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Abstract—The development of 3D integration technology significantly
improves the bandwidth of network-on-chip (NoC) system. However,
the 3D technology-enabled high integration density also brings severe
concerns of temperature increase, which may impair system reliability
and degrade the performance. Task scheduling has been regarded as one
effective approach in eliminating thermal hotspot without introducing
hardware overhead. However, centralized thermal-aware task scheduling
algorithms for 3D-NoC have been limited for incurring high computa-
tional complexity as the system scale increase. In this paper, we propose
a distributed agent-based thermal-aware task scheduling algorithm for
3D-NoC which shows high scheduling efficiency and high scalability.
Experimental results have shown that when compared to the centralized
algorithms, our algorithm can achieve up to 13 ◦C reduction in peak
temperature of the system without sacrificing performance.

I. INTRODUCTION

3D-NoC architecture is a feasible design to be used in future
high performance computing systems because of its smaller area,
lower signal delay and higher bandwidth [1]. However, the growth
in power density and heat dissipation makes 3D-NoC system more
easily get overheated and harms the reliability of the system [2].
Dynamic thermal-aware scheduling is an efficient solution for thermal
management on 3D-NoC without incurring much implementation
cost. However, previous scheduling algorithms for NoC systems like
[3], [4] are all designed in the centralized manner, which limits
the scalability of these algorithms. As the system scale increases,
the complexity and overhead of centralized scheduling algorithms
will rise rapidly and the efficiency in thermal management may
also drop significantly. To overcome this problem, we proposed the
first distributed thermal-aware task scheduling algorithm for 3D-NoC
systems. The algorithm organizes the processors of the 3D-NoC into
clusters and the scheduling of an application will be performed within
each cluster simultaneously. All the schedule procedures are handled
by three kinds of software agents. In experiments, our distributed
algorithm not only showed higher scalability but also achieved
lower peak temperature when compared to centralized scheduling
algorithms.

II. AGENT-BASED DISTRIBUTED SCHEDULING SCHEME

In this work, we use task graphs to model the input applications.
A task graph is an acyclic graph (DAG), as shown in Fig. 2(a), where
the nodes represent the tasks of the application and the edges denote
the precedence constraints between the tasks. Execution time and
power consumption of each task as well as the amount of messages
to be transmitted on each edge are assumed to be previously known.

In the scheduling algorithm, we view the processors of the 3D-NoC
on three levels: processor, cluster and the system. The whole system
is divided into several clusters and each cluster contains same number
of processors. Three kinds of software agents are used to manage the
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Fig. 1. The flow of the agent-based distributed scheduling algorithm.

computing resources on the three levels and perform different duties
of the scheduling algorithm:

• The global agent receives an application and gives a pre-
schedule to the application. It is also responsible for selecting
the holding cluster for the application later.

• Cluster agents map the application onto the processors based
on the pre-scheduling result given by the global agent. Each
cluster agents will give an evaluation of the mapping result as
the reference for the global agent to select the holding cluster
for the application. After the holding processor is chosen, the
agent of that cluster will load the tasks onto the processors.

• Processor agents decide the execution order of the local task.
Unlike the global agent and cluster agents that run before the
application starts, processor agents make decisions in between
the execution of individual tasks of the application.

The scheduling flow is shown in Fig. 1. The distributed manner
of this scheduling algorithm lies in the fact that the mapping of an
application will be searched simultaneously in all the clusters, which
greatly reduces the computing complexity of the algorithm.

The pre-scheduling in global agent is formed as the classic resource
constrained DAG scheduling problem: given a set of virtual proces-
sors that has the same number of processors within each cluster,
find a schedule of the tasks such that the execution time of the
application is minimized. We adopt the the Highest Level First with
Estimated Times (HLFET) algorithm to solve the problem [5]. This
list-based algorithm schedules the tasks based on the so called level
of each task which defines the criticality of the task. Tasks with high
level need to start early, because if delayed, execution time of the
whole application will be affected. Contrarily, low level tasks can
be delayed for some time without affecting the execution time of the
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application. For example, in the task graph of Fig. 2(a), task 1 has the
highest level since all the other tasks cannot be executed until task
1 is finished, while task 5 has the lowest level because no following
tasks depend on task 5. Detailed description of the algorithm can be
found in [5]. After global agent generate the pre-schedule results,
like in Fig. 2(b), it will not send this complicated information to
each cluster. Instead, global agent will compress the result into a
undirected graph called processor load graph (PLG) which sketches
the work load of each virtual processor. As shown in Fig. 2(c), in
the PLG, each node represents a virtual processor of the pre-schedule
result and only records the total power consumption and execution
time of the virtual processor. The edges are used to denote the amount
of messages to be transmitted between different virtual processors.
Sending PLG instead of the detailed pre-scheduling result to the
clusters significantly reduces the complexity of mapping algorithm
and saves large amount of communication between processors.

After each cluster agent receives the PLG from global agent, it will
map the virtual processors to the real processors within the cluster.
The mapping algorithm is heuristic-based. Virtual processors of the
PLG will be mapped one by one according to the descending order of
the importance value. In selecting the real processor for each virtual
processor, the agent will compare the cost for mapping the virtual
processor on each real processor that has not be assigned yet and the
one with lowest cost will be chosen. The heuristics used to compute
importance and cost are listed in table I. Using the combination
of the three pair of heuristics with different objective will generate
the mapping result which could reduce the peak temperature of the
system without sacrificing too much computing performance. The
most efficient combination of the heuristics we have found yet is to
use the three pair of heuristics with the same weight in computing
the importance and cost.

After the tasks have been assigned to the processors, processor
agents will dynamically decide the execution order of the tasks. In

TABLE I
HEURISTICS FOR IMPORTANCE AND COST FUNCTION

Objective Heuristic for importance Heuristic for cost
Minimize Execution start time of the Total execution time
makespan virtual processor remained
Balance Power consumption of the Total power remained
power virtual processor
Minimize Total amount of messages Total communication
communication flow in or out of the delay generated
cost virtual processor

TABLE II
PEAK TEMPERATURE AND EXECUTION TIME RESULT

NoC Size Peak temperature (◦C) Execution time (Kcycle)
Distributed Centralized Distributed Centralized

32 99.66 113.59 1.23 1.23
48 95.59 105.89 1.23 1.23
96 92.05 101.64 1.21 1.21

each processor agent, two queues of tasks are maintained: the wait
queue which contains tasks that are waiting for messages from tasks
with precedence and cannot be executed immediately and the ready
queue which contains tasks that are ready for execution. Whenever
the processor finished computing a previous task, the processor agent
will be invoked to select a task with highest priority from the ready
queue to execute. The priority of the tasks is defined as the level
value that is mentioned in pre-scheduling algorithm. This definition
of priority guarantees that the execution of an application will not be
held back because of the delay of few critical tasks. Fig. 3 shows the
scheduling flow for processor agents.

III. EXPERIMENTAL RESULTS

In the experiments, we tested our algorithm on three 2-layer 3D-
NoC systems with different processor numbers. The benchmark is
composed of 100 randomly generated task graphs. For comparison,
we also implemented a centralized scheduling algorithm using the
same heuristics as our distributed algorithm. Table II shows the
execution time and peak system temperature achieved by the two
algorithms. We can see that our algorithm can always achieve
lower peak temperature without increasing the execution delay.
The scalability of our algorithm also significantly outperforms the
centralized algorithm. The complexity of centralized heuristic-based
scheduling algorithms relates to the number of processors inside the
NoC system linearly. However, the complexity of our distributed
scheduling algorithm will not increase with the NoC size since it
only depends on the cluster size.
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