<table>
<thead>
<tr>
<th>Title</th>
<th>A self-rectifying unipolar HfOx based RRAM using doped germanium bottom electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Liu, W. J.; Tran, Xuan Anh; Yu, Hongyu; Sun, Xiaowei</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/13176</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 The Electrochemical Society. This paper was published in ECS Solid State Letters and is made available as an electronic reprint (preprint) with permission of The Electrochemical Society. The paper can be found at the following official DOI: [http://dx.doi.org/10.1149/2.006305ssl](http://dx.doi.org/10.1149/2.006305ssl]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
A self-rectifying unipolar RRAM based on HfOx dielectrics using highly doped n-type germanium substrate as the bottom electrode is proposed for the first time. The RRAM exhibits a stable unipolar resistive switching behavior. Owning to Schottky barrier between defect states in HfOx layer and n-Ge substrate, RRAM cells possess a self-rectifying behavior in LRS which eliminates the read-out errors induced by leakage current paths in cross-bar array structure. The demonstrated RRAM device shows high ON/OFF ratio (>5 × 10^7 @ 0.5 V), and its effective Schottky barrier height is also addressed. The demonstrated HfOx-based RRAM devices provide a promising candidate as non-volatile memory devices using Ge-based technology.

Resistive random access memory (RRAM) has emerged as a promising candidate for future generation non-volatile memory owing to its ultra-fast switching, excellent endurance, excellent scalability and CMOS compatibility. Recently, the cross-bar architecture, in which memory cells are integrated between the word- and bit- lines, realizing a cell size of 4F^2 has been proposed for potential RRAM application. Unfortunately, the cross-talk interference between memory cells caused by leakage current paths through neighboring cells with low resistances state in cross-bar array can induce read-out errors. The resistive switching behavior can be classified into two types: bipolar resistive switching (BRS) and unipolar resistive switching (URS). For the former case, several papers have reported various solutions in the form of devices such as transistors, selection devices and complementary resistive switch (CRS) where the logic bit is coded in two different reset (high resistance) states for bipolar-type RRAM cross-bar integration. Complementary switch (CS) was implemented by connecting two antierial memristive elements and then demonstrated in a single oxide layer of HfOx. Recently, CS effect in single oxide layers was also observed in TaOx-based RRAM. For unipolar RS case, to avoid this cross-talk effect, a rectifying diode (1D) or transistor (1T) integrated with RRAM cell to block sneak current path is demonstrated in several reports. However, integrating a diode and transistor not only increases fabrication cost, but also leads to the increase of operating voltage and reduce memory performance. Recently, the self-rectifying resistive memory has been actively pursued. The self-rectifying RRAM has the obvious rectification in LRS, so the crosstalk phenomenon can be alleviated without serially connecting a diode. In this letter, a unipolar RRAM based on HfOx dielectrics on n^+-Ge/HfOx/Ni memory cell, showing Schottky diode characteristics which can alleviate the cross-talk effect in cross-point array.

Experimental

The schematic structure and fabrication process of RRAM cells are shown in Figure 1a and 1b, respectively. Firstly, a highly-doped 4-inch Ge wafer is cleaned using RCA process, which was developed by Radio Corporation of America, to remove the native oxide layer. After that, a 4-nm-thick HfOx film was deposited using atomic layer deposition (ALD) at 250 °C on Ge substrate. Finally, a 100-nm-Ni top electrode was deposited by physical vapor deposition. Ni electrode was deposited using a reactive radio frequency sputtering system in Ar gas flow rate of 14 sccm at a base pressure of 1 × 10^-8 mBar. The lift off process is carried out to pattern final devices with area of 25 × 25 μm^2. The electrical measurements were performed using a Keithley 4200-SCS semiconductor parameter analyzer. The voltage is applied on Ni top electrode and Ge substrate is connected to ground.

Results and Discussion

To operate unipolar resistive switching in RRAM device, a forming process and current compliance setting is required, as shown in Figure 2a. A DC voltage sweep (V\text{forming} ∼ 3.5 V) is applied to switch HfOx layer into low resistance state (LRS). Compliance current is set at 10 μA to protect device from permanent breakdown. After forming process, RRAM device is under very low resistance state, which is denoted as logic “1” in memory application. To switch device into high resistance state, another voltage sweep (V\text{reset} ∼ 1.5 V) triggers the abrupt decrease of current and the resistance switches back to high resistance state (HRS), denoted as RESET process shown in Figure 2b. The HRS of RRAM device is present as logic “0”. Afterward, a positive voltage sweeps (V\text{set} ∼ 2.5 V) with a current compliance of 100 μA triggering again the conduction abruptly, and the resistance switches from HRS to LRS, shown in Figure 2b. The polarity independence of the SET and RESET transition indicates the unipolar resistive switching (RS) characteristics. In unipolar RRAM, it is believed that the Joule heating effect plays an important role in the rupture of conductive filaments in reset process, where the resistance state changes from LRS to HRS, shown in Figure 2b. From Figure 2b, it is also observed that the devices demonstrate a pronounced rectifying effect at LRS. In LRS, the achieved current in positive direction is >500 larger than that of negative direction, at a 0.5 V reading voltage. It is worth noting that the HRS current seems to be overlapped with LRS current in negative direction. It is found that the rectifying characteristic can be maintained well with temperature as shown in Figure 3, where the temperature is from 25°C to 150°C. The result in insets of Figure 3 is the same data from Figure 3 but plotted in linear-linear scales. The distribution of V\text{set} and V\text{reset} switch current for SET and RESET processes (I\text{set} and I\text{reset}) is presented in Figure 4a and 4b, respectively. In our proposed device, the Joule-heating effect

![Figure 1](image-url)
(a) The schematic of the proposed n^+-Ge/HfOx/Ni device. (b) Process flow of fabricated n^+-Ge/HfOx/Ni device.

© 2013 The Electrochemical Society. [DOI: 10.1149/2.006305ss] All rights reserved.
is attributed to melt conductive filament in RESET Process. The melting point depends mostly on I_{reset} (V_{reset}). The I_{reset} at 125°C is smaller that that at room temperature (data not shown here), indicating Joule-heating effect plays an important role in resistive-switching process. The distribution of HRS/LRS resistance and endurance characteristic of the memory cell is shown in Figure 5a and 5b, respectively. Good HRS/LRS distribution is achieved and the resistance ratio is larger than 3 orders of magnitude. Retention time for the device were extracted by considering the life time of HRS at different temperature points, and summarized in Figure 5c. It is worth noting that there is no degradation in LRS for 5 × 10^5 s at 150°C under 0.5 V applied voltage, and the projected retention time at room temperature is around 10^9 s.

Note that the Schottky-diode-like behavior is observed in an n²-Ge/HfOx/Ni memory cell and the reverse current of n²-Ge/HfOx/Ni is strongly suppressed and more than 2 orders of magnitude smaller than forward current, shown in Figure 3. The possible mechanism of self-rectifying effect is described as follows. During SET process, oxygen vacancies (V_o) can be created inside the HfOx dielectric films. These defects may introduce energy level, which initiates percolation paths for electron conduction in HfOx layer. When the device is operated at reverse bias, the injection of electrons from the defect states in HfOx into Ge electrode is required. Owing to the Schottky barrier at the Ge bottom electrode and HfOx junction, the current transport would be quite suppressed. To examine the self-rectifying I-V behavior of n²-Ge/HfOx/Ni cell in LRS, the transport mechanism of the reverse current is investigated. The thermionic current-voltage (I-V) characteristic of a Schottky barrier diode is given as follows,[16]

$$I = S \times A^* \times T^2 \times \exp \left(\frac{-q \Phi_{B,\text{eff}}}{kT} \right) \left[\exp \left(\frac{qV}{nkT} \right) - 1 \right]$$

where S is the area of measured RRAM cell, A^* is the effective Richardson constant, k is the Boltzmann constant, $\Phi_{B,\text{eff}}$ is the effective Schottky barrier height, T is the absolute temperature, n is the ideality factor. For $V \gg kT/q$, the equation 1 can be written as

$$\ln \left(\frac{I}{T^2} \right) = \ln(S \times A^*) - q(\Phi_{B,\text{eff}} - V/n) \frac{1}{kT}$$

The $\Phi_{B,\text{eff}}$ can be extracted from ln(I/T^2) versus 1/kT (Richardson plot) with a slope of $-q(\Phi_{B,\text{eff}} - V/n)$. The n value is 4.7, calculated by fitting the linear region of the I-V curve at room temperature in Figure 3, where the extraction method is the same as the reported.[17,18] The real factor deviates from the ideal value of 1, indicating the formation of inhomogeneous barrier at HfOx/Ge interface, which possibly results from interface states and interfacial layer GeOx between defected HfOx and Ge.[19] Figure 6 shows the temperature dependence of reverse current of n²-Ge/HfOx/Ni cell. The 1D1R circuit diagram is schematically shown in inset in Figure 6. The linear expression is done to fit the experimental data and the slope is 0.068. The obtained effective $\Phi_{B,\text{eff}}$ at a given voltage of −0.5 V is 0.17e V. Then the Schottky barrier height between the defect states in HfOx dielectric

![Figure 2](image-url)
(a) I-V characteristics of n²-Ge/HfOx/Ni cell in RESET Process. (b) I-V characteristics of n²-Ge/HfOx/Ni cell in SET Process.

![Figure 3](image-url)
Figure 3. I-V characteristics and circuit diagram (inset) of n²-Ge/HfOx/Ni cell in LRS at various temperature.

![Figure 4](image-url)
Figure 4. The distribution of SET (V_{set}) and RESET (V_{reset}) voltages (a), SET (I_{set}) and RESET (I_{reset}) current (b).
and Ge substrate is quantitatively addressed. Based on the aforementioned result, the cross-talk effect in the crossbar array structure arrays can be avoided. Leakage sneak paths are reduced significantly compared to the array without the selector device. The circuit simulation showed that the high rectification ratio ensures the crossbar array can function properly even at very large integration. Crossstalk phenomenon can be eliminated if a diode is serially connected to each resistive memory device.

Conclusion

We for the first time demonstrated a self-rectifying unipolar HfOx-based RRAM using highly doped n-Ge substrate as the bottom electrode. The proposed RRAM device exhibits a stable unipolar resistive switching behavior, a self-rectifying characteristic which eliminates the leakage current in a cross-bar array structure. The mechanism of the self-rectifying behavior is investigated using a Schottky diode model and an effective Schottky barrier height is presented. The demonstrated HfOx-based RRAM devices exhibit a promising candidate as non-volatile memory devices using Ge-based technology.

Acknowledgments

This work is supported by Singapore Agency for Science, Technology and Research (A*STAR) (Project No. 092 151 0088). H. Y. Yu acknowledges 1000-plan funding. The work is supported by the National Natural Science Foundation of China (NSFC) (Project Nos. 61006037, 61177014 and 61076015), and Tianjin Natural Science Foundation (Project Nos. 11JCYJJC21900 and 11JCYJJC25800). This work is also partly supported by research fellowship of Japan Society for the Promotion of Science (JSPS).

References