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Abstract. A laminar Couette-Poiseullie flow of a Newtonian fluid is considered and heat transfer characteristics are 
analyzed, attention being given to the effect of viscous dissipation for the thermal boundary condition that both the 
plates being kept at specified and at different constant heat fluxes. The momentum equation is solved to obtain the 
velocity profile in such a way that it consists of the velocity of the upper moving plate and in turn the energy 
equation is solved to yield temperature distribution and Nusselt number. Interesting results are observed based on 
the influence of various parameters which are in terms of Brinkman number, dimensionless velocity and heat flux 
ratio. 
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INTRODUCTION 

  The heat transfer characteristics with effect of viscous dissipation of Newtonian fluid in small devices and in 
micro-channels may vary substantially from that of large objects. The important consequence of viscous 
dissipation in regard to temperature profile and Nusselt number through geometry of infinitely long fixed 
parallel plates, both plates having specified constant heat flux have been analyzed [1-5]. 
   Couette-Poiseuille flow of nonlinear visco-elastic fluids and with the simplified Phan-Thien-Tanner fluid 
between parallel plates was analytically solved where the fixed plate is kept at constant heat flux and the 
moving plate was insulated [6]. For the geometry of Couette flow with one plate kept at Constant heat flux and 
the other insulated, numerical solution was obtained for power-law non-Newtonian fluid [7] and analytical 
solution was derived for Newtonian fluid [8].Analytical investigation had been done for Couette-Poiseuille 
flow, with slip effect at the porous wall, assuming that Bingham fluid is flowing in between two porous parallel 
plates [9]. 
    The study on internal heat generation due to effect of viscous dissipation is not found in the literature for the 
Couette-Poiseuille flow with both the plates being kept at specified but different constant heat fluxes. The heat 
transfer analysis with one plate moving is a different fundamental problem worth pursuing. This study is 
necessary because of the high demand for the increasing degree of miniaturization in designing of devices. 
Hence, the case of lower plate being fixed and the upper plate moving with constant velocity, both being 
imposed to different but constant heat fluxes is considered. The energy equation is solved leading to expressions 
in temperature profiles and Nusselt number.  
 

THE ANALYSIS 

    FIGURE 1 shows two flat infinitely long parallel plates distanced W or 2w  apart, where the upper plate is 
moving with constant velocity U and the lower plate is fixed, with the x-y coordinate system chosen as shown.  
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FIGURE 1.  The problem. 

 The flow through the plates is considered at a sufficient distance from the entrance such that it is both 
hydro-dynamically and thermally fully developed. The axial heat conduction in the fluid and through the wall is 
assumed to be negligible. The fluid is assumed to be Newtonian and with constant properties. The thermal 

boundary conditions are the upper plate is kept at constant heat flux 
1

q  while the lower plate at different 

constant heat flux 
2

q . 

       The momentum equation in the x-direction is  

2

2

1
,

d u dP

dy dxµ
=            (1) 

where u is the velocity of the fluid, µ is the dynamic viscosity, P is the pressure.  

       The velocity boundary conditions are 0u = when 0y =  and u = U when .y W= Using the following 

dimensionless parameters: 
*

mu u u= ,    * ,     Y=mU U u y W= ,        (2) 

the well-known velocity-distribution is [8] 

                ( )* * 2 *(3 6)u U Y Y U Y= − − + ,       (3) 

where the mean velocity is (um) is given by 

                

   W

0

1
.mu udy

W
= ∫            (4) 

      For the above equation, expression for u is obtained by solving the momentum equation, Eq. (1). The energy 
equation, including the effect of viscous dissipation, is given by   

22

2Pr p

T T u
u

x y c y

γ µ
ρ

 ∂ ∂ ∂= +  ∂ ∂ ∂ 
,                                                                                                 (5) 

where the second term on the right-hand side is the viscous-dissipative term. In accordance to the assumption of 
a thermally fully developed flow with uniformly heated boundary walls, the longitudinal conduction term is 
neglected in the energy equation [10]. Following this, the temperature gradient along the axial direction is 
independent of the transverse direction and given as 

 1 2dT dTT

x dx dx

∂ = =
∂

, (6) 

Flow with velocity u   
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where 1T  and 2T  are the upper and lower wall temperatures, respectively. By taking pk cα ρ= , introducing 

the non-dimensional quantity 

 

1

1 
T T

q W k
θ −= , (7) 

and defining a dimensionless constant β , 

                                                      1

1

mPru kW dT

q dx
β

γ
= ,                   (8) 

and modified Brinkman number 
1

Brq as 

 

 
1

2

1

 Br
2

m
q

u

Wq

µ= , (9) 

Eq. (5) can be written as 

 ( )( ) ( )( )
1

2 2
* 2 * * *

2
3 6 2 3 6 2 1q

d
U Y Y U Y Br U Y U

dY

θ β    = − − + − − − +    . (10) 

The thermal boundary conditions are 

 
1
 at ,  or 1 at 1

T
k q y W Y

y Y

θ∂ ∂= = = =
∂ ∂

, 

 1 at , or 0 at 1T T y W Yθ= = = = . (11) 

The solution of Eq. (10) under the above thermal boundary conditions can be obtained as 

( )

( )
( )

2

1 1 1

2

1 1 1

2

1 1 1

2

1 1 1

* * * 4

* * * 3

* * 2

* *

*

1 1
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1
           8 40 48

3

           4 24 36

           1 8 24 24

1 1
           

12 2

q q q

q q q

q q q

q q q

Y U U Br U Br Br Y

U U Br U Br Br Y

U Br U Br Br Y

U Br U Br Br Y

U

θ β β

β β

β

β β

 = − − + − 
 

− + + + − + 
 

+ − + −

+ − + − +

+ +
2

1 1 1

* *6 16 12 1.q q qU Br U Br Br− + − −

 (12) 

To evaluate β  in the above equation, a third boundary condition is required: 

 
2

2

1

 at 0,  or  at 0
qT

k q y Y
y Y q

θ∂ ∂− = = = − =
∂ ∂

. (13) 

By substituting Eq. (13) into Eq. (12), β  can be expressed as a function of heat flux ratio, U* and  Brq1 

                        
Therefore, the solution, Eq. (12), can be written as a function of Y, as well as heat flux ratio, U* and  Brq1    

 

                                                                    

     

In fully developed flow, it is usual to utilize the mean fluid-temperature,mT , rather than the centerline 

temperature, when defining the Nusselt number. This mean or bulk temperature is given by  

 c

c

c

c

A
m

A

uTdA
T

udA

ρ

ρ
=
∫

∫
, (14) 
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with cA  the cross-sectional area of the channel and the denominator on the right-hand side of Eq. (14) can be 

written as  

 ( )( )
1

* 2 *
c

0

(3 6)U Y Y U Y dA LWρ ρ− − + =∫ . (15) 

 The dimensionless mean temperature is given by 

 ( )
1

1m m

k
T T

q W
θ = − . (16) 

 At this point, the convective heat transfer coefficient can be evaluated by the equation  

 
1 1( )mq h T T= − . (17) 

 Defining Nusselt number to be 

 ( )
1

1 m m

2 2hhD q W
Nu

k k T T θ
= = = −

−
,                                           (18) 

where Dh is the hydraulic diameter defined by Dh =2W, the expression for Nusselt number can be expressed as a 
function of heat flux ratio, U*, and  Brq1. When q2=0, it can be shown that Nu becomes  

 
             (19) 
 
 

agreeing with reference [8].  
 

RESULTS AND DISCUSSIONS 

The characteristics of the flow and the heated region can be observed through various graphical 
representations. In the following discussion, the temperature profiles and the Nusselt number variations are 
plotted. 

Temperature Profiles  

       From the expression for the temperature profile in terms of various parameters such as  moving plate 
velocity, constant heat flux ratio, modified Brinkman  number,  it is interesting to observe the behavior of 
various temperature profiles while keeping any two parameters fixed and vary the third parameter with different 
values. 

 
 
                 (a)  Brq1=-0.5 

3 2 2 4

1 1 1 1 1

* * * * * *

210
,

522 94 366 11 8 162 39q q q q q

Nu
U Br U Br U Br U U U Br Br

=
− − + − + + + +
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(b)  Brq1=0.0 

 

 
(c)  Brq1=0.5 

FIGURE 2. Temperature profiles at U*=-1.0, -0.5, 0.0, 0.5 and 1.0 at various 
1

Brq for the case of q2/q1=1. (a) Brq1 = -0.5 

                    (b) Brq1 = 0.0 (c) Brq1 = 0.5. 
 
 

    FIGURE 2  shows the dimensionless temperature profiles of θ  versus Y, where both upper and lower plate 
are kept at specified equal constant heat flux  at  five dimensionless velocities U* = -1.0, -0.5, 0.0, 0.5 and 1.0, 

and  at three selected 
1

Brq -0.5, 0.0 and 0.5, as shown in (a) to (c).  It is observed that in FIGURE 2(a), when  

1
Brq = -0.5, the temperature takes only positive values for U*=-1.0, -0.5 and 0.0 which implies there is an 

increase in heat transfer whereas when U*=0.5 and 1.0 the temperature takes minimum negative values. In  
FIGURE 2(b), in the absence of viscous dissipation, when U*=0.0, 0.5 and 1.0 the temperature distributions are 
purely negative which implies there is decrease in heat transfer and when U*=-0.5 and –1.0, the temperature 
takes very minimum positive values. All the curves in this case decreases, reaches minimum and then increases 

to 1. In FIGURE 2(c), when 
1

Brq = 0.5, the temperature takes only negative values for U*=-1.0, -0.5 and 0.0 

which implies there is a decrease in heat transfer whereas when U*=0.5 and 1.0 the temperature takes minimum 
positive values.  All the curves converge at Y=1, at zero θ  , by definition. 
 
 
 

    
  
 (a)   Brq1= - 0.5 
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     (b)   Brq1= 0.0 
 

 
 (c)   Brq1= 0.5 
 

FIGURE 3. Temperature profiles at q2/q1 =0.3, 1.0 and 3.0 at various 
1

Brq , for the case of U*=2.0. (a) Brq1 = -0.5  

                    (b) Brq1= 0.0  (c) Brq1 = 0.5.  
 
 
 
     In FIGURE 3, the magnitude of the velocity of the moving plate is fixed as U* = 2.0 and the pattern of 

temperature distribution is studied at  q2/q1 = 0.3, 1.0 and 3.0, at various 
1

Brq values.  When 
1

Brq =-0.5 and at  

q2/q1 = 0.3, 1.0, the temperature profiles are on negative side whereas when q2/q1 = 3.0, the values for the 

temperature distribution are both positive as well as negative. When 
1

Brq =0.0 and at  q2/q1 = 0.3, the values of 

the temperature are negative whereas when q2/q1 = 1.0 and 3.0, the values for the temperature distribution are 
both positive as well as negative and is observed that there is s decrease in the temperature values. When 

1
Brq =0.5, the manifestation is different in such a way that the values of the temperature are positive and there 

is decrease in the values for all the specified constant heat flux ratios. All the curves converge at Y=1, at zero 

θ , by definition. 
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Nusselt Number Variations 

     The following results show the effects of various parameters on the Nusselt number. 
 

     
    (a)     q2/q1=0.3 

 
    (b)     q2/q1=1.0 
 

 
 
    (c)     q2/q1=5.0 

FIGURE 4. Nusselt number versus 
1

Brq , at U*=-2.0, 0.0 and 2.0, at various q2/q1.  Vertical lines are asymptotes.  

                 (a) q2/q1 = 0.3 (b) q2/q1 = 1.0 (c) q2/q1 = 5.0.   

 
   FIGURE 4 illustrates the variation of the Nusselt number against the modified Brinkman number at U* = -
2.0, 0.0 and 2.0 at various constant heat flux ratios of  0.3, 1.0 and 5.0, as shown in (a) to (c).  All the curves 

display rectangular hyperbolic shapes with singularities appearing along the 
1

Brq axis, The singularities 

obtained are given in TABLE 1.  
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TABLE (1). Values of Brq1 at various q2/q1 and U* . 
 
 q2/q1 
  
      0.3                          1.0                       5.0 
      
        U* 
 
       -2                 -0.0179                 -0.0169                   -0.0113 
 
        0                 -0.2157                 -0.1574                     0.1759 
 
        2                  0.3999                  0.1667                      -1.1667 
 
 
    

   It is useful to know these singularities, since there will be change in the direction of  heat transfer across these   

1
Brq points for the above specified constant heat flux ratios. As the heat flux ratio varies the singularities will 

fall in different 
1

Brq axis. This is a fundamental phenomena in the heat transfer analysis.  

 

CONCLUSIONS 

    Hydro-dynamically and thermally fully developed laminar flow of Newtonian fluid through infinitely long 
parallel plates is considered, where the moving upper plate is kept under a specified constant heat flux and the 
lower fixed plate is kept under different but specified constant heat flux. Heat transfer analysis is done for this 
thermal boundary condition. The momentum equation and then the energy equation are solved and results 
obtained have various parameters such as moving plate velocity, modified Brinkman number and the constant 
heat flux ratio. A number of discussions and observations have been carried out which can play an important 
role in the designing of micro scale devices.  

REFERENCES 

1. J. Sheela-Francisca and C. P. Tso . Viscous dissipation effects on parallel plates with constant heat flux boundary 
conditions, Int. Commun. Heat Mass Transfer 36, 249-254 (2009). 

2. O. Aydin and M.  Avci, Viscous-dissipation effects on the heat transfer in a Poiseuille flow, Appl. Energy 83, 495-512 
(2006). 

3. J. W. Ou and K. C. Cheng, Effects of pressure work and viscous dissipation on Graetz problem for gas flows in 
parallel platechannels, Warme-und Stoffubertraggung 6, 191-198 (1973). 

4. C. P. Tso C P, J. Sheela Francisca and Yew-Mun Hung, Viscous dissipation effects of power-law fluid within parallel 
plates with constant heat fluxes, J. Non-Newtonian Fluid Mech. 165, 625-630 (2010). 

5. D. E.  Gray ,  “The motion of viscous fluids”, American Institute of Physics Handbook, 3rd edition, section 3c-2 1972; 
American Institute of Physics. 

6. S. H. Hashemabadi S. Gh. Etemad and J. Thibault, Forced convection heat transfer of Couette-Poiseuille flow of 
nonlinear viscoelastic fluids between parallel plates, Int. J.    Heat Mass Transfer 47, 3985-3991 (2004). 

7. G. Davaa, T. Shigechi and S. Momoki, Effect of viscous dissipation on fully developed heat transfer of non-
Newtonian fluids in plane laminar Poiseuille-Couett flow, Int. Commn. Heat Mass Transfer 31, 663-672 (2004). 

8. O. Aydin, M. Avci, Laminar forced convection with viscous dissipation in a Couette-Poiseuille flow between parallel 
plates, Appl. Energy 83, 856-867 (2006).  

9. Yong-Li Chen, Ke-Qin Zhu. Couette-Poiseuille flow of Bingham fluids between two porous parallel plates with slip 
conditions, J. Non-Newtonian Fluid Mech. 2008; 153, 1-11 (2008). 

10. W. Kays, M. Crawford and B. Weigand, Convective Heat and Mass Transfer, fourth ed., McGraw-Hill 2005; New 
York. 

399

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

155.69.4.4 On: Wed, 29 Jan 2014 05:36:36


