<table>
<thead>
<tr>
<th>Title</th>
<th>Active control of flow-induced vibrations on slider in hard disk drives: experimental demonstration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Min, Hequn; Huang, Xiaoyang; Zhang, Qide</td>
</tr>
<tr>
<td>Citation</td>
<td>Min, H., Huang, X., & Zhang, Q. (2013). Active control of flow-induced vibrations on slider in hard disk drives: experimental demonstration. IEEE Transactions on Magnetics, 49(6), 3038-3041.</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/10204</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 IEEE. This is the author created version of a work that has been peer reviewed and accepted for publication by IEEE Transactions on Magnetics, IEEE. It incorporates referee's comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at DOI: [http://dx.doi.org/10.1109/TMAG.2013.2239653].</td>
</tr>
</tbody>
</table>
Active Control of Flow-Induced Vibrations on Slider in Hard Disk Drives: Experimental Demonstration

Hequn Min¹, Xiaoyang Huang¹, and Qide Zhang²

¹School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
²Data Storage Institute, DSI Building, Singapore 117608

This paper presents an experimental demonstration on the active control of flow-induced vibrations on a head gimbals assembly (HGA) bearing a slider in a hard disk drive (HDD). The feedback control closed-loop consisted of a laser Doppler vibrometer (LDV), a narrowband frequency filter, a signal conditioner, an in-house made phase shifter, and a piezoelectric disk mounted on the inner surface of the HDD cover. The HGA vibrations detected by the LDV were used as feedback error signals, and the signals were then phase shifted and amplified to drive the piezoelectric disk to generate feedback acoustic pressure around the HGA. The phase shift and gain of the feedback loop were adjusted such that the HGA vibrations were reduced. The experiments of active control have been conducted on five principal peaks in the HGA off-plate vibration spectrum, around 1256, 1428, 2141, 2519, and 3469 Hz, respectively. The results show that reduction of the HGA vibrations can be achieved on all these principal peaks, with a maximum suppression of 16 dB on the peak around 1428 Hz. It is also observed that simultaneous reduction can take place among these peaks when the narrowband feedback control is focused only on one of them.

Index Terms—Acoustic pressure, active control, experimental demonstration, flow-induced vibration.

I. INTRODUCTION

RECENTLY, Min et al. [1] proposed an active control strategy for flow-induced vibration on a head gimbals assembly (HGA) in working hard disk drives (HDDs). Based on numerical simulations, they showed that it was possible to suppress HGA flow-induced vibrations by introducing feedback acoustic pressures closely around the HGA. The HGA vibration induced by high speed circumferential airflows in working HDDs limits the positioning accuracy of the slider magnetic head on the HGA tip, and is therefore receiving much attention associated with the development of high magnetic storage density in disks, such as 10 Tb/in² [2]. Passive methods have proved difficult for the fine control on this issue [3]. The previous work on active control of disk flutter inside working HDDs by Huang et al. [4], [5] suggested a possible active control on the HGA flow-induced vibration through suppressing unsteady airflows around the HGA by acoustic pressure disturbance. Many researchers have experimentally demonstrated the effect from active acoustic pressure on the unsteady airflows, such as frequency shift [6] or instability stabilization [7], [8] on vortex shedding from circular cylinders, and control on shear layer instability past a cavity in a pipeline [9]. For active suppression of the HGA flow-induced vibration by acoustic pressure, Min et al. [10], [11] experimentally investigated the spectrum characteristics of pressure fluctuations around the HGA, as well as those of the HGA flow-induced vibration. In their study, good correspondence was found between the spectra of the pressure fluctuations detectable from the HDD cover and the HGA flow-induced vibration. This suggests that an active control may be applied in this case.

This paper reports an experimental validation of active control of the HGA flow-induced vibration by feedback acoustic pressure. It is an extension of the numerical simulations [1], and also serves as a step towards actual implementation on the active control of flow induced vibrations in hard disk drives.

II. EXPERIMENTAL SETUP

Fig. 1 is a schematic diagram on the experimental setup. The HDD was a Seagate 3.5-inch model ST3160215A with one disk.
MIN et al.: ACTIVE CONTROL OF FLOW-INDUCED VIBRATIONS ON SLIDER IN HDDS

Fig. 2. Images of (a) the laser beam into the HDD through a hole drilled on the HDD cover right above the HGA, and (b) the PZT actuator and its position relative to the inner structures of the HDD during experiments.

It was driven by a motor driver (HC6250B-PT) at its default rotation speed of 7200 r/min. During the experiments, the HDD arm was glued at its axis such that the HGA on the arm tip can be fixed at the middle track following position. In the feedback control closed-loop, a laser Doppler vibrometer (LDV, Polytec PSV300) was used to detect the HGA off-plate vibration as the feedback error signal. The laser beam from the LDV head went vertically into the HDD through a hole drilled on the HDD cover, as illustrated in Fig. 2(a), and was focused on the tip of the HGA, as shown in Fig. 2(b). The LDV output was split into two ways—one was input to a fast Fourier transfer (FFT) analyzer (ONO SOKKI CF-5220Z) as data acquisition, and the other was filtered by a band-pass filter (KH 3940) for the feedback control closed-loop. The bandwidth and center frequency of the filter were set according to the principal peaks to be controlled in the HGA off-plate vibration spectrum. The reduction was more than 10 dB for signals outside the frequency band. The feedback signals were then passed through a signal conditioner (Rion NA-80) for amplification and input to an in-house made phase shifter. The phase shifter can provide continuous phase change from 0 to 2π on signals between its output and input. The combination of the frequency filter, signal conditioner and phase shifter formed a narrowband analog controller in the closed-loop, which provided feedback signals with proper phase and gain to enable the active control. A piezoelectronic transducer (PZT, RS 516-7669) was used as an acoustic pressure actuator in the closed-loop and was driven by a voltage amplifier (Trek 2210). The PZT actuator was a thin disk with a diameter of 35 mm and thickness of 1.7 mm, and had a damper ring made of soft rubber at the circumference. It was glued onto the inner surface of the HDD cover through the damper ring. Fig. 2(b) illustrates the PZT actuator and its position. The damper ring could also isolate the vibration transmission from the PZT disk onto the HDD cover.

In this work, prior measurements were conducted to select suitable feedback error signals in the closed-loop. As pointed out by Min et al. [1], the pressure fluctuations near the HDD cover may not be good feedback error signals for the active control in this work because of the weak coherence between the pressure fluctuations and HGA vibrations. To examine this, the spectral coherence between the pressure fluctuations near the HDD cover and the HGA off-plate vibrations were measured. The pressure fluctuation was measured by a pressure sensor mounted onto the HDD cover [10], and the HGA vibration was measured by the LDV. Fig. 3 presents the measured results of the spectral coherence as well as the HGA off-plate vibration spectrum. The results show that, within the frequency band from 1 to 4 kHz concerned in this work, there are five principal non-repeatable runout (NRRO) peaks in the HGA off-plate vibration spectrum, around 1256, 1428, 2141, 2519, and 3469 Hz, respectively. It is also shown that the spectral coherence between the pressure fluctuations near the cover and the HGA off-plate vibration are lower than 0.4 at most frequencies around the principal NRRO peaks in the HGA off-plate vibration spectrum. These results confirm weak causality relationship between these two signals. In this experimental demonstration, the HGA vibration signal detected by the LDV was used as feedback error signals in the closed-loop.

III. RESULTS AND DISCUSSIONS

In this experiment, the feedback closed-loop can be tuned to perform active control on an individual frequency peak by setting the center frequency of the narrow band filter. The experiments have been conducted by focusing the active control sepa-
Fig. 4. Spectra of the HGA off-plate vibration before and under active control focused on the principal peak around 1256 Hz. The analog filter in the feedback loop was set at center frequency of 1256 Hz with a bandpass width of 50 Hz.

Fig. 5. Spectra of the HGA off-plate vibration before and under active control focused on the principal peak around 1428 Hz. The analog filter in the feedback loop was set at center frequency of 1428 Hz with a bandpass width of 50 Hz.

Fig. 6. Spectra of the HGA off-plate vibration before and under active control focused on the principal peak around 2141 Hz. The analog filter in the feedback loop was set at center frequency of 2141 Hz with a bandpass width of 100 Hz.
IV. CONCLUSION

Experimental active control has been successfully implemented on the HGA flow-induced vibration in a working HDD with a feedback control closed-loop. In the closed-loop, the HGA off-plate vibration detected by a LDV was used as the feedback error signal; a combination of an analog filter, a signal conditioner and an in-house made phase shifter was used as a simple narrowband controller, and a PZT disk on the HDD cover inner surface was used as actuator to generate feedback pressure to suppress the HGA flow-induced vibration. Experiments have been conducted by focusing active control on five principal peaks in the HGA off-plate vibration spectrum, around 1256, 1428, 2141, 2519, and 3469 Hz, respectively. The results show that distinct active suppression can be achieved in all the narrow bands around the principal peaks in the HGA off-plate vibration spectrum. The maximum suppression is 16 dB at the peak around 1428 Hz. It is also shown that the control has simultaneous effects on the principal peaks around 1256 and 1428 Hz, as well as among principal peaks around 2141, 2519, and 3469 Hz. The experimental results demonstrate the feasibility of an active control strategy proposed by Min et al. [1] to suppress the HGA flow-induced vibration by acoustic pressure. The present work serves as the first step for actual implementation of this active control strategy on the HGA flow-induced vibration in working HDDs, and provides useful guidance for the implementation of future broadband active control.

ACKNOWLEDGMENT

This work was supported by the Agency for Science Technology and Research (A*STAR), Singapore, under Project 092-156-0128.

REFERENCES