<table>
<thead>
<tr>
<th>Title</th>
<th>Security challenges in automotive hardware/software architecture design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sagstetter, Florian; Lukasiewycz, Martin; Steinhorst, Sebastian; Wolf, Marko; Bouard, Alexandre; Harris, William R.; Jha, Somesh.; Peyrin, Thomas; Poschmann, Axel; Chakraborty, Samarjit</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/10220/17589">http://hdl.handle.net/10220/17589</a></td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [<a href="http://dx.doi.org/10.7873/DAT.2013.102">http://dx.doi.org/10.7873/DAT.2013.102</a>].</td>
</tr>
</tbody>
</table>
Security Challenges in Automotive Hardware/Software Architecture Design

Florian Sagstetter\(^1\), Martin Lukasiewycz\(^2\), Sebastian Steinhorst\(^3\), Marko Wolf\(^2\), Alexandre Bouard\(^3\), William R. Harris\(^4\), Somesh Jha\(^4\), Thomas Peyrin\(^5\), Axel Poschmann\(^5\), Samarjit Chakraborty\(^6\)

\(^1\) TUM CREATE, Singapore, Email: florian.sagstetter@tum-create.edu.sg
\(^2\) escrypt-Embedded Security GmbH, Germany, \(^3\) BMW Group, Germany, \(^4\) University of Wisconsin, USA
\(^5\) Nanyang Technological University, Singapore, \(^6\) TU Munich, Germany

Todo List

Abstract—This paper gives an introduction to security challenges arising during the design of automotive hardware/software architectures. State-of-the-art automotive architectures are highly heterogeneous and complex systems that rely on distributed functions based on electronics and software as well as various bus systems and protocols. With the growing connectivity of vehicles, including wireless communication like WiFi or Bluetooth, the vulnerability to attacks infiltrating the system is rapidly growing. Despite this increasing vulnerability, the design of automotive architectures is still mainly driven by safety and cost issues rather than security. In this paper, we present potential threats and vulnerabilities, and outline upcoming security challenges in automotive architectures. In particular, we discuss the challenges arising in electric vehicles, like the vulnerability to attacks tampering with the battery management. Finally, we discuss additional vulnerabilities arising in electric vehicle architectures. This includes tampering with the battery management system or the charging plug as an intrusion point. The introduction of Ethernet/IP as the next-generation backbone bus might also lead to a risk regarding the system security. We will discuss chances and challenges in terms of security of this new bus system in the automotive domain. Finally, we present first ideas how formal verification might be used to avoid vulnerabilities already during the design process.

Organization of the paper. The remainder of the paper is organized as follows. First, in Section II, an introduction is given to the history of automotive in-vehicle networks, as well as challenges to integrate security into the design process, and threats that arise for automotive systems, based on different attack scenarios. Section III presents an overview of security threats arising for electric vehicles. Section IV discusses future automotive architectures based on Ethernet/IP. Section V proposes formal verification to support the design process of a secure architecture. Finally, Section VI makes concluding remarks.

I. INTRODUCTION

In modern cars, innovations are mainly driven by electronics and software. As a result, top-of-the-range vehicles comprise up to 100 Electronic Control Units (ECUs) and multiple heterogeneous buses connected via gateways. Various wireless communication protocols, like keyless entry systems or WiFi, connect the car with its surroundings while functionality in upcoming cars will be even more based on software with strong wireless connectivity. Similar to the first computers connecting to the Internet, current automotive architectures have not been designed with respect to security, making them highly vulnerable to attacks infiltrating the system. Recently, a security analysis of a series-production vehicle revealed that an attacker might tamper with the brakes during driving \(^1\) after gaining access to the in-vehicle network via Bluetooth or 3G \(^2\). Furthermore, thieves have been exploiting security breaches in the keyless entry system \(^3\) and it was also possible to generate spare keys using the on-board diagnosis system to steal a car \(^4\). While the lack of security measures in modern vehicles so far has not been exploited to harm passengers, it already causes some, mostly financial, damages to different parties, e.g., through spurious warranty claims after illegal chip tuning or mileage manipulations. However, without a significant change of the design paradigm of automotive systems to increase the vehicle security, cyber-terrorism attacks addressing vehicles are only a question of time and inadequate security will become a severe safety issue.

Contributions of the paper. In this paper, we give an overview of potential threats and an introduction to the challenges of embedding security into automotive systems. First, we give an introduction to the history of automotive security before we outline potential threats and vulnerabilities. We discuss additional vulnerabilities arising in electric vehicle architectures. This includes tampering with the battery management system or the charging plug as an intrusion point. The introduction of Ethernet/IP as the next-generation backbone bus might also lead to a risk regarding the system security. We will discuss chances and challenges in terms of security of this new bus system in the automotive domain. Finally, we present first ideas how formal verification might be used to avoid vulnerabilities already during the design process.

II. BACKGROUND

This section gives an overview of the history of automotive security and introduces state-of-the-art in-vehicle networks and their limitations. Finally, a classification of different types of attackers is given and resulting potential threats to modern vehicles due to security leaks are outlined.

A. History of Automotive Security

Up to 20 years ago, the area of automotive security solutions was restricted to mechanic car keys and the aftermarket sales
of alarm devices and mechanic (steering wheel) locks protecting vehicles against theft and unauthorized usage. Accordingly, automotive hackers by then were mostly car thieves and rather seldom some more sophisticated garage employees manipulating mechanical odometers (keyword: drilling machine) and truck tachograph devices.

However, with the introduction of the first remote car keys, mandatory electronic diagnosis interfaces (e.g., OBD) and the first on-board computers in the early 1990, the situation has changed considerably. Since then, the rather dumb, closed, mechanical car systems have changed into complex, digitally networked, and software-based IT systems in order to manage the increasing complexity and flexibility requirements and saving costs and weight at the same time. Accordingly, car hacking became a more and more lucrative business, replacing the costly and time-consuming mechanic approach with very efficient and easy to use electronic tools which could change the proper bits within seconds without leaving any visible traces to steal cars, manipulate (digital) odometers or do illegal chip tuning. Even though, the automotive industry countered with some delay by implementing some more sophisticated automotive security solutions for keyless entry systems, electronic immobilizers, vehicular component protection based on first applications of modern cryptography, the battle between automotive hackers and automotive industry has just begun.

Today, modern vehicles use powerful digital infotainment or highly interactive safety systems (e.g., based on Car2X communications) which introduce further hundred megabytes of digital data and further wired and wireless digital interfaces from and to the outside world, which have modern cars transformed nearly into 24 hours online Internet nodes. The corresponding increasing amount of safety or financially relevant data together with the increasing number, range, and bandwidth of their digital interfaces increase also the chances and the incentives for automotive hackers attacking cars for fun, fame, profit, or sabotage. Hence, todays automotive attackers are not only rather weak thieves and garage employees, but can be also very powerful criminal organizations (e.g., selling counterfeits, attacking aftermarket business models), academia (e.g., publishing critical security vulnerabilities), concurring manufactures (e.g., industry espionage), or even public authorities and states (e.g., for automatic driver monitoring or even trying to attack the mobility of another society).

However, in contrast to some years ago, today no automotive manufacturer denies the new IT security threats anymore. In fact, there is virtually no major automotive manufacturer or tier-1 supplier without a dedicated embedded data security department which tries to integrate automotive security engineering processes into their (safety) engineering and evaluations/certifications processes. And this is absolutely essential as for instance future vehicular technologies such as Ethernet/IP-based in-vehicle communication systems, globally standardized software architectures (e.g., AUTOSAR), drive-by-wire control, or broadband communication links (e.g., LTE) together with future vehicular applications such as electric cars, car sharing, consumer device integration, digital tolling or autonomous driving further continuously increase the need for effective security solutions.

B. In-vehicle networks and their limitations

A modern vehicle integrates a heterogeneous network of distributed ECUs. The ECUs communicate over different buses and protocols ranging from the low speed bus Local Interconnect Network (LIN) [5] over Control Area Network (CAN) [6] to fast buses like FlexRay [7] or Ethernet. The various buses are interconnected by gateways, creating a fully connected network as illustrated in Fig. 1. For maintenance and diagnosis, the legally mandatory On Board Diagnostics (OBD-II) port is installed under the dashboard of all new vehicles. It allows to read and write data from and to the in-vehicle network and to install software on ECUs. European regulations require car manufacturers to make information required to access the OBD-II port available to independent workshops for maintenance. Hence, tools and knowledge to access the in-vehicle network are available. From a security perspective, the OBD-II port is one of the most vulnerable points to attack, as it gives the attacker full access to all ECUs. Nevertheless, as the in-vehicle network is fully connected, any hi-jacked ECU is potentially capable to tamper the in-vehicle network and the ECUs connected to it. Therefore, any ECU accessible from outside the vehicle provides a potential intrusion point, including particularly the wireless access points.

**Limitations of automotive networks.** The majority of the ECUs in a vehicle only posses limited computation power and limited memory resources. For instance, low-end ECUs might only be 8bit microcontrollers running at 20Mhz with 32kB memory and 1kB of RAM. This strongly limits their ability to perform cryptographic operations like message encryption for real-time functions. Additionally, the predominant CAN bus or the LIN bus only support 8 byte messages which does not allow to append data segments as required for message authentication. Hence, several of the automotive buses in use today are not suitable for a secure in-vehicle communication between ECUs.
Further threats arise if the attacker has physical access to the car. For instance, see [2] for reports about such thefts.

Access to in-vehicle network. Once an attacker has obtained access to the in-vehicle network, additional security measures like authentication are required to protect the network nodes. However, as demonstrated in [1], a lack of such measures is not uncommon. The vulnerability of the network strongly depends on the bus type a tampered ECU is connected to. For instance, FlexRay or LIN require a predefined schedule which exactly defines at which time each node is allowed to send messages. This strongly limits the communication possibilities of a tampered ECU without gateway functionality. In contrast, the CAN bus allows adding new participants to the network in a plug and play manner, transmitting messages based on fixed priorities. For instance, from a tampered ECU, an attacker could easily inject a large number of messages with a high priority, hindering the correct functionality of other functions without having any knowledge about the architecture. For a more detailed overview about security issues of different buses, see [9], [10], [11].

III. Security for Electric Vehicles

This section gives an overview of additional security vulnerabilities of electric vehicles and how they are currently addressed. While electric vehicles share most security vulnerabilities with combustion engine cars, we see three additional security threats arising: (1) The battery which might ignite a fire when damaged, (2) the charging plug as an additional intrusion point, and (3) the upcoming drive-by-wire functionality which might be exploited to maliciously control a car.

A. Battery security

As recent reports on electric vehicle batteries catching fire indicate, vehicle batteries might be targeted by an attacker to harm passengers. Batteries for electric vehicles generally consist of various single cells which are controlled by a central Battery Management System (BMS) [12]. The BMS monitors the cell voltages and temperature, and also controls the current flow to and from the battery, including the charging strategies. It is therefore responsible to ensure correct operation and prevent damage.

Controlling the BMS allows an attacker to control all battery functions, including the disregard of critical battery conditions and tolerating too high voltages and currents to
damage the battery. This might allow an attacker to severely damage a battery and even to ignite a fire. However, for safety reasons, modern batteries employ pressure release valves or burst open to reduce pressure and prevent combustion [13]. Additionally, many BMSs implement hardware watchdog functionality which disconnects battery cells if certain voltage or temperature ranges are exceeded. Nevertheless, while this safety functionalities might prevent fire ignition, an attacker might still be able to irreparably damage the battery or harm the passenger. For instance, the BMS might disconnect the battery from the engine during acceleration. Therefore, during the design phase of an in-vehicle network, particular care needs to be put in protecting the BMS against malicious attacks.

Another security threat arising are counterfeit batteries. While this primarily leads to financial damage for the car manufacturers and battery suppliers, e.g., through spurious warranty claims, counterfeit batteries also provide a huge security risk, as they might lack safety mechanisms and are not certified. Therefore, it is essential to establish an authentication mechanism for batteries which allows the BMS to verify that only original batteries are installed.

B. The charging plug as intrusion point

An essential part of a full electric vehicle is the charging plug for recharging the battery. While the charging plug used to be a simple electric plug for the first generations of electric vehicles, today various standards exist which also implement a communication protocol to allow information exchange between the BMS and the charging station. For instance, the CHAdeMO standard, widely used in Japan, relies on a CAN bus connection to the vehicle for the communication while the IEC 61851 standard used in Europe relies on a power line communication. In particular, a communication over the CAN protocol bares high risks if it is directly connected to the in-vehicle network without message filtering as it is not uncommon for legacy CAN-CAN gateways in todays vehicles. This might allow a thief to program a new key to unlock the car or criminals to reprogram ECUs through the charging plug. Plans for the next generation charging plugs include additional services like multimedia streaming or even firmware updates [14] which further increases the risk of attacks. This is particularly critical as a communication over the charging plug is highly vulnerable to man-in-the-middle attacks where the attacker might attach a connector between the charging plug of the car and the charging station. This would allow an attacker to eavesdrop the communication or to modify packages.

To protect the vehicle against attacks through the charging plug, the upcoming ISO 15118 standard suggests the Transport Layer Security (TLS) protocol [15]. TLS would then provide the required security for a communication over the charging plug for future vehicles. Additionally, security measures are required to prevent manipulation of energy charging payment or privacy issues, see [16] for a detailed discussion.

C. Drive-by-wire functionality and arising threats

While drive-by-wire is a technology emerging also for combustion engine cars, it is of particular importance for electric vehicles. As current battery technology only allows a limited range for electric vehicles, energy recuperation during braking is essential to extend the driving range [18]. Depending on the situation, conventional brakes are required to support the deceleration for emergency braking as illustrated in Fig. 2. If the vehicle brakes are mechanically connected to the braking pedal, only partial energy recuperation is possible. Therefore, a mechanical decoupling between the braking pedal and the brakes becomes necessary as provided by brake-by-wire [19].

While drive-by-wire provides various benefits, it also leads to great security risks as it would theoretically allow to remote control the vehicle or to deactivate the brakes. Hence, to prevent the misuse of drive-by-wire by attackers, it is necessary to establish a secure in-vehicle network which is both isolated from its surroundings and supports a secure and authenticated in-vehicle communication.

IV. Ethernet/IP-based on-board networks

Future applications for driver assistance, infotainment and external connectivity have all increasing requirements in bandwidth availability. But security concerns and technology limitations in term of bandwidth and interoperability currently constrain their development and integration in cars. Part of the solution may reside in the use of faster buses with more flexible networking protocols like Ethernet/IP, an option already investigated by the industry project Security in Embedded IP-based Systems (SEIS) [20] for several reasons: Limited cost, as car manufacturers will equip the car with inexpensive single pair unshielded cables. Larger bandwidth, as the automotive variant of the 100 Mbit Ethernet will multiply the current bandwidth capacity by ten and may soon lead to its Gbit version. Scalable and easy ECU coupling, as the use of an automotive switch will considerably simplify the network addressing and unicast/multicast communications will be possible. Available standards, as many standard Internet protocols will be directly applicable or customized for the automotive purpose. While being functionally suitable, Ethernet/IP does
attacks and avoid critical functionalities to get compromised.

Ethernet/IP and on-board security. With IP being a well-known standard which is in use for several years, it has proven to be secure [21]. Protocols, like IPsec/IKEv2 or TLS have been strengthened over the years and are mature enough for an automotive use case as well. During the SEIS project, a potential adapted security architecture for an on-board network was defined which features a domain-based repartition of the ECUs depending on their purpose (e.g., infotainment, power train management). Master-ECUs, located at the entry of each domain network, enforce filtering and network-based intrusion detection, while the other ECUs are in charge of setting up their own secure communication channels over IPsec. Every ECU disposes of a engineering-driven communication middleware abstracting both security and network management [22]. Developers might then focus on the application logic, while network addressing, choice of security protocol and policy management are automatically performed within the middleware. Several middleware versions with different security levels might then allow to cope with every use case and its requirements and can integrate additional hardware-based mechanisms (e.g., secure key storage, remote platform attestation) enhancing the communication security.

Security and external mobility services. IP allows simpler in-car integration of car-to-X (C2X) use cases like cloud computing, smartphones, or loadable third-party applications and therefore increases the car threat level. The larger bandwidth does not only provide a functional advantage, it also allows to exchange additional security metadata to enforce a complex C2X authorization model and system monitoring [23]. In addition, if most of the external communication interfaces (e.g., LTE, Wi-Fi) would be centralization around a multi-platform antenna [24], the car manufacturers would have the opportunity to build a central C2X security gateway allowing easy maintenance and simplified security verifications.

Migration towards Ethernet/IP. Ethernet/IP based communication provides a reliable basis for automotive innovation. The provided security protocols and bandwidth may allow to reach a holistic security solution. Though automotive systems are complex and include multiple electronic components, whose designs and implementations will always involve several actors from diverse companies. Several standardization committees for an automotive Ethernet or IP-based middleware have already started and security should follow soon. Besides a partial transition to Ethernet/IP in cars is already planned for 2018 and foresees the cohabitation with other traditional bus technologies [25]. While providing a progressive migration, this cohabitation will let part of the system unprotected. New and complementary security mechanisms will be required for both non-IP- and IP-enabled systems in order to detect ongoing attacks and avoid critical functionalities to get compromised.

V. Formal Methods for Vehicle Security

This section gives an introduction into formal verification of security properties and discusses an application to automotive architectures. In today’s automotive architectures, many applications are developed by suppliers and the component integration requires a significant amount of time of the development of a vehicle. The integration process is still mainly performed manually and requires intensive testing while being highly error-prone. A model-based design approach, in combination with formalized verification methods, would allow to significantly reduce the testing and integration efforts through verifying the correct functionality and thereby security.

Hence, formal methods for verifying the correctness of transition systems can be extended and applied to check the security of vehicles. In general, formal methods are applied to specify the correct behavior of a system, and either prove that the system satisfies its specification, or construct a system behavior that violates the specification. In the context of vehicle security, formal methods might be applied to specify the secure behavior of a vehicle, and either determine that a vehicle is always secure, or produce an attack that causes the vehicle to exhibit an insecure behavior.

Future automotive architectures, which have been designed for security, will consist of components that enable a formal verification of security aspects. While, in general, formal verification of automotive embedded software suffers from complexity challenges, an approach could be to design for verifiability. Such a design methodology would implement critical functions on a micro kernel, for which a formal modeling and, hence, formal verification is possible. For such architectures, one could apply techniques from the domain of assume-guarantee reasoning [26], in which the system is viewed as a composition of a set of components. A system designer provides both properties that need to hold in the execution environment of each component, and guarantees that the designer believes to hold for the results of each component, as long as the component’s assumptions hold. The designer then verifies that (1) the assumptions and guarantees of each component imply that the system composed from the components satisfies the overall definition of correctness, and (2) that if each assumption holds, each component does indeed fulfill its guarantee. However, verification can only be successfully applied if an accurate model and definition of assumptions have been defined. In particular, a system designer must take great care to provide a set of assumptions that are weak enough that they model real-world threats, yet are strong enough that they allow the system to be verified.

Once a system designer has determined a behavior violating the correctness through the application of formal methods, the developer must then redesign, or patch, the system such that it does not demonstrate the violation. As these security flaws might be determined during the integration process, no knowledge about the source code of software that runs on the component might be given. To aid designers in patching such systems, for next generation vehicles, techniques that auto-
matically patch the embedded software that runs on vehicle components might be applied.

Previous work has addressed how to automatically patch software that runs on general-purpose computing platforms [27]. However, automatically patching the embedded software in vehicles poses new challenges. Specifically, a critical step to automatically patching a system is to take a specific attack on a system and infer the general vulnerability in the system that allows the attack (i.e., the root cause of the attack). Determining the root cause of an attack on a vehicle is particularly challenging because the attack may exploit behaviors of multiple components of the vehicle.

VI. CONCLUDING REMARKS

This paper gives an introduction to the security of software and hardware architectures of the modern automobile. We present the challenges arising when security is embedded into the vehicle architecture and potential threats for automotive architectures. Furthermore, we give an introduction into the security of Electric Vehicles and future Ethernet/IP based systems.

Embedding security into a modern car is a challenging task as the security of a vehicle needs to be ensured over the whole life-span of a car with 15 years and more. While wireless communication protocols are already connecting the car with its surroundings, upcoming technologies like C2X or the appstore rise security questions which have not been satisfactorily answered. In addition, electric vehicles introduce further security questions which might not be answered by a holistic security approach, but rather require an independent solution. The Ethernet/IP based on-board network under development by the automotive industry in combination with a middleware and message filtering might form the basis for a secure in-vehicle network. However, various security issues are not resolved yet and require additional solutions.

A modern car consist of various components from different suppliers which are integrated into one system. Integrating all these components into a secure architecture is almost impossible, as generally little is know about the supplier hardware. However, for a secure architecture, a holistic design approach is necessary which takes the correlation of different components into account. A model driven design approach in combination with formal verification would allow to verify the security of an automotive architecture already during the design process and avoid security flaws from an early design stage on.

REFERENCES