<table>
<thead>
<tr>
<th>Title</th>
<th>Wireless + education =? Bluetooth from an adopter's view-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lee, Kok Seng.</td>
</tr>
<tr>
<td>Date</td>
<td>1999</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/1749</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>
Paper No. 6
Asian Media Information and Communication Centre
Second Regional Symposium on
New Media and Learning Technologies

Wireless + Education = ?
Bluetooth from an adopter’s view-point
September 1999

Lee Kok Seng
Senior Member, Research Staff
Head, Information Appliance Thrust
Ubiquity Lab
Kent Ridge Digital Labs

Agenda

- Motivations
- Wireless technologies
- About Bluetooth
- Challenges for wireless in education
- About diffused infrared

Motivations - push factors

- School bags are too heavy!
- Desk-top computers are not suitable for conventional classrooms
 - Too big to fit 40 in a typical classroom; need customisation of classrooms
 - Too many cables; cannot avoid having cables on the ground or having raised floor
 - Lost of eye contact; teachers can only see monitors!
- Notebooks are miniaturised desk-top computers
 - Still need a desk or a ‘lap’ to work
 - Cramped keyboard layout
 - Expensive - meant for travelling professionals
Motivations - pull factors

- Enable learning anywhere, anytime.
- There must be better ways for computers to help learning.
 - besides Microsoft Word (input)
 - besides Microsoft Power-Point (output)
- What happen to feed-forward/feed-back during classes??

How to improve?

- Push factors
 - Guidelines to lighten schoolbags
 - Standardise school bag size, with wheel
 - Lockers to keep textbook
 - Share books, tear books into half
- Pull factors
 - Encourage team work in class
 - Field trips
 - Integrate Internet into teaching
 - Stimulate creativity through set-piece problems
- Opportunity: Replace the books with "something"
 - Smaller than a computer
 - Weigh much less
 - Carry much more....
- Opportunity: reduce burden with "something" for...
 - Conducting activities
 - Interacting with class
 - Interacting with peers
 - Being simply connected....

Enablers...

- What should "something" be?
 - A device that one can hold on one hand and write naturally,
 - ... like writing on a paper; "just write", no need to save, "once inked it is there"
 - ... free form; can mix writing and drawing
 - Example: eduPAD
 - A device that can facilitate interaction
 - ... interact with teachers
 - ... interact with peers
 - ... In proximity or via Internet
 - Wireless technology is essential; topic of today's presentation
Wireless Technology

- **Digital cellular** wireless technology
 - Evolution
 - Second generation (2G) cellular wireless technology; GSM / GSM1800 / CDMAone (9.6 Kbps to 14.4 Kbps)
 - 2.5G cellular wireless technology; GPRS - packet wireless data (144 Kbps), HSCSD - circuit mode wireless data (9.6 Kbps to 64 Kbps)
 - 3G or UMTS or commonly known as W-CDMA; 384 Kbps to 2 Mbps
 - Characterised by "shared" usage of resources; not everyone makes a call at the same time at the same geographical area.

Wireless Technology

- **Digital cordless** wireless technology
 - Evolution
 - First generation cordless wireless technology; the cordless phone most have at home
 - CT2 cordless wireless technology
 - PHS - Personal Handy-phone, popular in Japan, has 32 Kbps wireless data capability
 - DECT - Digital Enhanced Cordless technology; support 32 Kbps to 552 Kbps wireless data
 - Bluetooth - Support wireless data up to 721 Kbps
 - Characterised by "low-cost short-range low-power" usage of resources; not everyone need to have high-end handset.

Wireless Technology

- **Digital cellular** wireless technology
 - Long range because of high radio emission power (typically 10km, max 35km @ 2W for GSM900)

- **Digital cordless** wireless technology
 - Very limited range because of low radio emission power; (typically 20 meters @ 10mW)

- Questions??
 - How is Bluetooth different?
 - Are there any wireless technology on the technology horizon?
About Bluetooth - Speed

- V.90 56Kbps
- ISDN 128Kbps
- 1M bps
- 2M bps
- 4M bps
- Wireless LAN (IEEE802.11)
- edupad

About Bluetooth - RF Power

- 100mW
- 40mW
- 0.75mW

About Bluetooth - Range

- edupad - 6 to 10 meters
- Cordless Telephone - 20 meters
- Wireless LAN - 50 meters
- GSM - typically 10 km
About Bluetooth - In a nut shell

- Therefore, Bluetooth is
 - A wireless technology optimised to deliver information bits at acceptable speed, range and power consumption
 - OR: none of the existing technology is perfect.
 - “Different carrot soup”
- Bluetooth is actually introduced as a “wire-replacement”; or more precisely “wire eliminator”

Bluetooth connects devices to Internet both on the fixed and mobile infrastructure world wide

About Bluetooth - In a nut shell

- More importantly, it is introducing to the world a concept called ad hoc networking, or personal-area-network

Ah hoc networking of devices

Human Networking
About Bluetooth - What ??

- So, what implications does Bluetooth has to education:
 - Positive impact
 - Will enable new form of exchange of information at new level of conveniences
 - Will enable collaboration work by minimising logistics in organising
 - Negative impact
 - Bluetooth will enable a new generation of "Information Appliance"; small wireless devices
 - ...
About Bluetooth - At KRDL ...

- At KRDL ...
 - We are developing Bluetooth protocols
 - We are using Bluetooth to enhance our future versions of eduPAD
 - We are looking into how we can use ad hoc networking technologies in collaborative learning
 - We are also looking into how Bluetooth can allow the school to interact with the home
- We want to enable new platforms for collaborative applications in schools and businesses
Challenges

- Education environments, such as classrooms, pose many challenges...
 - Typically, very high user density within the same geographical area:
 - Implies tough interference and frequency planning problems.
 - Subjected to 'reply' storms - traffic pattern are very 'clustered':
 - Implies that any wireless technology based on 'shared' access will have inherent problems addressing this issue; wireless LAN is not suitable.
- Bluetooth is not engineered for such needs, neither is Wireless LAN.

Challenges

- Education contents are also media rich, such as, inclusion of short video clip (MPEG, typically 1.15Mbps):
 - Implies the need for 'guaranteed' high bit rate on the wireless link.
- Bluetooth is not engineered for such needs, neither is Wireless LAN.

About Diffused Infrared - The challenge

- Connect up 40 users simultaneously to the Intranet.
- Support high bit rate applications.
About diffuse infrared - What?

- **WHAT?** It is a wireless link technology that has asymmetrical bandwidth on the up- and down-link portion of the wireless link.
- **Key advantage** is ability to handle very high user density, at low cost, low power at mobile side.
- **Use of optical wireless** allow easy scaling of bitrate.
About diffuse infrared - What?

Wireless Access Technologies

- **Wireless + Education = ?**
 - My guess
 - Real-time collaboration for learning

"Why" these activities?

- Dis-continuity created by convergence of computer and telecommunication
 - Computer era: Human adapts to computer - "technology push"
 - Appliance era: Computer adapts to human - "User's need"
 - Therefore, appliance is NOT miniaturising what is on desk-top
- Dis-continuity created by broad-band into homes
 - Emergence of always ON network with decent bit rate
The End

• Thank you for your attention
 • Lee Kok Seng
 • email: kokseng@krdl.org.sg
 • FAX: +65 776 8109 / +65 774 4990