<table>
<thead>
<tr>
<th>Title</th>
<th>Autonomous control of an unmanned aerial vehicle (UAV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fu, Zhe</td>
</tr>
<tr>
<td>Citation</td>
<td>Fu, Z. (2013, March). Autonomous Control of an Unmanned Aerial Vehicle (UAV). Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/11291</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 The Author(s).</td>
</tr>
</tbody>
</table>
AUTONOMOUS CONTROL OF AN UNMANNED AERIAL VEHICLE (UAV)

1. **The Mission and the Drone**

2. **Faking a Laser Scanner**
 - RGB and depth data are combined to obtain point cloud image.

3. **Scanning and Mapping**
 - The purpose is to scan simultaneously to set up waypoints and track explored path.

4. **System Architecture**
 - Flight Controller
 - Speed Controller X4
 - Com Node
 - Ultrasonic Sensor
 - Motors X4
 - Onboard PC
 - Kinect Sensor
 - Battery

5. **Future Work**
 - LIDAR Laser Scanner
 - Fleet Flying
 - Aggressive Maneuvers
 - Weight Reduction
 - Intuitive User Interface
 - Power Management

Project Title: Autonomous Control of an Unmanned Aerial Vehicle (UAV)
Supervisor: Prof Er Meng Joo

www.ntu.edu.sg