Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer: errata

Zi-Hui Zhang,1 Swee Tiam Tan,1 Wei Liu,1 Zhengang Ju,1 Ke Zheng,1 Zabu Kyaw,1 Yun Ji,1 Namig Hasanov,1 Xiao Wei Sun1,2,5 and Hilmi Volkan Demir1,3,4,*

1LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
2South University of Science and Technology, 1088 Xue-Yuan Road, Shenzhen, Guangdong, 518055, China
3School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
4Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800, Ankara, Turkey
5EXWSUN@ntu.edu.sg
*HVDEMIR@ntu.edu.sg

Abstract: The errata consists of the correction to one typo of the reach-through breakdown voltage for each p-GaN/n-GaN/p-GaN junction [Opt. Express 21, 4958-4969 (2013)].

©2013 Optical Society of America

OCIS codes: (230.3670) Light-emitting diodes; (230.5590) Quantum-well, wire, dot devices; (160.6000) Semiconductor materials.

References and links

In the recent paper on p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) proposed as a current spreading layer for InGaN/GaN light-emitting diodes [1], there is a typo in the equation of reach-through breakdown voltage in Section 3, where the term W_N^2 is mistakenly typed, as W_N misses its quadratic power, and the correct form is $BV_{rt} = \frac{eN_P W_N^2}{2\varepsilon_f} e_0$.

We apologize for the confusion caused by the oversight. However, this correction neither affects the conclusions nor the device physics of this paper.