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Abstract—The paper presents a compact 3-bit 90° phase shifter 

for phased-array applications at the 60-GHz ISM band (IEEE 

802.11ad standard). The designed phase shifter is based on 

reflective-type topology using the proposed reflective loads with 

binary-weighted digitally-controlled varactor arrays and the 

transformer-type directional coupler. The measured eight output 

states of the implemented phase shifter in 65-nm CMOS 

technology, exhibit phase-resolution of 11.25° with an RMS phase 

error of 5.2°. The insertion loss is 5.69±1.22 dB at 60-GHz and the 

return loss is better than 12 dB over 54-66 GHz. The chip 

demonstrates a compact size of only 0.034 mm2. 

 
Index Terms—Digital control, reflective-type phase shifter 

(RTPS), millimeter-wave. 

I. INTRODUCTION 

HASED-ARRAYS [1]-[4] for the 60-GHz ISM band 

applications require the variable phase shifters to have a 

good tradeoff between the low insertion loss and the fine 

phase-resolution. Two types of phase shifters, including 

reflective-type phase shifter (RTPS) [1], [5], and switched-type 

phase shifter (STPS) [3], [6], are widely employed in 60-GHz 

phased-arrays to provide fine phase-resolution of 22.5° and 

even 11.25° with insertion loss of around 12-15 dB for 360° 

phase shifting range.  

 The RTPS is capable to output continuous phase shift 

according to analog tuning voltages, which are usually 

provided by digital-to-analog converters (DACs) for the digital 

control purpose. Since the phase shift of RTPS is not linear with 

respect to the tuning voltages [1], [5], [7], the resulted 

phase-resolution relies heavily on the resolution and accuracy 

of these DACs. In [1], a 6-bit DAC was co-designed on-chip to 

tune the 180° phase shifter and achieved 4-bit (11.25°) 

phase-resolution. On the other hand, the STPS has the intrinsic 

advantages of digital control due to its topology of cascaded 

switching networks [3], [6]. However, the STPS with finer 

phase-resolution needs more cascaded stages that lead to higher 

insertion loss as well as larger circuit size. Recently in [6], a 

60-GHz 5-bit STPS was reported and achieved an average 

insertion loss of 14.6 dB with core circuit size of 0.34 mm
2
. But 
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insertion loss of ~7.3 dB and size of ~0.17 mm
2 
of the STPS in 

[6] are contributed by the 3-bit 90° phase shifter. 

 In this paper, a concept of switch-less digital reflective loads 

by using binary-weighted digitally-controlled varactor arrays is 

proposed for phase shifter as shown in Fig. 1. A 60-GHz 3-bit 

90° phase shifter based on the proposed concept is developed. 

In contrast to the conventional analog RTPS in [1], [5] and [7], 

the implemented phase shifter is directly controlled by digital 

bits instead of analog tuning voltages. Comparing to the STPS, 

the proposed phase shifter achieves insertion loss and size 

reductions.  

II. CIRCUIT DESIGN 

A. Topology 

The proposed phase shifter comprises of a 3-dB 

transformer-type directional coupler and two identical 
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Fig. 1: Conventional 5-bit STPS and the proposed 3-bit 90 phase shifter. 
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reflective loads as shown in Fig. 1. Since it is of RTPS 

topology, the phase shift is varying according to the phase angle 

of the reflection coefficient [7]: 
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, (1) 

 

where X is the reactance of the reflective loads with the 

minimum and maximum values denoted as Xmin and Xmax, 

respectively. The characteristic impedance of the coupler is Z0. 

Thus, the phase shift and the total phase-shift range are 
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B. Transformer-Type Directional Coupler 

The transformer-type directional coupler is adopted for its 

compactness. The size reduction is over 50% comparing to the 

broadside coupler in [5]. As shown in Fig. 1, the coupler uses 

two metal layers, colored in grey (OI) with 3.3 µm thickness 

and red (EA) with 0.9 µm thickness respectively. The blue 

traces are the metal via with length extended for better 

illustration. The coupler has its primary and secondary coils 

inter-crossed where the primary coil is firstly constructed on OI 

layer for half-turn, and then is routed down to EA layer for 

another half-turn to complete the winding trace. Meanwhile, 

the secondary coil is formed on EA layer first, and then crosses 

to complete the full-turn on OI layer. Thus, the structure is 

symmetrical so that the impedance looking into the four ports 

are expected to be the same. The optimized outer diameter is 

found as 69 µm with trace width of 5 µm to minimize the 

coupler loss while maintaining the return loss and isolation 

better than 15 dB. In Fig. 2, the full-wave simulation using 

ANSYS HFSS V.14 shows that the transformer-based coupler 

achieves the total insertion loss less than 0.9 dB and the return 

loss and isolation better than 17 dB over 50-70 GHz. The phase 

balance is kept close to 90°. 

C. Reflective Loads with the Binary-Weighted 

Digitally-Controlled Varactor Arrays 

As shown in the bottom of Fig. 1, the proposed reflective 

load comprises of three varactors CV1 to CV3 and one 

fixed-value capacitor CFix in shunt-connection. The LT is a 

series inductor that forms a resonator together with the 

collective capacitances to increase the load reactance X varying 

range and the phase-shifting range according to (3). The CB and 

RB are biasing components with values of 1 pF and 10 kΩ 

respectively. The digital control function is realized by biasing 

the three control bits, V11.25, V22.5 and V45 to either 0 V or 1.2 V. 

Since each varactor has two capacitance values under 

alternative digital biasing, the proposed reflective load is 

capable of achieving eight different reactance values as well as 

eight phase shifts for the phase shifter according to (2). The CFix 

is added to compensate the overall phase error with the tradeoff 

of a reduced phase-shifting range. The varactor sizes are 

binary-weighted and the optimized design parameters are 

summarized in Table I. 

III. EXPERIMENTAL RESULTS 

The measurement is performed on-chip using Agilent 

N5247A PNA-X network analyzer and Cascade Elite 300 

probe station. 

In Fig. 3, the die micrograph of the fabricated phase shifter is 

shown, where the circuit size excluding testing pads is only 

0.034 mm
2
. 

Fig. 4 depicts the measured results of eight states over 

frequency range of 54-66 GHz that fully covers the 60-GHz 
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Fig. 2. Simulated performance of the transformer-type directional coupler. 
 

TABLE I 

DESIGN PARAMETERS 

 Fixed 
Components 

Variable Components 

Size 

(Fingers×W/L) 
Min. (fF) Max. (fF) 

CFix 17.8 fF - - - 

CV1-min - 1×1.6 µm/0.47 µm 2.47 7.4 

CV2-min - 2×1.6 µm/0.47 µm 4.92 14.6 

CV3-min - 4×1.6 µm/0.47 µm 9.78 28.7 

LT 110 pH - - - 
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Fig. 3. Micrograph of chip die. 
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ISM band. In Fig. 4(a), the phase shifter shows the eight output 

phases with phase-resolution of 11.25° and an RMS phase error 

(calculated as in [6]) of 5.2° at 60-GHz. The measured group 

delays are within ±3 ps with absolute delay less than 20 ps as 

shown in Fig. 4(b). Fig. 4(c) depicts the insertion loss and 

return loss over the entire bandwidth. The worst loss flatness 

has a value of ± 0.6 dB and occurs in State 8. At 60-GHz, the 

average insertion loss is 5.69 dB with loss variation of ±1.22 dB 

across eight states.  

Table II compares this work with other similar phase shifters. 

This work has the smallest circuit size and insertion loss among 

90° phase shifters. Moreover, this work is controlled directly by 

digital bits. 

For systems requiring 360° phase-shifting range, 

switched-type 180° and 90° phase-shifting stages can be 

cascaded with the proposed phase shifter. The resulted 5-bit 

360° phase shifter will have better performance than the 

conventional STPS, thanks to the low loss and compactness of 

the proposed phase shifter. 

IV. CONCLUSION 

The miniaturized 3-bit phase shifter with switch-less digital 

reflective loads by using the binary-weighted varactor arrays 

was designed and implemented in 65-nm CMOS technology. 

The measured results showed that 3-bit phase-resolution has 

been achieved with total phase-shifting range of 90° covering 

the 60-GHz ISM band. Moreover, the characteristics of digital 

control, compact size and low insertion loss make the proposed 

design very suitable for 60-GHz phased-arrays.  
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Fig. 4. Measured performance versus frequency: (a) phase shift; (b) group 

delay; (c) insertion loss and return loss. 

 

TABLE II 

COMPARISON WITH OTHER SIMILAR PHASE SHIFTERS 

Reference [1] [5] [6]* This work 

Load 

Topology/ 
Step 

RTPS/ 

Cont's 

RTPS/ 

Cont's 

STPS/ 

3-bit 

RTPS/ 

3-bit 

Technology 
0.12-µm 

SiGe 
90-nm 

CMOS 

90-nm 

CMOS 

65-nm 

CMOS 

Freq. (GHz) 57-64 50-65 57-64 54-66 

Phase-shifting 

range(°) 
180 90 90 90 

Insertion loss 

(dB) 
6±1.8 

6.25 ± 

1.75 
7.3±1.5 5.69±1.22 

Return loss 

(dB) 
- > 12 - > 12 

DAC 

requirement 
Yes Yes No No 

Size (mm2) 0.18 0.08 0.17 0.034 

* The 3-bit 90° phase shifter is used for comparison. The insertion loss is 

estimated by averaging the total insertion loss by the number of stages since the 

main loss is due to switch loss. The size is estimated from die photo. 


