (t) + 1)]
1
2

− e−ψmm′ (s)[(dm(s) + 1)(dm′(s) + 1)]
1
2

− (e−φ(t−s) − 2)}, (B24)

〈D(t)D†(s)〉Qmm′ = e− (m−m′ )2
2 ψ(0)e−φ(0)

{eφ(t−s)e−ψmm′ (t)+ψmm′ (s)[(dm(t) + 1)(dm′ (t) + 1)

(dm(s) + 1)∗(dm′ (s) + 1)∗]
1
2

− e−ψmm′ (t)[(dm(t) + 1)(dm′(t) + 1)]
1
2

− eψmm′ (s)[(dm(s) + 1)∗(dm′(s) + 1)∗]
1
2

− (eφ(t−s) − 2)}, (B25)

〈D†(t)D(s)〉Qmm′ = e− (m−m′ )2
2 ψ(0)e−φ(0)

{eφ(t−s)eψmm′ (t)−ψmm′ (s)[(dm(t) + 1)∗(dm′ (t) + 1)∗

(dm(s) + 1)(dm′ (s) + 1)]
1
2

− eψmm′ (t)[(dm(t) + 1)∗(dm′(t) + 1)∗]
1
2

− e−ψmm′ (s)[(dm(s) + 1)(dm′ (s) + 1)]
1
2

− (eφ(t−s) − 2)}, (B26)

and

〈D†(t)D†(s)〉Qmm′ = 〈D(s)D(t)〉∗Qm′m. (B27)

Then hsm,s ′m′ are obtained by integrating the right-hand side
of Eq. (B12) numerically.

2. Calculation of [�( N
2 )]Q

mn in Eq. (B6)

The irrelevant contribution can be calculated directly:[
�

( N
2 )

L

]Q

mn

= TrS+B{〈m|Qρ̃I(0)|n〉ei(Hn−Hm)t e(n−m)B1(t)}
= qmqne

−(m−n)2ψ1(0) ·

(
sin2 θnm

2
eiEnm,+t + cos2 θnm

2
eiEnm,−t

)
(

e
(n−m)[(n−m)ψ1(t)+i(n+m)ψ2(t)−i

∑
k

ηk ξk

ω2
k

sin ωkt] − 1

)
.

(B28)
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