<table>
<thead>
<tr>
<th><strong>Title</strong></th>
<th>A P-loop mutation in G subunits prevents transition to the active state: implications for G-protein signaling in fungal pathogenesis.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author(s)</strong></td>
<td>Bosch, Dustin E.; Willard, Francis S.; Ramanujam, Ravikrishna.; Kimple, Adam J.; Willard, Melinda D.; Naqvi, Naweed Issak.; Siderovski, David P.</td>
</tr>
<tr>
<td><strong>Date</strong></td>
<td>2012</td>
</tr>
<tr>
<td><strong>URL</strong></td>
<td><a href="http://hdl.handle.net/10220/10955">http://hdl.handle.net/10220/10955</a></td>
</tr>
<tr>
<td><strong>Rights</strong></td>
<td>© 2012 The Authors. This paper was published in PLoS Pathogens and is made available as an electronic reprint (preprint) with permission of The Authors. The paper can be found at the following official DOI: [<a href="http://dx.doi.org/10.1371/journal.ppat.1002553">http://dx.doi.org/10.1371/journal.ppat.1002553</a>]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
A P-loop Mutation in Gα Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis

Dustin E. Bosch1*, Francis S. Willard1, Ravikrishna Ramanujam2,3, Adam J. Kimple1, Melinda D. Willard1*, Naweed I. Naqvi2,3,4, David P. Siderovski1,5

1 Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 2 Fungal Patho-Biology Group, Temasek Life Sciences Laboratory, Singapore, 3 School of Biological Sciences, Nanyang Technological University, Singapore, 4 Department of Biological Sciences, National University of Singapore, Singapore, 5 UNC Neuroscience Center and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America

Abstract

Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active Gαβγ heterotrimer relies on nucleotide cycling by the Gα subunit: exchange of GTP for GDP activates Gα, whereas its intrinsic enzymaticactivity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting Gα to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of Gα subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that Gα(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon Gαi(G42R) binding to GDP-AlF4− or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. Gα(G42R) mutants do not engage the active state-selective peptide KB-1753 or RGS domains with high affinity, but instead favor interaction with Gβγ and GoLoco motifs in any nucleotide state. The corresponding GαQ(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the Gα subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two Gα mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants.

Introduction

G protein-coupled receptors (GPCRs) convert extracellular signals to intracellular responses, primarily by stimulating guanine nucleotide exchange on heterotrimeric G-protein Gα subunits [1]. Upon receptor-stimulated exchange of GTP for GDP, Gα subunits undergo a conformational change, dominated by three mobile switch regions, resulting in separation of Gα from the obligate Gβγ heterodimer [2]. Switches one and two directly contact the bound guanine nucleotide and include residues critical for catalyzing GTP hydrolysis, while switch three contacts switch two in the activated conformation [3]. The nucleotide-dependent conformational shift of Gα subunits can be monitored biochemically by differential resistance to proteolysis by trypsin or altered tryptophan fluorescence spectra [4,5]. The switch mechanism of activation is highly conserved among the mammalian Gα subunit family members, as well as in those found in fungi [6,7]. The activated Gα and free Gβγ subunits propagate signals through numerous effectors, including adenyl cyclases, phospholipases, ion channels, and phosphodiesterases [8]. Mammals express multiple Gα subunits which can be classified into subfamilies according to function. For example, members the Gαi/o subfamily have inhibitory effects on adenyl cyclase and stimulatory effects on cGMP-phosphodiesterase, while Gαq subfamily members stimulate phospholipase C isoforms, promoting hydrolysis of phosphatidylinositol bisphosphate to produce diacylglycerol and inositol triphosphate [9,10]. Gα signaling is terminated by intrinsic hydrolysis of bound GTP to GDP, a reaction accelerated by ‘regulators of G-protein signaling’ (RGS proteins), and reversion of the Gα switch conformation to the inactive, GDP-bound state [9,11]. Gα-GDP can then re-assemble a heterotrimer with Gβγ or, in the case of the Gαi/o subfamily, engage GoLoco motif


Editor: Jin-Rong Xu, Purdue University, United States of America

Received October 27, 2011; Accepted January 12, 2012; Published February 23, 2012

Copyright: © 2012 Bosch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Work in the Siderovski lab was supported by NIH R01GM082892. Work by D.E.B. was supported by institutional training grants T32GM008719 and T32GM007040, and an independent F30 NRSA grant from the NIDDK (F30DK091978). N.I.N and R.R acknowledge intramural funding support from the Temasek Life Sciences Laboratory, Singapore. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: willardfs@lilly.com (FSW); dsiderov@med.unc.edu (DPS)
‡ Current address: Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, United States of America
‡‡ These authors contributed equally to this work.

Dusti E. Bosch1*, Francis S. Willard1, Ravikrishna Ramanujam2,3, Adam J. Kimple1, Melinda D. Willard1*, Naweed I. Naqvi2,3,4, David P. Siderovski1,5

1 Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 2 Fungal Patho-Biology Group, Temasek Life Sciences Laboratory, Singapore, 3 School of Biological Sciences, Nanyang Technological University, Singapore, 4 Department of Biological Sciences, National University of Singapore, Singapore, 5 UNC Neuroscience Center and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
Author Summary

Heterotrimeric G-proteins function as molecular switches to convey cellular signals. When a G-protein coupled receptor encounters its ligand at the cellular membrane, it catalyzes guanine nucleotide exchange on the Gz subunit, resulting in a shift from an inactive to an active conformation. G-protein signaling pathways are conserved from mammals to plants and fungi, including the rice blast fungus *Magnaporthe oryzae*. A mutation in the Gz subunit (G42R), previously thought to eliminate its GTPase activity, leading to constitutive activation, has been utilized to investigate roles of heterotrimeric G-protein signaling pathways in multiple species of filamentous fungi. Here, we demonstrate through structural, biochemical, and cellular approaches that G42R mutants are neither GTPase deficient nor constitutively active, but rather are unable to transition to the activated conformation. A direct comparison of *M. oryzae* fungal strains harboring either G42R or truly constitutively activating mutations in two Gz subunits, MagA and MagB, revealed markedly different phenotypes. Our results suggest that activation of MagB is critical for pathogenic development of *M. oryzae* in response to hydrophobic surfaces, such as plant leaves. Furthermore, the lack of constitutive activity by Gz(G42R) mutants prompts a re-evaluation of its use in previous genetic experiments in multiple fungal species.

Proteins that are also selective for the inactive Gz state [12]. In addition to naturally occurring conformationally selective binding partners, phage display peptides have also been engineered to discriminate between Gz-GDP and Gz-GTP. For example, the peptides KB-752 and KB-1753 selectively interact with the inactive GDP-bound and active GTP-bound states of Gz42, respectively [13].

Heterotrimeric G-protein signaling components are well-characterized regulators of mammalian biology and are also utilized as sensors for extracellular cues in non-mammalian organisms, such as fungi, plants, and yeast [7,14,15]. The rice blast fungus, *Magnaporthe oryzae*, forms infection structures known as appressoria in response to specific environmental surface signals [16]. For example, hydrophobic, but not hydrophilic surfaces, promote appressorium formation [17–19]. Genetic studies have implicated a number of G-protein signaling pathway components in the regulation of *M. oryzae* pathogenesis, including a Gβ subunit (MGB1) [20], adenylyl cyclase (Mac1 or MAC) [21], cAMP phosphodiesterase (PdeH) [22], and cAMP-dependent protein kinase A (cPKA) [23]. *M. oryzae* also possesses three Gz subunits (MagA, MagB, and MagC) with sequence similarity to the Gz42, Gz1, and the fungal-specific Gz41 subfamilies, respectively [19,24,25]. Previous studies on Gz subunit deletion strains and magB mutants suggest a role for heterotrimeric G-protein signaling in *M. oryzae* growth, sexual reproduction, and appressorium formation [24,26]. Additionally, an RGS protein (Rgs1) negatively modulates all three *M. oryzae* Gz subunits [19].

Among the most stringently conserved motifs of Gz subunits is the phosphate-binding loop (P-loop) (Figure S1). Very little variation in the P-loop sequence is seen across Gz subunits in distantly related species, including plants, fungi, and metazoans [27]. In fact, the P-loop is also conserved as a key phosphoryl group-interacting motif in ATP-binding kinases and members of the Ras GTPase superfamily [28].

A P-loop mutation to human Ras isoforms, Gly-12 to valine, is frequently found in human cancers. Ras G12V mutants are GTPase deficient, and thus constitutively active, leading to aberrant signaling and oncogenesis [29]. In fact, mutation of H-Ras Gly-12 to any residue other than proline results in constitutive activity [30]. Mutation of the corresponding P-loop residue in Gz42, Gly-42 to valine, also drastically reduces its GTPase activity [31]. Structural studies of Gz42(G42V) suggest that the introduced valine side chain sterically prevents appropriate positioning of Gln-204, a residue that coordinates a nucleophilic water molecule during GTP hydrolysis [31]. This glutamine is highly conserved and critical for GTPase activity; its mutation to leucine (“Q/L”) in Ras GTPases or Gz subunits also leads to constitutive activity [11,29].

Genetic studies of heterotrimeric G-protein function in fungal species have used GTPase deficient Gz Q204L mutants (referred to as Q/L mutants). Additionally, a Gz subunit P-loop mutation, G42R, has been utilized in a similar context. Given that Gz42(G42V) is GTPase-deficient and mutation of the corresponding glycine in Ras to any amino acid other than proline results in constitutive activation, it has been assumed that G42R mutants would be dominant and constitutively active [32]. Although the biochemical mechanism of the Gz G42R mutant has not previously been characterized, we and others have utilized it to probe the G-protein mediated biology of many fungal species (Table S1) [19,26,32–41].

The phosphate-binding P-loop and switch mechanism of activation are both stringently conserved among Gz subunits from mammals to fungi [6,7] (Figure S1). For example, human RGS2 recognizes the highly similar GTP hydrolysis transition state conformations of both human Gz42 and a yeast Gz subunit (GPA1), such that RGS2 expression complements the deletion of an RGS protein gene in *S. cerevisiae* [42,43]. Furthermore, chimeras of GPA1 and human Gz subunits can function in the yeast pheromone signaling pathway [44]. The residue position corresponding to Gly-42 in Gz42 is within potential contact distance of residues in the switch regions of the structurally conserved Gz subfamily members [3,10,45–47]. The switch region sequences are highly conserved across mammalian Gz subfamilies, as well as in other species, including *M. oryzae*, *A. nidulans*, and *S. cerevisiae* (Figure S1). Given the sequence and structural conservation of these regions in Gz subunits, as well as the demonstrated consistent behavior of other point mutations in these regions across multiple Gz subunits (e.g. the GTPase-deficient Gz42(G204L) and the Gz42(Q184S) [48]), the behavior of the G42R mutation is expected to be consistent in MagA, MagB, and the mammalian Gz subunits. Since we were unable to obtain properly folded recombinant MagA or MagB proteins and no direct cellular assays of MagA or MagB activity are currently available, we utilized three mammalian Gz subunits to investigate the behavior of G42R mutants.

Here, we determine through structural, biochemical, genetic, and cellular approaches that Gz subunit G42R mutants are neither GTPase deficient nor constitutively active. Rather, the mutant arginine side chain prevents transition to the activated state upon Gz binding to GTP. Direct phenotypic analyses of *M. oryzae* strains harboring either Gz G42R mutants or the GTPase-deficient Gz Q204L suggests that a re-evaluation of previous fungal genetic data generated with the G42R mutation is required.

Results

The G42R mutation minimally perturbs the inactive conformation of Gz

To understand how the G42R P-loop substitution affects Gz subunit structure and function, we obtained a 3.0 Å resolution crystal structure model of Gz42(G42R) bound to GDP using the
inactive state-selective phage display peptide KB-752 as a crystallography tool [49]. The asymmetric unit contained three Ga\textsubscript{i1}(G42R) subunits bound to GDP and Mg\textsuperscript{2+}; two of three monomers were bound to the KB-752 peptide, while the third (chain C) lacked electron density for the peptide and instead displayed switch region disorder characteristic of free, GDP-bound G\textalpha subunits [31]. For data collection and refinement statistics, see Table S1. A comparison of our model with that of wild type Ga\textsubscript{i1}-GDP/KB-752 (PDB id 1Y3A) revealed minor perturbations to the inactive state upon introduction of Arg-42 (Figure 1A). The side chain of Arg-42 projects away from the nucleotide-binding pocket, making no direct contacts with other Ga\textsubscript{i1}(G42R) residues. Switch 1 and the adjacent \beta 2 strand adopt slightly different conformations in the mutant Ga\textsubscript{i1} (C\textalpha atoms r.m.s.d. 1.3 \AA), likely

Figure 1. A crystal structure of Ga\textsubscript{i1}(G42R)-GDP in complex with the phage display peptide KB-752. (A) The overall structure of Ga\textsubscript{i1} (cyan) with switch regions in dark blue, bound to KB-752 (red) (current study; PDB 3QE0), is overlaid on the wild type Ga\textsubscript{i1}-GDP/KB-752 complex (wheat/red transparency) (PDB 1Y3A). GDP is represented by green sticks and magnesium by an orange sphere. (B) The Arg-42 side chain extends from the P-loop, making no polar contacts with other Ga\textsubscript{i1}(G42R) residues, but preventing the wild type (transparent) switch conformation. Ga\textsubscript{i1}(G42R) residues Arg-178 and Lys-180 are displaced relative to wild type due to steric and electrostatic repulsion by Arg-42. The G42R \beta 2 strand and switch 2 also adopt slightly different conformations. For crystallographic data collection and refinement statistics, see Table S2.

doi:10.1371/journal.ppat.1002553.g001
because the basic residues Arg-178 and Lys-180 are electrostatically and sterically repelled from their wild type orientations by the positively charged Arg-42 side chain (Figure 1B). Arg-178 is known to stabilize the leaving phosphate group during GTP hydrolysis [11]; its perturbation in the Gαa(G42R) structure model is consistent with the previously assumed GTPase deficiency of G42R mutants.

Gα(G42R) is not GTPase deficient
Substitution of the corresponding Gly-12 in H-Ras for any amino acid other than proline yields GTPase deficiency and constitutive activity [30]. Thus it was previously reasoned that Gα(G42R) mutants were also incapable of GTP hydrolysis [26]. Binding of GTP by purified Gα subunits can be assessed with the non-hydrolyzable GTP analog, the radionucleotide GTPγS [35S]. Similarly, GTPase activity can be quantified by tracking release of radioactive inorganic phosphate from [γ-32P]GTP-loaded Gα subunits during a single round of hydrolysis [15]. GTPγS radionucleotide binding and [γ-32P]GTP single turnover hydrolysis assays indicated that the kinetics of GTP binding and hydrolysis by the equivalent G42R mutant Gαa(G42R), in the most frequent splice variant of the mammalian adenylyl cyclase inhibitory Gαo1, are not significantly different from wild type GαoA (Figure 2A,B). Since the nucleotide binding and hydrolysis rate of this G42R mutant was unexpectedly not perturbed, we further examined the effect of the G42R mutation on Gα interactions with known protein binding partners.

The G42R mutation disrupts Gα interactions with RGS domains
RGS proteins accelerate the intrinsic GTPase activity of Gα subunits by stabilizing the transition state for GTP hydrolysis, a conformation mimicked by Gα binding to GDP, AlF4−, and Mg2+ [11]. Surface plasmon resonance (SPR) was utilized to detect optical changes upon injection of wild type or G42R mutant GαoA over a surface coated with immobilized GST-RGS12 in the presence of either GDP, GTP, the non-hydrolyzable GTP analog GTPγS, or the hydrolysis transition state-mimetic GDP-AlF4− [50]. The RGS domain of RGS12 bound selectively to wild type GαoA in its GDP-AlF4−-bound state (KD = 1.27 ± 0.06 μM), as measured by surface plasmon resonance (SPR) [50]. However, Gαa(G42R) did not engage the RGS domain in any nucleotide state at concentrations up to 25 μM (Figure 2C,D), suggesting that G42R mutants do not adopt a typical GTP hydrolysis transition

Figure 2. Gαa(G42R) is not GTPase deficient, but retains a normal nucleotide cycle and does not interact with RGS domain. (A) A comparison of radiolabeled GTPγS binding by wild type GαoA (koff = 0.087 ± 0.020 min−1 (s.e.m.)) and Gαa(G42R) (koff = 0.062 ± 0.010 min−1 (s.e.m.)) identified no significant difference in the rate of GDP release and subsequent GTP analog binding. (B) Gαa(G42R) retained the ability to hydrolyze GTP (kcat = 0.18 ± 0.05 min−1 (s.e.m.)) at a rate indistinguishable from wild type GαoA (kcat = 0.19 ± 0.02 min−1 (s.e.m.)), as determined by single turnover hydrolysis assays. (C) Surface plasmon resonance (SPR) experiments demonstrated selective binding of the transition state-mimetic, GDP-AlF4−-bound form of GαoA to the RGS domain of RGS12. Gαa(G42R) did not interact with the RGS12 RGS domain in any nucleotide state at concentrations up to 25 μM (D). An equilibrium binding isotherm allowed quantification of wild type GαoA affinity for RGS12 (Kd = 1.27 ± 0.06 μM (s.e.m.)). doi:10.1371/journal.ppat.1002553.g002
state in the presence of AlF$_4^-$ and Mg$^{2+}$ (AMF), or alternatively that Arg-42 directly interferes with RGS domain binding. A superimposition of Gz$_{i1}$(G42R)/KB-752 and the Gz$_{i1}$/RGS4 complex (PDB 1AGR; not shown) indicated that the mutant arginine side chain likely directly perturbs the RGS-binding surface. To further characterize nucleotide state-dependent interactions of Gz(G42R), we measured binding affinity toward three additional state-selective Gz-binding partners: Gp$_{i7}$ subunits, a GoLoco motif, and a phage display peptide, KB-1753 [13].

**Gz(G42R) preferentially engages inactive conformation-selective binding partners in any nucleotide state**

Gz subunits in their GDP-bound, inactive conformations form heterotrimers with Gp$_{i7}$ subunits [6], and the interaction is disrupted by AlF$_4^-$ or GTP binding to the Gz subunit. As expected, wild type Gz$_{i1}$-GDP bound Gp$_{i7}$ as measured by SPR, but activation of the Gz subunit with GDP-AlF$_4^-$ prevented association with Gp$_{i7}$ (Figure 3A). However, Gz$_{i1}$(G42R) engaged Gp$_{i7}$ in both nucleotide states. Interaction of Gz subunits with fluorophore-labeled peptides was assessed by detecting differences in fluorescence polarization between low molecular weight free peptide and the higher molecular weight Gz/peptide complex [51]. Similar to Gp$_{i7}$, the GoLoco motif of RGS14 was highly selective for binding the GDP-bound, inactive state of wild type Gz$_{i1}$ (K$_D$ = 9.0±1.1 nM) over the activated GDP-AlF$_4^-$-bound form, as determined by fluorescence polarization (Figure 3B). Gz$_{i1}$(G42R) displayed a much reduced selectivity for RGS14 GoLoco motif binding between the GDP and AlF$_4^-$ nucleotide states, being only 3-fold selective for the GDP form, whereas wild type Gz$_{i1}$ is >1000-fold selective. Finally, we tested two G42R mutant nucleotide states for interaction with the active conformation-selective phage display peptide KB-1753 using fluorescence polarization [13]. As expected, KB-1753 selectively interacted with wild type Gz$_{i1}$-GDP-AlF$_4^-$ (K$_D$ = 470±40 nM) relative to GDP-bound Gz$_{i1}$ (Figure 3C). In contrast, Gz$_{i1}$(G42R) displayed only weak affinity for KB-1753 in either nucleotide state, as measured by fluorescence polarization. Together these data indicate that Gz(G42R) mutants preferentially engage inactive conformation-selective binding partners regardless of the bound nucleotide. To assess the conformational shift of Gz(G42R) mutants upon activation with AlF$_4^-$ or a non-hydrolyzable GTP analog, we utilized intrinsic tryptophan fluorescence and limited trypsin proteolysis.

**Gz(G42R) cannot assume the transition state-mimetic or activated conformations**

Upon binding GDP-AlF$_4^-$ or GTP analogs, Gz subunits undergo conformational changes dominated by the three switch regions [52]. A tryptophan residue (Trp-211 in Gz$_{i1}$) within switch 2 is shifted from a solvent-exposed to a buried orientation, resulting in a reduced efficiency of tryptophan fluorescence quenching that can be detected upon excitation of the Gz protein with light at 284 nm wavelength [5]. Wild-type Gz$_{i1}$ displayed a large increase in tryptophan fluorescence upon exposure to AlF$_4^-$, indicative of a shift to the activated conformation. In contrast, the shift in tryptophan fluorescence of Gz$_{i1}$(G42R) at the same concentration was blunted relative to wild type and occurred with faster kinetics (k$_{off}$ = 0.19±0.01 s$^{-1}$ [95% C.I.], compared to k$_{on}$ = 0.05±0.01 s$^{-1}$ for wild type Gz$_{i1}$; Figure 4A).

The active and inactive states of Gz subunits are also differentially sensitive to proteolysis by trypsin; the more flexible loop conformations of Gz-GDP promote cleavage [4]. While the flexible N-terminus of wild type Gz$_{i1}$ was cleaved in all three nucleotide states, the resulting ~38 kDa fragment was resistant to limited trypsin proteolysis in the GDP-AlF$_4^-$ or GTP-bound conformations relative to the inactive, GDP-bound form (Figure 4B). Gz$_{i1}$(G42R), however, was readily proteolysed in any nucleotide state. Addition of AlF$_4^-$ had no detectable effect on Gz$_{i1}$(G42R) resistance to trypsin proteolysis, while GTP/S provided only mild protection of the ~38 kDa species compared to that of wild type Gz$_{i1}$. These data further support the hypothesis that the switch regions of Gz(G42R) mutants do not assume appropriate transition state-mimetic or activated state conformations in the presence of AlF$_4^-$ and GTP/S, respectively.

**The Arg-42 side chain prevents transition of the switch regions to an active conformation**

We next sought a structural explanation for the disrupted conformational switch of Gz(G42R) mutants. As previously mentioned, the Arg-42 side chain conformation, as modeled in the free GDP-bound Gz$_{i1}$(G42R), would not allow glutamine-204 to assume its critical position for orienting the nucleophilic water required for GTP hydrolysis (Figure 1). However, unlike the G42V mutant of Gz subunits, the G42R mutant retains normal GTP hydrolysis kinetics (Figure 2). Positioning of Gln-204 for hydrolysis may be possible if the Arg-42 side chain adopts an alternate rotamer. We also crystallized Gz$_{i1}$(G42R)/GDP in complex with the GoLoco motif from RGS14 and derived an independent structural model at 2.8 Å resolution (Table S2). In one of the two monomers of the asymmetric unit, Arg-42 adopts such an alternative rotamer that would allow Gln-204 to orient the nucleophilic water for hydrolysis (Figures 4C and S2).

Since we are presently unable to crystallize Gz$_{i1}$(G42R) in either its GDP-AlF$_4^-$ or GTP analog-bound states, we superimposed our structural model of Gz$_{i1}$(G42R)-GDP (excluding the RGS14 GoLoco peptide) with the previously described, wild type Gz$_{i1}$-GTP/S (PDB id 1GIA) (Figure 4C,D). In the activated, GTP/S-bound state of wild type Gz$_{i1}$, switches 1 and 2 converge on the nucleotide γ-phosphoryl group, while Ghu-236 of switch 3 forms a new polar contact with the backbone of switch 2 [3]. The result is a convergence of the three switch regions near the P-loop to form a stable interface recognized by effector molecules. Superposition of Gz$_{i1}$(G42R)-GDP suggests that the bulky Arg-42 side chain would not be easily accommodated by the active switch conformations observed in wild type Gz$_{i1}$, switches 1 and 2 converge on the nucleotide γ-phosphoryl group, while Ghu-236 of switch 3 forms a new polar contact with the backbone of switch 2 [3]. The result is a convergence of the three switch regions near the P-loop to form a stable interface recognized by effector molecules.

The G42R mutant of Gz$_{i1}$ fails to attain an active conformation

To investigate the effects of G42R mutants in a signaling pathway context, we introduced the corresponding P-loop mutation into the phospholipase C stimulating mammalian Gz subunit, Gz$_{i1}$(G48R). Wild-type Gz$_{i1}$-GTP activates phospholipase Cβ (PLCβ), which in turn hydrolyzes phosphorylinositol-4,5-bisphosphate (PIP$_2$) to yield diacyl glycerol (DAG) and inositol...
triphosphate (IP₃) [10]. Phospholipase C activity can be quantified by measuring accumulation of radioactive IP₃ in cells pre-treated with tritiated inositol. Overexpression of wild type Ga₅₃ in COS-7 cells had little effect on inositol phosphate accumulation, while the GTPase-deficient and constitutively active Ga₅₃(Q209L) markedly stimulated PLCβ activity in a dose-dependent fashion (Figure 5A,B). Ga₅₃(G48R), however, had no significant effect on PLCβ activity when overexpressed, confirming its lack of constitutive activity. Activation of PLCβ by endogenous and overexpressed Ga₅₃ can be stimulated by exposure to AlF₄⁻, since Ga₅₃(GDPA₅₃) has high affinity for PLCβ [33]. As expected, endogenous Ga₅₃ was activated by AlF₄⁻, and the effect was enhanced by overexpression of wild type Ga₅₃. However, overexpressed Ga₅₃(G48R) did not respond to AlF₄⁻ stimulation to the same extent as wild type Ga₅₃, reflecting its inability to assume a fully-activated conformation (Figure 5C,D).

Figure 3. Ga₅₃(G42R) engages inactive conformation-selective binding partners in two nucleotide states. (A) Wild type Ga₅₃ binds Gβ₃γ₁ only in the GDP-bound state, as determined by SPR, while Ga₅₃(G42R) displayed no nucleotide state-selectivity of Gβ₃γ₁ binding when liganded with either GDP or GDP-AlF₄⁻. (B) Similarly, fluorescence polarization experiments showed highly nucleotide state-selective binding of the RGS14 GoLoco motif to wild-type Ga₅₃-GDP (K₅₀ = 9.0 ± 1.1 nM (s.e.m.)) compared to the AlF₄⁻-bound form (K₅₀ = 8.7 ± 1.0 µM (s.e.m.)), but both nucleotide states of Ga₅₃(G42R) interacted with the GoLoco motif peptide, with affinity constants of 45 ± 7 nM (s.e.m.) and 168 ± 27 nM (s.e.m.) for GDP and AlF₄⁻, respectively. (C) The activated state-selective peptide KB-1753 preferentially bound the AlF₄⁻-bound form of wild-type Ga₅₃ (K₅₀ = 470 ± 40 nM (s.e.m.)) compared to the GDP-bound form (K₅₀ = 6.7 ± 0.4 µM (s.e.m.)), but had low affinity for Ga₅₃(G42R) in both nucleotide states.

doi:10.1371/journal.ppat.1002553.g003
The Gα(G42R) mutant utilized in genetic studies of fungal species, such as *Aspergillus nidulans* and the rice blast fungus *Magnaporthe oryzae*, was assumed to be GTPase deficient and thus constitutively active [26,32], and has been used extensively to understand the biology of fungal G-protein signaling [19,26,32–41]. Since the biochemical and structural characterization of such G42R mutants (Figures 1–4 above) indicate intact GTPase activity and, instead of constitutive activity, an inability to assume the activated conformation, we sought to clarify the behavior of G42R mutations in the Gα subunits of *M. oryzae*.

G42R and Q204L mutants of *M. oryzae* Gα subunits exhibit different effects on appressorium formation

We directly compared strains of *M. oryzae* harboring mutations in the Gα subunits MagA or MagB. Since both Gα subunits are known to regulate appressorium formation in response to inductive, hydrophobic surfaces [24], we assessed appressorium formation by GTPase-deficient Q/L and non-activatable G42R mutant strains on both hydrophobic and hydrophilic surfaces. The magA(G45R) mutant formed slightly fewer appressoria on hydrophobic, inductive surfaces than wild-type *M. oryzae*, but maintained the differential response to surface hydrophobicity (Figure 6A,B). In contrast, approximately 35% of magA(Q208L) conidia formed highly pigmented appressoria, albeit aberrant, after 16 hours, regardless of surface hydrophobicity. The magB(G42R) mutant strain resembled magA(Q208L), with 30% appressorium formation independent of surface hydrophobicity (Figure 6C,D). The magB(Q204L) strain, however, formed very few appressoria on either surface.

To further characterize differences between magA and magB G42R and Q/L mutant strains of *M. oryzae*, we compared colony...
and conidia morphology, as well as conidiation, to the wild type fungus. Both the magA and magB G42R mutants displayed different overall morphology from the corresponding Q/L mutants (Figure S3). In the case of magA(G45R), morphology was indistinguishable from the wild type. Upon exposure to light, the magA(G45R) also produced slightly fewer conidia when compared to the wild-type Magnaporthe grisea, but magA(Q208L) formed very few heavily pigmented, aberrant conidia (Figure 6A, inset and S4A). Both magB(G42R) and magB(Q204L) displayed enhanced conidiation relative to wild type, but those of magB(Q204L) were of a distinct morphology, with longer and thinner dimensions than either magB(G42R) or wild type (Figure S4B, C).

These data indicate that fungal Ga G42R mutants exhibit markedly different phenotypes from truly GTPase-deficient Q/L mutants, consistent with aforementioned structural, biochemical, and cellular experiments that indicate an intact GTPase activity, but a marked inability to achieve an activated conformation.

Figure 5. Gaq G48R is not constitutively active in a cellular context. The analogous P-loop mutation in human Gaq G48R, did not yield constitutive activity in contrast to the GTPase-deficient Gaq(Q209L) (A,B). Transfection of increasing amounts of Gaq(Q209L) markedly stimulated phospholipase C (PLC) activity in COS-7 cells, indicated by increased inositol phosphates (IPx) accumulation. Like wild type Gaq, G48R overexpression did not alter PLC activity. (C,D) Endogenous and overexpressed KT3 epitope-tagged wild type Gaq stimulated PLC activity upon treatment with AlF4-. The response of cells expressing Gaq(G42R) was blunted relative to wild type Gaq.

doi:10.1371/journal.ppat.1002553.g005

Discussion

Mutant Ga subunit strains have provided excellent tools for probing the functions of heterotrimeric G-proteins in many fungal species, including Aspergillus nidulans and Magnaporthe oryzae (Table S1) [19,26,32–41]. Here, we have demonstrated that the characteristic dose-dependent formation of disease lesions (Figure 7). The magA(G45R) strain showed similar pathogenicity as the wild type, consistent with intact surface-inducible appressorium formation (Figure 6B). magB(G42R) displayed a reduced ability to cause disease, although small lesions were observed at the highest inoculations tested. Both magA(Q208L) and magB(Q204L) showed drastically reduced lesion formation relative to wild type and the corresponding G42R mutants. These data indicate that constitutive activity of either MagA or MagB can suppress the ability of Magnaporthe to penetrate and infect the plant tissue. Additionally, we conclude that the ability of MagB to achieve its activated conformation is critical for Magnaporthe pathogenesis.
tions was observed in three mammalian Gz subunit family members: Gzαi, GzαA, and Gzαg. This finding, together with high sequence conservation surrounding the mutant residue (Figure S1) and distinct phenotypes of M. oryzae harboring either Gz(G42R) or truly GTPase-deficient Q/L mutants strongly support our hypothesis that MagA(G45R) and MagB(G42R) are structurally and biochemically similar to the corresponding mammalian Gz mutants. Our crystal structure models of Gzαi(G42R) indicates that this perturbed conformational flexibility is likely due to steric hindrance and electrostatic repulsion between the mutant Arg-42 side chain and residues of the switch regions. The preserved GTPase activity of Gz(G42R) mutants implies that Gln-204 is still able to orient a nucleophilic water during GTP hydrolysis. The structural model of Gzαi(G42R)-GDP bound to the GoLoco motif of RGS14 has provided a snapshot of an alternative Arg-42 rotamer that would indeed allow Gln-204 to access the orientation necessary for GTP hydrolysis. However, this rotamer still is expected to perturb the activatedconformation of switch 3. We conclude that rotameric flexibility at Arg-42 allows the G42R mutant to retain GTPase activity while preventing appropriate active state switch conformations. Interestingly, previous work has identified another Gzαi point mutation, K180P, that uncouples GTP hydrolysis from nucleotide-dependent conformational change [54]. Gzαi(K180P) is capable of hydrolyzing GTP when not in a fully activated conformation, as also seen for Gzαi(G42R).

Despite the retained ability of Gzα(G42R) mutants to exchange and hydrolyze nucleotide, they favor an inactive state-like conformation, likely forming a less-dissociable heterotrimer with Gβγ in a cellular context, thereby reducing Gβγ-effector interactions. Since Gzα(G42R) does not engage effectors with high affinity, it may be expected to behave as a dominant negative mutation; the Gzα(G42R)/Gβγ heterotrimer may serve as a substrate for receptor-stimulated exchange but fail to activate downstream signaling pathways. In Magnaporthe oryzae, it was previously unclear why strains with magB deleted or expressing the assumedly constitutively active magBG42R exhibited similar phenotypes regarding conidiation, sexual reproduction, and virulence on plant leaves [26]. The present study resolves this issue by demonstrating that the G42R mutant is not constitutively active, but likely exerts a dominant negative effect. The distinct behaviors of Gz(G42R) mutants are highlighted by a direct comparison to the truly GTPase-deficient and constitutively active Q/L mutants.

Although the magA(G45R) and magB(G42R) mutant strains do not reflect constitutive Gzα subunit activity, as previously assumed [26,32], they do provide insight into fungal pathogenic development. A phenotypic deficiency upon expression of a Gzα(G42R) mutant suggests that specific activation of the Gzα of interest and subsequent engagement of its downstream effectors is necessary for a particular function of a cell or organism. For instance, both magB deletion [24] and magBG42R mutant strains display

Figure 6. M. oryzae strains expressing G42R or GTPase-deficient Q204L mutant Gz subunits show disparity in appressoria formation. (A) Conidia harvested from the magAG45R, magA(G42R), and WT strains were inoculated on inductive (plastic cover slips) or non-inductive surfaces (GelBond membrane) and assessed for the ability to form appressoria after 16 hpi (hours post inoculation). The 2-celled conidia (white arrow) of the magAG45R produced aberrant appressorium (white asterisk) on both inductive and non-inductive surfaces. Insets represent the highly pigmented structures (black arrowhead) made by the magAG45R strain. Scale bars = 10 μm. (B) Bar graph illustrating the efficiency of appressorium formation in the magAG45R, magA(G42R) and wild type strains on inductive (black bar) or non-inductive surfaces (gray bar) respectively. Values represent mean ± S.E from three independent replicates involving 300 conidia per sample. (C) Identical experiments were conducted on the corresponding magB wild type and mutant strains. Unlike the wild type, the majority of conidia from the magBG204L strain failed to produce melanized appressoria on both inductive and non-inductive surfaces. A small proportion of the magBG42R conidia produced mature appressoria on the non-inductive surface (indicated by the white arrow). Conidia from the magB(G42R) failed to produce appressoria on both inductive and non-inductive surfaces. (D) Bar graph showing quantification of appressorium formation, as in (B).

doi:10.1371/journal.ppat.1002553.g006
drastically reduced induction of appressoria by hydrophobic surfaces, while magA deletion [24] and magA G45R mutations each have minimal effects. Thus, it is likely that MagB transduces an external surface hydrophobicity signal, presumably through a GPCR. Use of the magB G42R mutant suggests that the conformational change accompanying MagB activation is necessary for the selective development of appressoria on hydrophobic surfaces (Figure S6). It remains to be determined whether the Gα or Gβγ subunits or both propagate signals required for appressorium formation and disease lesion formation in *M. oryzae*. Direct evidence of interactions between *Magnaporthe* heterotrimeric G-protein subunits and effector molecules is currently lacking. However, phenotypic similarities between the Gα subunit mutant and deletion strains [20,24,26], Gβ subunit (MGβ1) deletion [20], adenyl cyclase (Mac1) deletion [21], and cAMP phosphodiesterase (PdeH) deletion [22], suggest that MagA and MagB may modulate cellular cAMP level through mechanisms similar to those of mammalian Gαs and Gαi/o.

In conclusion, Gα(G42R) mutants are incapable of assuming a typical activated conformation, but their retained ability to hydrolyze GTP indicates an uncoupling of conformational change and enzymatic activity. Since G42R mutants are unable to separate from Gβγ or to activate effectors, they provide tools for dissecting the functions of Gα subunits in cellular contexts. Utilizing both G42R and constitutively active Q/L mutants of two Gα subunits, we postulate a critical role for MagB activation in response to growth on hydrophobic surfaces, leading to appressorium formation in the rice blast fungus, *M. oryzae*.

**Materials and Methods**

**Chemicals and other assay materials**

Unless otherwise noted, all chemicals were the highest grade available from Sigma or Fisher Scientific. Peptides were synthesized by Fmoc (N-(9-fluorenylethoxycarbonyl) group protection, purified by HPLC, and confirmed using mass spectrometry by the Tufts University Core Facility (Medford, MA). Peptides used for crystallography and biophysical studies have been previously reported: FITC-RGS14 GoLoco [55], RGS14 GoLoco [56], FITC-KB-1753 [13], and KB-752 [49].
Protein purification

Although we were unable to obtain properly folded, purified *M. oryzae* Gα subunits, the P-loop and surrounding switch regions are highly conserved from mammals to fungi (Figures S1). Thus, we utilized the readily available purified Gα1 and Gα2A and corresponding G42R mutants. For biochemical experiments, full-length, hexahistidine-tagged Gα1 and Gα2A and G42R mutants thereof, were purified from *E. coli* by NTA affinity and gel filtration chromatography as previously described [57] (see Figure S5). A GST fusion of the RGS12 RGS domain (aa 664–885) was purified as described [58]. Biotinylated Gβ1γ was purified as described [59]. For crystallization, an N-terminally truncated (ΔN30) Gα1(G42R) was expressed and purified by NTA affinity chromatography; the hexahistidine tag was cleaved by TEV protease, and the Gα subunit further purified by ion exchange (SourceQ, GE Healthcare) and gel filtration chromatography. Purified Gα1(G42R) was loaded with excess GppNHp or GDP for 3 hours at room temperature and concentrated to 15 mg/mL in GppNHp crystallization buffer (50 mM HEPES pH 8.0, 10 mM MgCl2, 10 μM GppNHp, 1 mM EDTA, 5 mM DTT) or GDP crystallization buffer (10 mM Tris pH 7.5, 1 mM MgCl2, 5% v/v glycerol, 5 mM DTT).

Crystallization and structure determination

The complex of Gα1(G42R) and synthetic KB-752 peptide was obtained by mixing a 1:1.5 molar ratio of protein to peptide in GppNHp crystallization buffer. Despite loading of Gα1(G42R) and crystallization in the presence of GppNHp, the crystal lattice contained Gα2A(G42R) liganded with GDP and bound to KB-752. The selectivity of KB-752 for the GDP bound state [49] may account for the apparent absence of GppNHp. Crystals of Gα1(G42R):GDP/KB-752 were obtained by vapor diffusion from hanging drops containing a 1:1 (v/v) ratio of protein/peptide solution to well solution (17% (w/v) PEG MME 5000, 200 mM MgCl2, 100 mM HEPES pH 7.0). Hexagonal rod crystals (∼300×100×100 μm) formed in 5 days at 18°C exhibited the symmetry of space group P6122 (a = b = 106.6, c = 455.1, and α = β = γ = 90°) and contained two Gα1(G42R):GDP:KB-752 dimers and one Gα2A(G42R):GDP monomer in the asymmetric unit. For data collection at 100K, crystals were serially transferred into well solution supplemented with 30% saturated sucrose in 10% increments for ∼30 s, followed by plunging into liquid nitrogen. A native data set was collected at the SER-CAT 22-ID beamline at the Advanced Photon Source (Argonne National Laboratory). Data were processed using the HKL-2000 program [60]. The crystal structure of the wild type Gα1/KB-752 heterodimer (PDB 1Y3A [49]), excluding the KB-752 peptide, nucleotide, and waters was used as a search model for molecular replacement using the Phaser program [61]. Refinement was carried out using phenix.refine [62], consisting of conjugate gradient minimization and refinement of individual atomic displacement and translation-libration-screw parameters, interspersed with manual revisions of the model using the Coot program [63]. For data collection and refinement statistics and a list of residues that could not be located in the electron density, see Table S2.

The complex of Gα1(G42R) and the RGS14 GoLoco motif peptide was generated by mixing a 1:1.5 molar ratio of protein to peptide in GDP crystallization buffer. Crystals of the complex were obtained by vapor diffusion from hanging drops containing a 1:1 ratio of protein/peptide solution to well solution (1.7 M ammonium sulfate, 100 mM sodium acetate pH 5.0, 200 mM MgCl2, 10% (w/v) glycerol). Crystals (∼200×200×50 μm) formed in 2–5 days at 18°C and exhibited the symmetry of space group C2221 (a = 70.0, b = 131.0, c = 203.3, and α = β = γ = 90°) and contained two Gα1(G42R)/GoLoco motif heterodimers in the asymmetric unit. Diffraction data were collected and processed, and the model refined as described for Gα1(G42R)/KB-752, above. The crystal structure of Gα1(Q147L)/RGS14 GoLoco motif (PDB 2OM2 [51]), excluding the peptide, nucleotides and waters was used as a molecular replacement search model. All structural images were made with PyMOL (Schrodinger LLC, Portland, OR).

Nucleotide binding and hydrolysis assays

The [35S]GTPγS filter-binding assay used to measure rates of spontaneous GDP release from wild type and mutant Gα2A was conducted as described previously [64]. Intrinsic GTP hydrolysis rates of Gα2A and mutants were assessed by monitoring 32P-labeled inorganic phosphate production during a single round of GTP hydrolysis as described previously [65].

Surface plasmon resonance assays

Optical detection of protein/protein interactions by surface plasmon resonance was performed using a Biacore 3000 (GE Healthcare). Carboxymethylated dextran (CM5) sensor chips (GE Healthcare) with covalently bound anti-GST antibody surfaces were created as described previously [50]. The GST-RGS12 RGS domain protein and GST alone (serving as a negative control) were separately immobilized on SPR chip surfaces. Biotinylated Gβ1γ and mNOTCH1 peptide (serving as a negative control) were separately immobilized on a streptavidin (SA) sensor chip (GE Healthcare) as described previously [50].

Fluorescence polarization measurements

All polarization experiments were conducted using a PER- Astar microplate reader (BMG Labtech, Offenburg, Germany), essentially as described previously [51].

Intrinsic tryptophan fluorescence measurements of Gα activation

Changes in tryptophan fluorescence of Gα1 subunits were measured to assess activation by GDP-AIF4+, as described previously [51]. Activation of Gα subunits results in translocation of a conserved switch 2 tryptophan into a hydrophobic pocket, increasing the quantum yield of tryptophan fluorescence [5]. Fluorescence intensity traces shown are representative of triplicate experiments.

Limited trypsin proteolysis

Gα subunits are relatively protected from trypsin-mediated proteolysis in the GDP-AIF4+ and GTP analog-bound, activated states [4]. Ten μg of wild type or mutant Gα2A in 50 mM HEPES (pH 8.0), 1 mM EDTA, 5 mM DTT, 0.05% CHAPS, and 10 mM MgCl2 were incubated for three hours at room temperature with either 100 μM GDP, 100 μM GTPγS, or 100 μM GDP, 20 mM NaF, and 60 μM AlCl3. Five hundred ng of N-Tosyl-L-phenylalnine chloromethyl ketone (TPCK)-treated trypsin was added to each reaction, followed by a 10-minute incubation at room temperature. Proteolysis was stopped by addition of SDS-PAGE sample buffer and boiling. Samples were subjected to SDS-PAGE and stained with Coomassie Blue.

Quantitation of phospholipase C (PLC) activity

COS-7 cells in 12-well culture dishes were transfected with KT3-tagged wild type or mutant Gα2A metabolically labeled with 1 μCi of [3H]inositol/well and assayed for inositol phosphate
accumulation using Dowex chromatography as described previously [66]. For AlF4 stimulation experiments, final concentrations of 10 mM NaF and 30 μM AlCl3 were added to cell media. To determine wild type and mutant Gαi expression levels, cells were lysed in SDS-PAGE sample buffer. Proteins separated by electrophoresis were immunoblotted with anti-KT3 antibody (Covance) or anti-actin antibody (Sigma).

Fungal strains, growth, and culture conditions

The M. oryzae wild-type strain B157 was obtained from the Directorate of Rice Research (Hyderabad, India). Magnaporthe strains carrying individual point mutations in the Gαi subunits, namely: magA(G42R), magA(G42Q), magB(A262V), magB(A262G), have been described previously together with the rgS1 mutant [19]. Wild type and mutant strains cultures were maintained at 28°C in the dark on Prune Agar medium plates (PA; per L: 40 mL prune juice, 5 g lactose, 5 g Sucrose, 1 g yeast extract and 20 g agar, pH 6.5). Assessment of the radial growth, aerial hyphal and conidial characteristics was carried out as previously described [22]. Conidiation was induced in the Magnaporthe colonies through exposure to continuous incandescent light at room temperature for 6 days.

Evaluation of conidiation status

Conidia were harvested by scraping the surface growth in water with an inoculation loop. The suspension was filtered through two layers of Miracloth (Calbiochem, San Diego, USA), collected in Falcon tubes (BD Biosciences, USA), vortexed for a minute to ensure complete detachment of conidia from the mycelia, and then pelleted by centrifugation at 3,000 rpm for 15 minutes. The conidia were washed twice and re-suspended in a fixed volume of sterile water. Prior to harvesting the spores, the radius of each colony was measured to calculate the surface area of the colony. Conidia produced by a given colony were quantified using a hemocytometer and reported as the total number of conidia present per unit area of the colony.

Appressoria formation assays

Droplets (20 μl containing 500 conidia) of conidial suspension were placed on plastic cover slips (hydrophobic surface) or hydrophilic side of GelBond membrane (Lonza Walkersville Inc., USA) and incubated in a humid chamber at room temperature. The total number of appressoria formed by each strain on either surface was quantified at 16 hpi (hours post inoculation).

Evaluation of pathogenicity in Magnaporthe strains

For pathogenicity assays, leaves from two week old barley seedlings were cut into smaller pieces (2–3 cm long) and washed in sterile water, following which the leaf bits were rinsed for 45 seconds in 40% ethanol. The leaf pieces were then washed twice with sterile antibiotic-containing distilled water. The washed leaves were placed on kinetin agar plates (2 mg/mL kinetin, 1% agar). Conidia were quantified and a dilution series of the conidial suspension was inoculated on detached barley leaves at the required concentrations. The samples were incubated in a humidified growth chamber with a 16 h light/8 h dark cycle at 22°C. Disease symptoms were assessed 5–7 days post inoculation.

Microscopic analysis

Samples were observed on a BX51 (Olympus, Japan) microscope equipped with UPlan FL N 60X/1.25 Oil objective with appropriate filter sets. Bright field images were captured using a Cool SNAP HQ camera (Photometrics, USA) and processed using Image J (National Institutes of Health, USA), MetaVue (Universal Imaging, USA) and Adobe Photoshop 7.0 (Adobe Inc, USA).

Supporting Information

Figure S1 The Gαi subunit P-loop is highly conserved in fungi and mammals. The β1 strands, z1 helices, and intervening P-loops (gray), as well as the three switch regions of selected Gαi subunits from humans and fungi are aligned. Nucleotide contacting residues are highlighted by black circles, and the mutated glycine by an arrowhead. (EPS)

Figure S2 Arg-42 adopts an alternate rotamer in the crystal structure model of Gαi(G42R)-GDP/RGS14 GoLoco motif. Gαi(G42R) is shown in cyan with switch regions in dark blue and selected side chains in sticks. GDP is represented as green sticks, and a portion of the RGS14 GoLoco motif is orange. GoLoco motif residues 311 and 512 were disordered in the crystal structure; the cartoon shown is truncated at residue 510 (PDB 3QJ2). The side chain of Arg-42 adopts a different rotamer than that seen in Gαi(G42R)-GDP/KB-752 (magenta sticks). Instead, the Arg side chain forms direct polar contacts with Gln-245 of Gαi(G42R) and the backbone carbonyl group of Val-507 from the RGS14 GoLoco motif. Arg-42 also coordinates a well-ordered water molecule (yellow sphere) with Arg-242 and Gln-147 of Gαi(G42R). This Arg-42 rotamer would sterically prevent switch 3 from approaching the nucleotide upon binding to GTP. However, there is room for Arg-178 and Gln-204 to potentially assume their critical positions for GTP hydrolysis, providing a possible rationale for the normal GTPase activity of Gαi(G42R). (EPS)

Figure S3 M. oryzae colony and growth characteristics. Morphology of the magAΔ, magAΔA262V, magAΔA262G, magBΔ, WT (wild-type) and rgS1Δ colonies. The indicated strains were grown in the dark on prune agar medium for a week and photographed (upper panels). The magBΔA262V mutation lead to reduced rate radial growth. The radius of the magBΔA262V colony was 2.24±0.03 cm compared to 2.52±0.03 cm in the magBG42R or the WT strain, when grown under identical conditions for a period of seven days at 28°C in the dark. Values represent the mean ± SE (n = 5 colonies per strain; p<0.001). The lower panels represent cross sections at near-median planes. The magBΔA262V showed dramatic reduction in aerial hyphal growth, compared to the magBG42R and WT. The magBΔA262V and magBΔG42R mutants showed reduced aerial hyphal growth compared to the WT strain. (EPS)

Figure S4 M. oryzae conidiation defects and conidial morphology. Comparative quantitative analysis of conidiation in the magAΔ, magAΔA262V, magAΔA262G, magBΔ and wild type strains. The indicated strains were initially grown in the dark for a day and then exposed to constant illumination for 6 days. Data represents mean ± SE based on three independent replicates. (A) Conidia per surface area unit were quantified for all five strains. Both magAΔA262V and magAΔA262G produced fewer conidia than wild type fungi, although magAΔA262G produced statistically significantly few conidia than magAΔA262V. The asterisk indicates the heavily pigmented aberrant structures and conidia with a single septum produced predominantly by the magAΔA262V mutant. (B) Both magAΔA262V and magAΔG42R displayed an increased number of conidia compared to wild type. Conidia from magBΔG42R displayed a thin, elongated morphology, while those of magBΔG42R were similar to wild type. (C) The dimensions (length and width) of conidia
from the indicated strains were quantified. Values represent the mean ± SE (n = 200 conidia per strain).

(EPS)

**Figure S5** Purification of Gtαi and Gtαo Gα2R mutants. Wild type and G42R Gtαi and Gtαo were purified from *E. coli* by affinity chromatography, separated by SDS PAGE, and stained with Coomassie blue.

(EPS)

**Figure S6** Activation of the Gt subunit MagB is required for selective appressorium formation on hydrophobic surfaces. Based on genetic data from the present and previous studies, a model of MagB-mediated regulation of appressorium formation in *M. oryzae* is hypothesized. Rgs1 was previously shown to modulate appressorium formation by negatively regulating MagA and MagB [19]. Experiments involving G42R and Q/L mutants of Gt4 subunits, from the present study, implicate MagB activation as a vital component of surface hydrophobicity sensing, putatively through a heptahelial GPCR.

(EPS)

Table S1 Previous studies utilizing G42R mutations in fungal Gt subunits. Investigations into Gt subunit function in multiple species have included G42R point mutations. In each case, the G42R mutant was assumed to be GTPase-deficient and constitutively active.

(PDF)

Table S2 Data collection and refinement statistics for Gtαi(G42R) complexes.

(PDF)

**Acknowledgments**

D.E.B. and D.P.S. thank the UNC Center for Structural Biology and the UNC Macromolecular X-Ray Crystallography Core Facility for access to crystallographic equipment and software. N.L.N and R.R thank Liu Hao (TUST, China) for helpful discussions.

**Author Contributions**

Conceived and designed the experiments: DEB FSW RR AJK MDW NIN DPS. Performed the experiments: DEB FSW RR AJK MDW. Analyzed the data: DEB FSW RR NIN DPS. Contributed reagents/materials/analysis tools: DPS NIN. Wrote the paper: DEB FSW NIN DPS.

References


