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Abstract. A laminar Couette-Poiseullie flow of a Newtoniani€l is considered and heat transfer characteriaties
analyzed, attention being given to the effect stuus dissipation for the thermal boundary condlititat both the
plates being kept at specified and at differentstamt heat fluxes. The momentum equation is sdivezbtain the
velocity profile in such a way that it consists thk velocity of the upper moving plate and in ttine energy
equation is solved to yield temperature distributeond Nusselt number. Interesting results are gbdebased on
the influence of various parameters which are imseof Brinkman number, dimensionless velocity aedt flux

ratio.
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INTRODUCTION

The heat transfer characteristics with effect atwus dissipation of Newtonian fluid in small degaand in
micro-channels may vary substantially from thatlafge objects. The important consequence of viscous
dissipation in regard to temperature profile andsdélt number through geometry of infinitely longefi
parallel plates, both plates having specified cmsteat flux have been analyzed [1-5].

Couette-Poiseuille flow of nonlinear visco-elastigids and with the simplified Phan-Thien-Tanneuwidi
between parallel plates was analytically solved nehthe fixed plate is kept at constant heat flux dme
moving plate was insulated [6]. For the geometrgotiette flow with one plate kept at Constant Hieatand
the other insulated, numerical solution was obthife power-law non-Newtonian fluid [7] and anabtgl
solution was derived for Newtonian fluid [8].Andll investigation had been done for Couette-Pdiseu
flow, with slip effect at the porous wall, assumithgit Bingham fluid is flowing in between two posoparallel
plates [9].

The study on internal heat generation due feecebf viscous dissipation is not found in ther#ture for the
Couette-Poiseuille flow with both the plates bekegt at specified but different constant heat fluXéne heat
transfer analysis with one plate moving is a défdérfundamental problem worth pursuing. This stigly
necessary because of the high demand for the Biogeaegree of miniaturization in designing of ades.
Hence, the case of lower plate being fixed andupper plate moving with constant velocity, bothrigei
imposed to different but constant heat fluxes isstaered. The energy equation is solved leadirexpoessions
in temperature profiles and Nusselt number.

THE ANALYSIS

FIGURE 1 shows two flat infinitely long parallelgtes distance@ or 2W apart, where the upper plate is
moving with constant velocity and the lower plate is fixed, with the x-y cooratia system chosen as shown.
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FIGURE 1. The problem.

The flow through the plates is considered at digeaft distance from the entrance such that ibash
hydro-dynamically and thermally fully developed.eTaxial heat conduction in the fluid and through wall is
assumed to be negligible. The fluid is assumedetdNbwtonian and with constant properties. The tlérm

boundary conditions are the upper plate is kepbastant heat flu>q1 while the lower plate at different

constant heat flux, .
The momentum equation in the x-direction is

du_1dp )

whereu is the velocity of the fluid/ is the dynamic viscosity, P is the pressure.

The velocity boundary conditions ate=Owheny =0 andu = U wheny =W. Using the following
dimensionless parameters:

u =u/u, U =U/u, Y=yWw, )
the well-known velocity-distribution is [8]
U =(U -6)(Y -Y)+U'Y, 3)
where the mean velocity i) is given by
1 w
u_ =— | udy. 4
n =i l dy (4)

For the above equation, expressioruf obtained by solving the momentum equation,(Ey.The energy
equation, including the effect of viscous dissipatiis given by

2
WOT oy 0T, H (auj
=t — |,

ox Proy” pc |0y
where the second term on the right-hand side isigdmus-dissipative term. In accordance to theragsion of
a thermally fully developed flow with uniformly hiesl boundary walls, the longitudinal conductionrtes

neglected in the energy equation [10]. Followinig,tthe temperature gradient along the axial divads
independent of the transverse direction and gigen a

20 b o , 6
ox dx dx (©)

©)
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whereTl andT2 are the upper and lower wall temperatures, resedgt By taking @ = k/,OCp , introducing
the non-dimensional quantity

=14 @)
qW/k:
and defining a dimensionless constght
Pru_KW dT.
IB = #L , (8)
yoq o dx
and modified Brinkman numbeBrql as
2
qu1 = /JU_m , 9)
2\g,
Eq. (5) can be written as
dze — * 2 * * * 2
v =p[(0 -6)(v-Y)+uY]-Br [ (2 - (- )+U | (10)
The thermal boundary conditions are
oT 06
k—=q aty=W, or—=1lalr = ,
agay aY
T=T aty=W,ord=0alr = . (11)
The solution of Eq. (10) under the above thermainoiary conditions can be obtained as
1 * 1 *2 *
6(Y) —(Z,BU ~B-6UT B, +240° B, - 24qule“
_1 * %2 *
+(?,3U +pB+ & Br, - 40 Br, + 4qu1]\(‘3
+(-47Br, + 20°Br, - 36r, )V (12)
+( x5+ 9 Br, - 20'6r, + 281, )Y
+Lup+lp-eu”Br +180°Br, - 181, - 1
12 14 _2'5 o Mo la :
To evaluate3 in the above equation, a third boundary conditsorequired:
oT 06
-k—=q aty=0, or— =-% aty = | (13)
ay ° aY (o}
By substituting Eq. (13) into Eq. (12)3 can be expressed as a function of heat flux raticand Brg,
Therefore, the solution, Eq. (12), canvindtten as a function oY, as well as heat flux ratit)* and Brg,
In fully developed flow, it is usual to utilize timeean quid-temperatur@m , rather than the centerline
temperature, when defining the Nusselt number. iit@an or bulk temperature is given by
j PUTdA,
T, =", (14)
J pudA,
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with At the cross-sectional area of the channel and themdi@ator on the right-hand side of Eqg. (14) can be
written as

1
pf(@-6)(Y2-Y)+U'Y)dA = pLW. (15)
0
The dimensionless mean temperature is given by
Kk
6 =——(T_ -T,). (16)
m CIlW( m l)
At this point, the convective heat transfer caiéfint can be evaluated by the equation
q, =h(T, -T,). (17)
Defining Nusselt number to be
hD, 2w 2
Nu = h = % =—-—, (18)

k k(T,-T,) &

m

whereDy, is the hydraulic diameter defined By, =2W, the expression for Nusselt number can be sgprkas a

function of heat flux ratioJ*, and Brg; Whenag,=0, it can be shown th&iu becomes

NU = 210 (19)
-522)"Br, - 94)"'Br, + 366/ Br, - 10' +U "+ § 'Br, + 16@r, + 3¢

agreeing with reference [8].

RESULTSAND DISCUSSIONS

The characteristics of the flow and the heated oregtan be observed through various graphical
representations. In the following discussion, temperature profiles and the Nusselt number variatiare
plotted.

Temperature Profiles

Fromthe expression for the temperature profile in teohs/arious parameters such as moving plate
velocity, constant heat flux ratio, modified Brinkm number, it is interesting to observe the bisanf
various temperature profiles while keeping any pasameters fixed and vary the third parameter difflerent
values
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(@) Br=-0.5
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FIGURE 2. Temperature profiles &t*=-1.0, -0.5, 0.0, 0.5 and 1.0 at varioBd’od for the case ofi,/ou=1. (a) Bf, = -0.5
(b) BL=0.0 (c) By, = 0.5.

FIGURE 2 shows the dimensionless temperattoflgs of @ versusY, where both upper and lower plate
are kept at specified equal constant heat fluxfia dimensionless velocitidg* = -1.0, -0.5, 0.0, 0.5 and 1.0,

and at three seIectelBrOﬂ -0.5, 0.0 and 0.5, as shown in (a) to (c). Ithserved that in FIGURE 2(a), when

qul: -0.5, the temperature takes only positive valioeesU*=-1.0, -0.5 and 0.0 which implies there is an

increase in heat transfer whereas when U*=0.5 afdte temperature takes minimum negative values. |
FIGURE 2(b), in the absence of viscous dissipatigmen U*=0.0, 0.5 and 1.0 the temperature distiiing are
purely negative which implies there is decreashdat transfer and when U*=-0.5 and -1.0, the teatpes
takes very minimum positive values. All the curieshis case decreases, reaches minimum and thezases

to 1. In FIGURE 2(c), wherqul: 0.5, the temperature takes only negative valaedJf=-1.0, -0.5 and 0.0

which implies there is a decrease in heat trangfmreas when U*=0.5 and 1.0 the temperature takeisnm
positive values. All the curves convergerail, at zerod , by definition.
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FIGURE 3. Temperature profiles ap/q, =0.3, 1.0 and 3.0 at variOLBroa , for the case dfi*=2.0. (a) Bg; =-0.5
(b) Bi=0.0 (c) B, =0.5.

In FIGURE 3, the magnitude of the velocitytbé moving plate is fixed ad* = 2.0 and the pattern of
temperature distribution is studied g/g; = 0.3, 1.0 and 3.0, at variOlBroa values. When Bl’qL =-0.5 and at
g./aqp = 0.3, 1.0, the temperature profiles are on negaside whereas whewp/q; = 3.0, the values for the
temperature distribution are both positive as \@elhegative. WhelBl’oﬂ =0.0 and atgy/q, = 0.3, the values of

the temperature are negatibereas whe/q; = 1.0 and 3.0, the values for the temperatureibigion are
both positive as well as negative and is obserted there is s decrease in the temperature vaegn

Bl’oﬂ =0.5, the manifestation is different in such a st the values of the temperature are positivetheck

is decrease in the values for all the specifiedstaont heat flux ratios. All the curves convergéral, at zero
&, by definition.
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Nusselt Number Variations

The following results show the effects\arious parameters on the Nusselt number.

30 Nu
' —_— e U*=-2.0
I
I — —U*=0.0
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FIGURE 4. Nusselt number versul’ql ,atu*=-2.0, 0.0 and 2.0, at variogglg;. Vertical lines are asymptotes.

(a) fa, = 0.3 (b) @/ay = 1.0 (c) @/cy = 5.0.

FIGURE 4 illustrates the variation of the Nusselttber against the modified Brinkman numbelJat= -
2.0, 0.0 and 2.0 at various constant heat fluosatif 0.3, 1.0 and 5.0, as shown in (a) to (c). thfe curves

display rectangular hyperbolic shapes with singtksr appearing along thBroﬂ axis, The singularities

obtained are given in TABLE 1.
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TABLE (1). Values of By, at various g/cy and U* .

02/
0.3 1.0 5.0
J
-2 -0.0179 0.0169 -0.0113
0 -0.2157 0.1574 0.1759
2 0.3999 0.1667 -1.1667

It is useful to know these singularities, sitivere will be change in the direction of heat $fenacross these
qul points for the above specified constant heat fatios. As the heat flux ratio varies the singuiesitwill

fall in different quL axis. This is a fundamental phenomena in the maaster analysis.

CONCLUSIONS

Hydro-dynamicallyandthermally fully developed laminar flow of Newtonilnid through infinitely long

parallel plates is considered, where the movingeupiate is kept under a specified constant haatghd the
lower fixed plate is kept under different but sffieci constant heat flux. Heat transfer analysidoise for this
thermal boundary condition. The momentum equatiwhthen the energy equation are solved and results
obtained have various parameters such as moving yocity, modified Brinkman number and the canst
heat flux ratio. A number of discussions and obatons have been carried out which can play an itapb
role in the designing of micro scale devices.
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