<table>
<thead>
<tr>
<th>Title</th>
<th>Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Cao, Shao-Wen; Liu, Xin-Feng; Yuan, Yu-Peng; Zhang, Zhenyi; Liao, Yusen; Fang, Jun; Loo, Say Chye Joachim; Sum, Tze Chien; Xue, Can</td>
</tr>
<tr>
<td>Citation</td>
<td>Cao, S. W., Liu, X. F., Yuan, Y. P., Zhang, Z., Liao, Y. S., Fang, J., et al. (2014). Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts. Applied catalysis B: Environmental, 147, 940–946.</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/17592</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 Elsevier B.V. This is the author created version of a work that has been peer reviewed and accepted for publication by Applied Catalysis B: Environmental, Elsevier B.V. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.apcatb.2013.10.029].</td>
</tr>
</tbody>
</table>
Solar-to-Fuels Conversion over In$_2$O$_3$/g-C$_3$N$_4$ Hybrid Photocatalysts

Shao-Wen Caoa, Xin-Feng Liub, Yu-Peng Yuana,c, Zhen-Yi Zhanga, Yu-Sen Liaoa, Jun Fanga, Say Chye Joachim Looa,*, Tze Chien Sumb, Can Xuea,*

aSolar Fuels Lab, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

bDivision of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

cLaboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230039, P.R. China

* Corresponding author:

Tel: +65-67906180; Fax:+65-67909081;

E-mail: cxue@ntu.edu.sg; joachimloo@ntu.edu.sg
Abstract

We have achieved in-situ growth of In$_2$O$_3$ nanocrystals onto the sheet-like g-C$_3$N$_4$ surface. The resulting In$_2$O$_3$-g-C$_3$N$_4$ hybrid structures exhibit considerable improvement on the photocatalytic activities for H$_2$ generation and CO$_2$ reduction. The enhanced activities are attributed to the interfacial transfer of photogenerated electrons and holes between g-C$_3$N$_4$ and In$_2$O$_3$, leading to effective charge separation on both parts. Further studies by transient PL spectroscopy confirm that the In$_2$O$_3$-g-C$_3$N$_4$ heterojunctions remarkably promote the charge transfer efficiency, thereby increase the charge carrier lifetime for the photocatalytic reactions.

Keywords: Photocatalysis; hydrogen production; CO$_2$ reduction; graphitic carbon nitride; Charge transfer.
1. Introduction

The fuels production through solar-driven water splitting or CO₂ reduction has been considered as a promising way to solve the worldwide energy shortage [1-3]. In the past decade, great efforts have been made to explore solar-to-fuel conversion by using various semiconductor photocatalysts including TiO₂ [4,5], Cu₂O [6,7], SrTiO₃ [8,9], ZnFe₂O₄ [10], CdS [11,12], InVO₄ [13] etc. Among them, In₂O₃ is known as a semiconductor with an indirect bandgap of ~2.8 eV, and has been proved as a visible-light-active photocatalyst [14,15], and has also been used as the efficient sensitizer to extend the absorption spectra of oxide semiconductor photocatalysts from the UV region into visible region [16-18]. More recently, a new type of polymeric nanosheet structure, graphitic carbon nitride (g-C₃N₄), has been introduced as a visible-light photocatalyst for water splitting due to its unique electronic band structure with high thermal and chemical stability [19-21].

In the development of semiconductor-based photocatalysts for solar-to-fuel conversion, one disconcerting drawback is the high recombination rate of photogenerated electron-hole pairs in the individual semiconductor structure [22]. Thus it is very critical to modulate the charge carrier dynamics in semiconductor structures. One effective way is coupling two semiconductor units with appropriate band alignment between the two units to allow interfacial charge transfer upon excitation and promote the separation efficiency of photogenerated electrons and holes [23-29]. Thus the charge carrier lifetime can be significantly improved to enable desired surface reactions and thereby enhance the photocatalytic efficiency for
solar-to-fuels conversion.

Recently researchers have found that two-dimensional (2-D) semiconductor nanostructures offer higher charge mobility and lower recombination rates of charge carriers as compared to 0-D spherical nanoparticles [30,31]. Herein, we present a prototype of 0D-2D semiconductor heterojunction system by in-situ growth of In$_2$O$_3$ nanocrystals on g-C$_3$N$_4$ nanosheets through a simple solvothermal method. The well-dispersed In$_2$O$_3$ nanocrystals on sheet-like g-C$_3$N$_4$ surfaces form intimate contact, which allows for effective interfacial charge transfer across the In$_2$O$_3$/g-C$_3$N$_4$ heterojunction since the conduction band (CB) and valance band (VB) positions of In$_2$O$_3$ (~ -0.6 eV and ~ +2.2 eV, respectively, vs. NHE) [28,29] are both lower than those of g-C$_3$N$_4$ (~ -1.1 eV and ~ +1.6 eV, respectively, vs. NHE) [19,32]. In particular, the conduction band edge (~ -0.6 eV) of In$_2$O$_3$ is high enough for reduction of proton and CO$_2$. As such, we found that the In$_2$O$_3$/g-C$_3$N$_4$ hybrid structures are capable for efficient photocatalytic H$_2$ generation and CO$_2$ reduction with much higher activities than the pure In$_2$O$_3$ and g-C$_3$N$_4$. This is attributed to the highly effective charge separation on In$_2$O$_3$/g-C$_3$N$_4$ hybrids as confirmed by the transient photoluminescence (PL) spectroscopy.

2. Experiments

2.1 Preparation of In$_2$O$_3$-g-C$_3$N$_4$ hybrids

g-C$_3$N$_4$ powder was synthesized by heating 6 g melamine in an alumina crucible with a cover at 500 °C in a muffle furnace for 2 h at a heating rate of 20 °C /min, and
further heated to 520 ºC for another 2 h at a heating rate of 5 ºC/min [33]. In-situ
growth of In$_2$O$_3$ nanocrystals (10 wt%) on g-C$_3$N$_4$ nanosheets was carried out as
following steps. While stirring, 0.5 mmol of In(Ac)$_3$ and 600 mg of the as-prepared
g-C$_3$N$_4$ were added into 50 mL dimethyl sulfoxide (DMSO). The resultant suspension
was sealed in a 100 mL teflon-lined stainless-steel autoclave. The autoclave was
heated to 180 ºC and maintained for 12 h, and then allowed to cool to room
temperature. The product was collected after centrifugation, washed with water and
ethanol repeatedly, and then dried in a vacuum oven. Pure In$_2$O$_3$ and other
In$_2$O$_3$-g-C$_3$N$_4$ hybrids with different ratio were synthesized using the similar route by
tuning the dosage of g-C$_3$N$_4$.

2.2 Characterization

A Shimadzu XRD-6000 X-ray diffractometer (Cu Kα source) was used to record
X-ray powder diffraction (XRD) patterns with the 2θ range from 5 to 80° at a scan
rate of 1 °/min. Transmission electron microscopy (TEM) images were obtained from
a JEOL JEM-2100F transmission electron microscope at an accelerating voltage of
200 kV. UV–vis diffuse reflectance spectra (DRS) were taken with a Lambda 750
UV/Vis/NIR spectrophotometer (Perkin Elmer, USA). X-ray Photoelectron
spectroscopy (XPS) measurement was performed on a Thermo Scientific Theta Probe
XPS with monochromatized Al Kα ($h\nu$=1486.6 eV) source. The steady-state
photoluminescence (PL) spectra were obtained by a Shimazu RF-5310PC fluorometer
at an excitation wavelength of 325 nm.

2.3 Transient optical spectroscopy
For time-resolved PL measurements, the excitation pulse (325 nm) was generated from an optical parametric amplifier (TOPASTM, Light Conversion Ltd). The time-resolved PL spectra were obtained using a streak camera (Optronics GmbH) with a time resolution of 10 ps. The PL decay profile is fitted by using multiexponential function [34,35].

\[
I_t = \sum_{i=1}^{n} A_i \exp\left(-\frac{t}{\tau_i}\right)
\]

where \(I_t\) is intensity, \(A_i\) is the relative magnitude of the \(i\)th decay and \(\tau_i\) is the \(i\)th decay time.

2.4 Photocatalytic hydrogen evolution

Typically, 5 mg of the prepared photocatalysts were suspended in 10 mL aqueous solution of 0.1 M L-ascorbic acid (pH=4.0). Pt cocatalyst (0.5 wt%) was in-situ loaded by adding 61 µL of H₂PtCl₆ (0.08 wt%) aqueous solution into the suspension followed by the irradiation of a 300-W xenon lamp (MAX-302, Asahi Spectra, USA) coupled with a UV cut-off filter (\(\lambda > 420\) nm). The suspension was then purged with argon to drive away the residual air before sealed in a quartz flask. The photocatalytic hydrogen evolution was carried out by irradiating the suspension with a 300-W xenon lamp (MAX-302, Asahi Spectra, USA) coupled with a UV cut-off filter (\(\lambda > 420\) nm). The output light intensity is 200 mW/cm². The gas product composition was analyzed periodically by an Agilent 7890A gas chromatograph (GC) with TCD detector.

2.5 Photocatalytic CO₂ reduction

In the photocatalytic reduction of CO₂, 20 mg of the sample was uniformly
dispersed on a glass substrate with a base area of 2.5×2.5 cm², which was then put into a quartz reactor (90 mL). Prior to irradiation, the reactor was purged with high-purity CO₂ gas and 0.1 mL ultrapure water was injected into the reactor. A 500-W Xenon lamp (Newport, USA) with output light intensity of 1200 mW/cm² was used as the light source for the photocatalytic reaction. During the irradiation, the gas product was taken from the reaction cell at given intervals to quantitatively analyze gas product composition by an Agilent 7890A gas chromatograph (GC) with TCD detector.

2.6 Photoelectrochemical measurements

Photocurrent measurements were performed on an electrochemical workstation (CHI852c, CH Instruments) with a three-electrode configuration. Our sample, Ag/AgCl electrode, and Pt-wire electrode were employed as the working, reference, and counter electrode, respectively. Irradiation was carried out by using a 300-W xenon lamp (MAX-302, Asahi Spectra, USA) coupled with a UV cut-off filter (λ > 420 nm) and an output intensity of 200 mW/cm². The Na₂SO₄ solution (0.1 M) was used as the electrolyte. The working electrodes were prepared by spreading aqueous slurries of various samples on FTO glass substrate, using adhesive tapes as spaces to obtain a 1 cm × 1 cm electrode. The applied bias was set as 0.4 V.

3. Results and discussion

The XRD patterns of the as-prepared g-C₃N₄, In₂O₃, and In₂O₃-C₃N₄ hybrids (10 wt% In₂O₃) are shown in Fig. 1. Two pronounced diffraction peaks locate at 27.4°
and 13.1° for g-C₃N₄, which could be ascribed to the characteristic interlayer stacking peak of aromatic systems as the (002) peak for graphitic materials, and the interplanar separation as the (100) peak, respectively [33,36]. The XRD pattern of In₂O₃ gives rise to six distinct diffraction peaks at 21.5°, 30.6°, 35.6°, 45.4°, 50.9°, and 60.8°, which can be attributed to the (211), (222), (400), (431), (440), and (622) crystal planes of cubic In₂O₃ (JCPDS No. 71-2194), respectively. The In₂O₃-g-C₃N₄ hybrids exhibit characteristic XRD peaks of both In₂O₃ and g-C₃N₄.

TEM and SEM images (Fig. 2) are taken to directly analyze the structures of the samples. Fig. 2a indicates that the polymeric g-C₃N₄ has a sheet-like structure. The pure In₂O₃ sample prepared without g-C₃N₄ is shown as nanoparticle aggregation (Fig. 2b). However, in the presence of g-C₃N₄, the solvothermal process generated small In₂O₃ nanocrystals well spreading on the g-C₃N₄ surface, as shown by Fig. 2c. The HRTEM image (Fig. 2d) confirms the existence of small In₂O₃ nanocrystals, and the lattice fringes with d spacing of 0.293 nm can be assigned to the (222) crystal plane of cubic In₂O₃.

Fig. 3 shows the absorption spectra of the prepared g-C₃N₄, In₂O₃, and In₂O₃-g-C₃N₄ hybrid (10 wt% In₂O₃). The pure g-C₃N₄ and In₂O₃ samples presented a similar absorption edge at ~450 nm with wide overlap between their absorption spectra, thereby the absorption feature of the In₂O₃-g-C₃N₄ hybrids showed very little difference with that of pure g-C₃N₄. We further examine the In₂O₃-g-C₃N₄ hybrid (10 wt% In₂O₃) through XPS. As shown in Fig. 4a, the peak of C 1s binding energies at 284.6 eV and 288.2 eV can be ascribed to sp² C–C bonds and
sp^2-bonded carbon in N-containing aromatic rings (N–C=N), respectively, which are the major carbon species in the g-C_3N_4 [37,38]. The weak shoulder that can be deconvoluted into a peak at 285.8 eV could be assigned to sp^3-coordinated carbon bonds from the defects on g-C_3N_4 surface [21,36]. The N 1s spectrum showed two clear peaks (Fig. 4b) at 398.7 eV and 401.1 eV, corresponding to sp^2-bonded N involved in the triazine rings (C–N=C) and amino groups (C–N–H). And the tiny shoulder between these two peaks can be deconvoluted into a peak at 399.8 eV caused by the tertiary nitrogen N–(C)_3 groups [39,40]. The binding energies of In 3d locate at 444.4 and 451.9 eV (Fig. 4c), which can be assigned to the In^{3+} in In_2O_3 nanocrystals [29,41]. The O 1s peaks at 529.7 and 531.5 eV (Fig. 4d) can be assigned to the oxygen in In_2O_3 nanocrystals.

Photocatalytic activities of the prepared samples for hydrogen evolution under visible light (\(\lambda > 420\) nm) irradiation were evaluated by using L-ascorbic acid as the sacrificial reagent to consume photoinduced holes, and 0.5 wt% Pt was in-situ deposited as cocatalyst onto the samples to reduce the overpotential of H_2 evolution. L-ascorbic acid has been proved as an effective water soluble electron donor since its ascorbate anion can function as reductive quencher and also allows for the incorporation of a large amount of L-ascorbic acid in the aqueous reaction system [42-44]. Fig. 5a shows the H_2 evolution plots by g-C_3N_4, In_2O_3, and In_2O_3-g-C_3N_4 hybrids (10 wt% In_2O_3) as a function of irradiation time. The pure In_2O_3 sample did not show noticeable H_2 evolution, and the pure g-C_3N_4 showed a H_2 generation rate of 0.19 umol/h. Remarkably, when 10 wt% In_2O_3 nanocrystals are decorated on
g-C$_3$N$_4$ surfaces, the hybrid structure exhibited 5 times higher H$_2$ generation rate (0.99 umol/h) than the pure g-C$_3$N$_4$.

However, the decoration content of In$_2$O$_3$ showed considerable influence on the photocatalytic activity of the In$_2$O$_3$-g-C$_3$N$_4$ hybrids. Even with small amount of In$_2$O$_3$ (2.5 wt%) nanocrystals on g-C$_3$N$_4$ surfaces, the H$_2$ evolution amount can be 2.4 times higher than that of pure g-C$_3$N$_4$. As shown in Fig. 5b, the photocatalytic activity of the In$_2$O$_3$-g-C$_3$N$_4$ hybrids increases with more H$_2$ generation as the In$_2$O$_3$ content rise to 10 wt%. However, excessive In$_2$O$_3$ nanocrystals (>10 wt%) grown on g-C$_3$N$_4$ surfaces led to decreased photocatalytic activity in H$_2$ generation, which might be due to the aggregation of In$_2$O$_3$ nanocrystals. As shown in Fig. 6a, in the hybrid sample with 20 wt% In$_2$O$_3$, excess In$_2$O$_3$ nanocrystals are aggregating on the g-C$_3$N$_4$ surface, which reduces the interface area between In$_2$O$_3$ and g-C$_3$N$_4$ and thereby lower the charge separation efficiency relying on interfacial electron transfer. In addition, over-coverage of In$_2$O$_3$ may reduce reactive sites on g-C$_3$N$_4$ surfaces that are needed to quench the holes. This would also cause decreased photocatalytic activity. In short, our observation indicates that the optimal decoration amount of In$_2$O$_3$ nanocrystals is 10 wt% to obtain the highest photocatalytic activity for H$_2$ generation. We further explore the stability of the optimal In$_2$O$_3$-g-C$_3$N$_4$ hybrids (10 wt% In$_2$O$_3$) by a four-run cycling test of photocatalytic hydrogen evolution. Fig. 6b reveals that no obvious decrease of H$_2$ evolution was observed after the four cycles under 16-h visible light irradiation, suggesting the excellent stability of the In$_2$O$_3$-g-C$_3$N$_4$ hybrids in the reactions.
In order to further demonstrate the improved photocatalytic activity by the in-situ grown \(\text{In}_2\text{O}_3 \) nanocrystals on \(\text{g-C}_3\text{N}_4 \), the prepared samples were evaluated by using reaction of photocatalytic \(\text{CO}_2 \) reduction into hydrocarbon fuels that is known as a challenging but promising application for sustainable energy resources [45-47]. As shown in Fig. 7a, after 4-h irradiation, the optimal \(\text{In}_2\text{O}_3\)-\(\text{g-C}_3\text{N}_4 \) hybrids with 10 wt\% \(\text{In}_2\text{O}_3 \) exhibited a \(\text{CH}_4 \) production yield of 76.7 ppm (over 20 mg samples) without any cocatalyst, which is more than 3 times higher than that of pure \(\text{g-C}_3\text{N}_4 \) and more than 4 times higher than that of pure \(\text{In}_2\text{O}_3 \). The influence of \(\text{In}_2\text{O}_3 \) loading content on the \(\text{CH}_4 \) production yield showed a similar trend with that on photocatalytic \(\text{H}_2 \) generation. Note that these tests of photocatalytic \(\text{CO}_2 \) reduction were carried out without loading any cocatalyst. Indeed, if we photo-deposited 0.5 wt\% Pt-cocatalyst onto the \(\text{In}_2\text{O}_3\)-\(\text{g-C}_3\text{N}_4 \) hybrids (10 wt\% \(\text{In}_2\text{O}_3 \)), the \(\text{CH}_4 \) production yield could be further promoted to 159.2 ppm upon 4-h irradiation. This indicates that in the photocatalytic \(\text{CO}_2 \) reduction, the Pt cocatalyst still can act as electron sinks to effectively improve the charge separation of the \(\text{In}_2\text{O}_3\)-\(\text{g-C}_3\text{N}_4 \) hybrid structure.

We also carried out the photoelectrochemical measurements to obtain the transient photocurrent responses for the samples of \(\text{g-C}_3\text{N}_4 \), \(\text{In}_2\text{O}_3 \), and 10 wt\% \(\text{In}_2\text{O}_3\)-\(\text{g-C}_3\text{N}_4 \) under several on-off cycles of irradiation. As shown in Fig. 8, The \(\text{In}_2\text{O}_3\)-\(\text{g-C}_3\text{N}_4 \) hybrid sample shows the highest photocurrent intensity among the three samples. This observation indicates that the formed \(\text{In}_2\text{O}_3\)-\(\text{g-C}_3\text{N}_4 \) heterojunctions allow for the more efficient separation of photogenerated
electron-hole pairs as compared to the individual g-C$_3$N$_4$ and In$_2$O$_3$.

On the basis of the above experimental results, we believe that the enhanced photocatalytic activities by the in-situ grown In$_2$O$_3$ nanocrystals are attributed to the interfacial transfer of photogenerated electrons and holes between g-C$_3$N$_4$ and In$_2$O$_3$, which leads to effective charge separation on both parts. To further prove this assumption, we performed measurements by using both steady-state and transient photoluminescence (PL) spectroscopy. Fig. 9a shows that at an excitation wavelength of 325 nm, the pure g-C$_3$N$_4$ sample exhibits a strong emission peak centered at ~450 nm. In comparison, when 10 wt% In$_2$O$_3$ nanocrystals were present on the g-C$_3$N$_4$ surface, the intensity of this emission band dropped significantly, indicating efficient transfer of photoexcited electrons from g-C$_3$N$_4$ to In$_2$O$_3$ nanocrystals. The lifetime of charge carriers in the In$_2$O$_3$-g-C$_3$N$_4$ hybrids (10 wt% In$_2$O$_3$) were examined by using time-resolved transient PL spectroscopy, as shown in Fig. 9b. The fitted lifetimes of the PL decay profile are listed in Table 1. The pure g-C$_3$N$_4$ sample exhibits only one radiative lifetime of 3 ns, which is associated with the photoexcited electron–hole pairs in g-C$_3$N$_4$ that eventually undergo recombination [48]. While for the In$_2$O$_3$-g-C$_3$N$_4$ hybrids, a shorter PL lifetime component ($\tau_1=0.71$ ns with a weighing factor $A_1 = 54.7\%$) appears, suggesting that some excited electrons undergo rapid transfer from g-C$_3$N$_4$ to In$_2$O$_3$. This evidence of fast electron-injection confirms that the formation of In$_2$O$_3$-g-C$_3$N$_4$ heterostructures remarkably promotes charge transfer efficiency, thereby favoring the photocatalytic reactions for H$_2$ evolution and CO$_2$ reduction.
Fig. 10 shows the schematic illustration of the possible photocatalytic mechanism. The enhanced photocatalytic activity could be attributed to the effective interfacial charge transfer between In$_2$O$_3$ and g-C$_3$N$_4$ across the heterojunction. Since the CB of g-C$_3$N$_4$ (~ -1.1 eV vs. NHE) is more negative than that of In$_2$O$_3$ (~ -0.6 eV vs. NHE), the photoexcited electrons on the CB of g-C$_3$N$_4$ can rapidly transfer to the CB of In$_2$O$_3$. These accumulated electrons, together with the electrons excited from the VB of In$_2$O$_3$, are capable of reducing H$^+$ and/or CO$_2$ into valuable fuels. While the corresponding VB position of In$_2$O$_3$ (~ +2.2 eV vs. NHE) is more positive than that of g-C$_3$N$_4$ (~ +1.6 eV vs. NHE), the photogenerated holes on the VB of In$_2$O$_3$ can migrate to the VB of g-C$_3$N$_4$, subsequently to oxidize the electron donor (ascorbic acid for H$_2$ production and OH$^-$ for CO$_2$ reduction, respectively). As such, effective charge separation can be achieved, resulting in longer lifetime of the photogenerated charge carriers and thereby enhanced photocatalytic activities.

4. Conclusions

In summary, we have successfully prepared In$_2$O$_3$/g-C$_3$N$_4$ hybrid structures through a simple solvothermal method. A small amount of In$_2$O$_3$ nanocrystals grown onto g-C$_3$N$_4$ surfaces leads to considerable improvement on the photocatalytic activities for H$_2$ evolution and CO$_2$ reduction. The enhanced activities are attributed to the effective interfacial charge transfer across the In$_2$O$_3$/g-C$_3$N$_4$ heterojunction, as evidenced by steady-state and transient PL studies. This work provides a new insight on developing 0D-2D semiconductor hetero-structured systems with effective charge
separation for highly efficient solar-to-fuels conversion.

Acknowledgements

This work is financially supported by NTU seed funding for Solar Fuels Laboratory, MOE AcRF-Tier1 RG 44/11, MOE AcRF-Tier2 (MOE2012-T2-2-041, ARC 5/13), and CRP program (NRF-CRP5-2009-04) from the Singapore National Research Foundation (NRF). Y. P. Yuan acknowledges the support from the National Natural Science Foundation of China (No. 51002001).

References

[43] S. Caramori, V. Cristino, R. Argazzi, L. Meda, C.A. Bignozzi, Inorganic

Figure captions

Fig. 1 XRD patterns of g-C3N4, In2O3, and 10 wt% In2O3-g-C3N4.

Fig. 2 TEM image of (a) g-C3N4; (b) In2O3; and (c) 10 wt% In2O3-g-C3N4; (d) HRTEM image of 10 wt% In2O3-g-C3N4. Inset of Fig. 2a is the SEM image of g-C3N4.

Fig. 3 UV–vis absorption spectra of g-C3N4, In2O3, and 10 wt% In2O3-g-C3N4.

Fig. 4 XPS spectra of 10 wt% In2O3-g-C3N4: (a) C 1s; (b) N 1s; (c) In 3d; (d) O 1s.

Fig. 5 (a) Plots of photocatalytic H2 evolution amount versus irradiation (λ > 420 nm) time for different samples (5mg); (b) Comparison of H2 evolution amount over different samples (5 mg) after visible light irradiation for 4 hours.

Fig. 6 (a) TEM image of 20 wt% In2O3-g-C3N4; (b) Cycling test of photocatalytic H2 evolution for 10 wt% In2O3-g-C3N4.

Fig. 7 Comparison of CH4 production amount from photocatalytic CO2 reduction after 4-h UV-vis irradiation (a) over different samples (20 mg) without any cocatalyst; (b) over 10 wt% In2O3-g-C3N4 (20 mg) with and without Pt loading.

Fig. 8 Transient photocurrent responses for the g-C3N4, In2O3, and 10 wt% In2O3-g-C3N4 samples.

Fig. 9 (a) Steady-state PL spectra and (b) Time-resolved transient PL decay for pure g-C3N4 and the 10 wt% In2O3-g-C3N4.

Fig. 10 Schematic illustration of the photocatalytic process for H2 evolution and CO2 reduction on the In2O3-g-C3N4 nanohybrids.
Fig. 2

In$_2$O$_3$ (222)

0.293 nm
Fig. 3

Absorbance vs. Wavelength (nm) for C_3N_4, In_2O_3, and $C_3N_4-In_2O_3$ (10%).
Fig. 4
Fig. 5

(a) [Image: Microscopic image of a sample, labeled 200 nm scale bar.]

(b) [Graph: Plot of \(H_2 \) (umol) vs. Irradiation time (h), showing multiple runs.]

1st run | 2nd run | 3rd run | 4th run

0 | 1 | 2 | 3 | 4 |
0 | 1 | 2 | 3 | 4 |
0 | 1 | 2 | 3 | 4 |
Fig. 6

(a)

CH$_4$ Evolution (ppm) vs. In$_2$O$_3$ amount (wt.%)

(b)

CH$_4$ Evolution (ppm) without and with Pt.
Fig. 9

Fig. 10