<table>
<thead>
<tr>
<th>Title</th>
<th>Economic fortunes, ethnic divides, and marriage and fertility in Central Asia: Kazakhstan and Kyrgyzstan compared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Agadjanian, Victor; Dommaraju, Premchand; Nedoluzhko, Lesia</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/17862</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 Springer Science+Business. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Population Research, Springer Science+Business. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1007/s12546-013-9112-2].</td>
</tr>
</tbody>
</table>
Economic Fortunes, Ethnic Divides, and Marriage and Fertility in Central Asia: Kazakhstan and Kyrgyzstan Compared

Victor Agadjanian, Premchand Dommaraju and Lesia Nedoluzhko

Abstract

Declining marriage and fertility rates following the collapse of state socialism have been the subject of numerous studies in Central and Eastern Europe. More recent literature has focused on marriage and fertility dynamics in the period of post-crisis political stabilization and economic growth. However, relatively little research on marriage and fertility has dealt with the Central Asian part of the post-socialist world. We use survey and published data from Kazakhstan and Kyrgyzstan, two multiethnic countries with differing paths of post-crisis recovery, to examine overall and ethnic-specific trends in entry into marriage and fertility. We find that in both countries rates of entry into marriage continued to decline throughout post-crisis years. In contrast, fertility appeared to rise, and this rise was greater in the more prosperous Kazakhstan. However, we also detect considerable ethnic variations in fertility trends which we situate in the ethnopolitical and ethnodemographic contexts of both countries.
Introduction

The dissolution of the U.S.S.R. in 1991 led to a dramatic decline in economic outputs and living standards throughout the post-Soviet world, including Central Asia. The deep economic crisis of the early post-Soviet years was accompanied by a no less dramatic drop in fertility. After the early post-Soviet period, the political situation in most former Soviet republics gradually stabilized and economic growth resumed. However, the economic recovery differed in scale in different parts of Central Asia. Specifically, while Kazakhstan, richly endowed with natural resources, has experienced vigorous economic expansion and a commensurate rise in personal incomes, Kyrgyzstan, its poorer neighbor to the south, has seen a much more modest rate of development, which has been further impaired by bouts of political instability. As a result, by the end the past decade, Kazakhstan’s annual gross national income per capita shot up above 10,000 in purchasing power-adjusted (PPP) US dollars while Kyrgyzstan’s PPP-adjusted GNI barely reached one-fifth of that level (see Figure 1).

The objective of this study is to examine how these divergent economic fortunes may have impacted union formation and fertility of the two populations and of its ethnic segments between the end of the 1990s and the first half of the 2000s. Both Kazakhstan and Kyrgyzstan are multiethnic nations, whose populations, in addition to the respective titular ethnic groups (Kazakhs and Kyrgyz), include sizeable minorities of both European roots (Russians and other European-origin groups in both countries) and Asian stock (Uzbeks in Kyrgyzstan). The ethnocultural similarity of the two countries sets them apart from the rest of Central Asia.
(Tajikistan, Turkmenistan, and Uzbekistan), where the titular groups are distinct from Kazakhs and Kyrgyz and where the share of the European-origin population is negligible.

Conceptual framework

In western societies, the inverse relationship between macroeconomic performance and marriage and fertility rates has been widely documented (see Prioux, 2003; Sobotka et al., 2011). The literature on the demographic effects of the dismantlement of the socialist socioeconomic and political system in Eastern Europe and Central Eurasia documented declines in marriage rates and fertility, although there has been a debate about the role that economic hardships and uncertainties played in those declines (Conrad et al., 1996; Frejka, 2008; Gerber and Berman, 2010; Hoem et al., 2009; Kharkova and Andreev, 2000; Kohler and Kohler, 2002; Kostowska et al., 2008; Perelli-Harris, 2005; Philipov and Jasilioniene, 2008; Zakharov and Ivanova, 1996).

The period of post-crisis economic recovery and growth in the region was paralleled by a stabilization of marriage rates and some increase in fertility, largely compensating for earlier postponement, although the region also evinces considerable cross-country diversity (Bongaart and Sobotka, 2012; Goldstein et al., 2009; Hoem et al., 2009; Sobotka, 2003; 2008). It has been also observed that recent marriage and fertility trends in Central and Eastern Europe no longer go hand-in-hand: a rise in fertility rates may occur in the absence of any increase in marriage rates (Sobotka and Toulemon, 2008).

Comparable evidence from post-Soviet Central Asia is much scarcer. Studies have documented a considerable drop in marriage rates after an initial rise in some Central Asian countries (Dommaraju and Agadjanian, 2008; Clifford, 2009). Clifford et al. (2010) showed decreases in marriage and fertility rates in Tajikistan, linking these trends to the political
instability and food shortages after the collapse of the Soviet Union. Agadjanian (1999) and Agadjanian et al. (2008) examined fertility declines in early post-Soviet Kazakhstan.

Studies of within-country variations in marriage and fertility in post-socialist settings have focused mainly on socioeconomic characteristics, such as education and employment (e.g., Billingsley, 2011; Perelli-Harris, 2008). These variations result either from different positioning of the subgroups in question vis-à-vis transitional economic shocks or from long-term secular processes. In either case, educational or employment differentials are not politically motivated as they are not produced by political action that targets or disproportionately affects some educational or employment subgroups but not others. In contrast, ethnic differentials, even those with deep historico-cultural roots, may often be influenced by state policies that explicitly or implicitly privilege some ethnic groups and disadvantage others. However, most of the recent literature, deals with either monoethnic countries or countries where ethnic-specific registration statistics are not available or the shares of the ethnic minority population are too small for sound analyses of ethnic differences using sample survey data (e.g., Billingsley, 2011; Sobotka, 2008; Zakharov, 2008).

While ethnic cleansing and other forms of direct state-organized or sponsored ethnic violence have been rare, nativist tendencies have been fairly common in most, if not all, post-Soviet states, including Central Asia (e.g., Kosmarskaya, 2006; Sarsembayev, 1999). Officially, nativist ethnic and linguistic rhetoric and policies have been aimed at undoing historical injustices suffered by native, and especially titular, ethnic groups during the Soviet and even pre-Soviet times. Yet, these rhetoric and policies have also been used by the ruling elites to consolidate their political power. And because the state has retained a considerable role as a provider of employment and a guarantor of economic welfare, nativist policies have brought tangible
benefits to the titular groups or, at the very least, have created expectations of such benefits among their members. The existing data do not allow for an assessment of changes in ethnic-specific economic indicators: this information has never been published by national statistical agencies. Our argument, however, rests not on ethnic differences in income or other measures of economic status but rather on changes in perceived social and economic opportunities among ethnic groups, and in particular between the titular and non-titular nationalities, after the countries’ independence.

This analysis extends the previous work on ethnic-specific union formation and fertility dynamics in Central Asia in the earlier post-Soviet period which detected considerable ethnic variations in union and fertility timing and in parity that can be traced to the ethnic groups’ experiences of the demographic transition as well as their sociopolitical positioning in post-Soviet societies (e.g., Agadjanian and Makarova, 2003; Agadjanian et al., 2008; Agadjanian and Dommaraju, 2011).

The reviewed evidence on marriage and fertility trends in Eastern Europe and Russia in the past two decades and our conceptualization of ethnic-specific demographic trajectories and socio-political vulnerabilities lead to the following two hypotheses. First, in line with much of the literature on other transitional settings, we expect that economic recovery will be associated with a demographic recovery: both fertility rates and rates of entry into first marriage should increase with rising incomes after a crisis-era slump, and a more vigorous economic growth Kazakhstan should trigger a more robust recovery of fertility and marriage rates in that country compared to Kyrgyzstan. Following the literature, however, we also anticipate that a rise in fertility would be more pronounced than any increase in rates of entry into marriage. And second, because we assume that the economic recovery has benefitted the titular groups most,
either in tangible terms or in terms of enhanced optimism, the marriage and fertility rebound should also be concentrated among these groups.

Data and Methods

Our data come mainly from the Kazakhstan and Kyrgyzstan Multiple Indicators Cluster Surveys (KazMICS and KyrMICS, respectively) conducted in 2006 and 2005-6, respectively. We use primarily the women’s files (women aged 18-49, N=14,710 in KazMICS and N=6,973 in KyrMICS). While the data collected by the two surveys are unique for the two countries, they have limitations that constrain our analysis. First, neither MICS questionnaire differentiated between entry into formal marriage and informal union. Although cohabitation has not been nearly as common in Kazakhstan and Kyrgyzstan as in western settings, the differences in the risk of entry in each of the two forms of union may be non-trivial, especially across ethnic groups (see Agadjanian and Dommaraju, 2011; Denisenko and Kalmykova 2011). Here we use the terms “marriage” and “marital union” for both types of unions. Second, neither survey collected complete birth histories: only the years of the first and the last births are available. We therefore are unable to estimate birth probabilities over the entire reproductive span. A third limitation is that ethnicity (“nationality” in local parlance) and native language were only asked in the household questionnaire and only for the household head in KazMICS; in KyrMICS, only the question on household head’s native language was included. We therefore use household head’s language as a proxy for ethnicity of the woman interviewed in that household. Table 1 presents the breakdown of the two samples by household head’s native language. We use the term “ethnicity” for the sake of shortness.
We start by examining ethnic-specific trends in probabilities of transition to first marital union during the post-Soviet era and relate them to trends in macroeconomic performance. The probabilities of transition to first union are derived from a discrete-time logistic model. A woman is considered at risk of marriage from age fifteen till age at marriage or censored at age at survey if unmarried at the time of survey. We then use the MICS data to illustrate net ethnic differences in fertility with a Poisson regression model predicting the number of children ever born from ethnicity while controlling for other potentially confounding factors. We then compare trends in total fertility rates (TFRs) computed from KazMICS, KyrMICS, and the Demographic and Health Surveys (DHS) conducted in the 1990s: in 1995 and 1999 in Kazakhstan and in 1997 in Kyrgyzstan. TFRs from KazMICS and KyrMICS data are computed using births in preceding twelve months assuming that no woman had more than one birth during that period. TFRs from DHS are based on births in three preceding years. In DHS ethnicity is defined using the question on the respondent’s nationality.

Results

Entry into marital union

Figure 2a presents the overall and ethnic-specific trends in annual predicted probabilities of entry into first marital union in Kazakhstan. These probabilities are computed from KazMICS data on the basis of a discrete-time logistic regression model with the ethnicity*year interaction term and with duration in years since 15th birthday (linear and quadratic) as a control (the outputs of the regression models on which these graphs are based are available from the authors upon request).
To smooth out the trends, the presented estimates are three-year moving averages. The graph shows an increase in the probability of entry into marriage around the late 1980s-early 1990s and a steady decline throughout the post-Soviet period. Probabilities of entry into marriage are higher among Russians for all but the end of the observation period, echoing the patterns observed in earlier studies (Agadjanian, 1999; Dommaraju and Agadjanian, 2008), but the post-Soviet trends are very similar between two groups. Starting in the end of the 1990s, the decline in the probability of entering a union tends to level off in both groups, and especially so among Kazakhs, resulting in a near convergence by the early 2000s.

Figures 2 about here

Figure 2b depicts the same trends in predicted probabilities of transition to first marital union for Kyrgyzstan as a whole and for its main ethnic groups—Kyrgyz, Uzbeks, and Russians. Because the size of the Uzbek and Russian subsamples is relatively small, the yearly estimates for these groups are rather unstable. The overall trends, however, seem quite similar to those in Kazakhstan at least through the end of the 20th century: an increase in probabilities in the late 1980s-early 1990s and a steep decline during most of the 1990s. The turn of the century witnessed a minor reversal of the trend (more pronounced than Kazakhstan), but the slide resumed in the early 2000s. Not surprisingly, ethnic Kyrgyz followed the overall trend most closely, but even among Russians the trend was similar. Uzbeks displayed an anomalous increase in the probability of entry into marriage in the mid-1990s but after that showed a precipitous and inexorable drop. In sum, we see no evidence of a rebound in rates of entry into
first marital union. The decline in the probability of entering marriage seemed impervious to the economic recovery in either country and was shared by all ethnic groups.

Fertility

Both Kazakhstan and Kyrgyzstan have considerable variation in fertility between Asian (titular) groups and European-origin groups that predate the post-Soviet crisis (Agadjanian et al, 2008). This variation can be illustrated with ethnic differentials in the number of children ever born (CEB). Table 2 presents the results of Poisson regression models that use the KazMICS (Panel A) and KyrMICS (Panel B) to predict CEB for ever married women aged 15 to 49; the models include an offset for duration since first union and control for age at marriage, area of residence, education, and household wealth. As the results show, Russians have much lower fertility than the titular groups in both countries, and especially in Kyrgyzstan, regardless of other characteristics. Interestingly, in Kyrgyzstan, Uzbeks’ fertility also appears to be lower than that of the titular group but the difference between Uzbeks and Kyrgyz is not statistically significant.

Table 2 about here

Whereas the analysis of CEB provides a fairly robust test of ethnic differences in lifetime fertility, it is does not permit assessment of temporal trends. Figure 3 displays trends in TFRs in both countries compiled from available published estimates. The trends echo the changes in the two countries’ economic fortunes described above: in both countries, the TFRs declined rather steeply throughout the 1990s but then started to rise as the economic growth picked up. It is to note that the TFR has been consistently lower in Kazakhstan than in Kyrgyzstan although the gap becomes narrower toward the end of the 2000s as Kazakhstan’s fertility rebounded
somewhat more strongly than Kyrgyzstan’s. In fact, while Kyrgyzstan’s TFR remained almost one child lower in the end of the 2000s than in the late 1980s, Kazakhstan’s estimated TFR for 2009 was just .2 lower than the 1989 estimate.

Figure 3 about here

Figure 4a juxtaposes TFRs computed from three surveys in Kazakhstan—the 1995 DHS, the 1999 DHS, and KazMICS, and Figure 4b compares TFR estimates from two surveys in Kyrgyzstan—the 1997 DHS and KyrMICS. These survey estimates for the entire population of Kazakhstan are generally higher than the estimates from official birth registration data on which Figure 3 is based; for Kyrgyzstan, the survey estimate is higher for DHS but is lower for KyrMICS, compared to the corresponding official data. The difference in TFRs from the two sources is smaller in 2006 than in the 1990s, possibly reflecting better quality of birth registration data. The overall trends, however, are similar in the survey and in the published data.

Figure 4 about here

Figure 4a, which shows ethnic-specific TFRs computed from two Kazakhstan DHS and KazMICS, confirms stark ethnic differences in fertility between Kazakhs and Russians. One interesting observation that can be made from Figure 4a is that fertility in each of the two ethnic groups declined sharply between the two DHS but stabilized and even slightly rebounded by the middle of the 2000s. In fact, a rebound was somewhat more palpable among Russians (from 1.38 to 1.46 children per woman) than among Kazakhs (2.50 vs. 2.52).
In Kyrgyzstan (Figure 4b), both the overall and ethnic-specific trends appear somewhat different from those in Kazakhstan. It should be noted that in the second half the 1990s both Kyrgyz and especially Kyrgyzstan’s Uzbeks had much higher fertility than Kazakhs, whereas fertility levels of Kazakhstan’s and Kyrgyzstan’s Russians, more advanced on the path of the fertility transition than the native groups, were comparably low. The overall TFR declined noticeably in Kyrgyzstan between 1997 and 2006, but this decline was concentrated among the titular ethnic group and, especially, among Uzbeks, whose total fertility plunged from 4.19 children per woman, by far the highest in the country in 1997, to 1.89, the lowest of all major ethnic groups in the mid-2000s. In contrast to the two Asian groups, the TFR of Russians shot up from 1.46 in 1997 to 2.47 in 2006. While the trend generally parallels that among Kazakhstan’s Russians observed in Figure 4a, the magnitude of this jump is suspect and may have been influenced by the small sample size (the dramatic drop in Uzbek fertility invites a similar suspicion for the same reason).

Discussion and Conclusion

Using available aggregate and survey data we set out to examine whether the different economic and political trajectories of following the early post-independence crisis in Kazakhstan and Kyrgyzstan have impacted trends in marital union formation in each of these two countries as a whole and in their ethnic subgroups. Our hypothesis regarding marriage rate response to the economic recovery was not confirmed. We found no indication that the post-crisis economic upturn or inter-country differences in the rate of this upturn have affected entry into marriage: in both countries yearly probabilities of entry into first marital union declined almost monotonously after a rise around the time of the Soviet collapse. Notably, this decline characterized all ethnic
groups—titular and non-titular, Asian and European-origin, despite their seemingly different demographic past and different stakes in the post-Soviet political and economic order. It should be noted that while there has been no increase in marriage during the economic recovery, the decline in marriage appears to have slowed. Economic conditions are known to affect entry into formal marriage and, accordingly, the likelihood of informal union formation (e.g., Prioux, 2003). Moreover, in rapidly changing societies such as post-Soviet Central Asia, one should also be aware of a strong secular trend toward increased cohabitation. Although, as mentioned earlier, we are unable to distinguish between “formal” and “informal” unions with our data, it is likely that the share of the latter has been rising (cf. Dommaraju and Agadjanian 2008; Denisenko and Kalmykova 2011). It is also important to keep in mind that informal unions are more likely to be underreported in surveys than are formal marriages (Hayford and Morgan 2008), which could have affected the observed trends in union formation.

In line with our expectations, total fertility rates in both countries registered an increase starting at about the same time as the economies began to grow. As we hypothesized, the rise of fertility appeared stronger in Kazakhstan, where the economy recovery was more vigorous. However, it is important to note that even before the collapse of the Soviet Union fertility in Kazakhstan was much lower than in Kyrgyzstan (largely, but not entirely, due to a bigger share of Russians and other Europeans in Kazakhstan’s population), and the differences persisted into the post-Soviet period as Kazakhstan’s fertility plunged below the replacement level for much of the 1990s, while Kyrgyzstan’s TFR, despite a sharp drop in the first half of the 1990s, stayed well above it. By the end of the 2000s, the two countries’ TFRs were as close to each other as they had ever been in the past two decades.
The comparison of ethnic-specific TFRs computed from survey data revealed instructive differences across and within the two countries. In Kazakhstan, the titular ethnicity’s fertility remained largely stable in the first half of the 2000s. In Kyrgyzstan (for which we had only two points of estimates, compared to Kazakhstan’s three) we did not observe any sign of fertility stabilization among the titular group. Even so, ethnic Kyrgyz’ TFR remained much higher than that of ethnic Kazakhs in Kazakhstan. Use of data from two and three time points does not allow us to capture any ethnic variations that might have occurred between those years. Such an analysis would require continuous data on ethnic-specific TFRs which are not currently available. With the data at hand, we did not find support for the hypothesis that fertility would rebound most strongly among the titular groups: Kazakhs’ fertility barely changed as economic recovery was setting in, while Kyrgyz’ fertility, already much higher than Kazakhs’, declined noticeably. The trends among ethnic minorities, however, were quite telling. Russians in Kazakhstan registered a non-negligible increase in TFR as the economic situation in that country improved. The significant rise in TFRs among Russians and the dramatic drop among Uzbeks in Kyrgyzstan are particularly intriguing even though the exact values generated by our calculations may not be reliable due to the relatively small size of the two ethnic groups in the KyrMICS sample. Yet, assuming that the observed trends do approximate reality with some degree of accuracy, we can speculate about the nature of the difference between the two minority groups. Thus the observed trends in Russian fertility may be due to an increase in second births postponed during the preceding years of economic duress and uncertainty. However, they may also reflect the selective nature of ethnic Russian emigration from the two countries, especially from Kyrgyzstan: the Russians who did not emigrate could be more comfortable with or better adapted to Kyrgyzstan’s ethnopolitical and economic reality than their co-ethnics who chose to
leave that country. In any case, it should be emphasized that the increase in Russian fertility started from a very low base: Russians’ TFR in Kyrgyzstan was probably well below replacement for most of the 1990s. Thus fertility trends among Russians in both countries show more affinity with those in Central and East Europe than with those among the titular groups of their respective nations. And whereas the trends among Russians should be cast within the framework of the second demographic transition, the decline of the Uzbek TFR in Kyrgyzstan should be viewed as part of the first demographic transition precipitated by the deteriorating societal prospects of Kyrgyzstan’s Uzbek minority. It seems plausible to suggest that the perception of ethнополitical insecurity, most common among Central Asia’s Russians and other European-origin groups in the early years of independence, has been spreading to Kyrgyzstan’s largest ethnic minority. Tensions between Kyrgyz and Uzbeks, most vividly manifested in the ethnic clashes in the country’s south in the summer of 2010, had been accumulating for years. Generalized and apparently state-sponsored discrimination and fears of ethnic violence may have contributed to the decline of fertility among Uzbeks.

The limitations of our data do not allow us to connect directly these fertility dynamics with the trends in union formation by examining the relative contribution of births within formal marriages vs. those within non-formalized partnerships to the observed trends in fertility for each country and each ethnic group. Given the growing share of non-marital births in independent Kazakhstan and Kyrgyzstan and ethnic variations in non-marital childbearing (Kan, 2012; Nedoluzhko, 2011), these connections should be attempted in future research if adequate data become available. The current data limitations also prevent us from engaging directly the recent perspectives on tempo effects in fertility change in Central and Eastern European countries during most of the 2000s (Bongaarts and Sobotka, 2012; Goldstein et al., 2009) and the reversal
of that increase in response to the recession in the end of the decade (Sobotka et al., 2011). The new data from the region, as they become available, will enable us to address these dynamics. However, even with richer and more recent data, parallels between the European and Asian parts of post-communist Eurasia should be drawn with caution. The interpretation of ethnic differences in demographic outcomes in Central Asia requires particular prudence as these differences are rooted not only in the groups’ differential access to real or imaginary socioeconomic and political resources but also in their unique historico-cultural and demographic baggage (Barbieri et al., 1996; Blum, 1987). Yet, considering this complexity and the limitations of the data, our findings shed important light on the demographic dynamics in the least studied part of the post-Soviet world.
References

Demographic Research, 19(8), pp. 171-224.

Zakharov, S., 2008, “Russian Federation from the first to the second demographic transition”,
Demographic Research, 19(24), pp. 907-972.

Zakharov, S., & Ivanova, E. (1996). Fertility decline and recent changes in Russia: On the
threshold of the second demographic transition. In DaVanzo, J. (ed.), Russia’s Demographic
“Crisis”. Santa Monica/California/RAND.
Table 1. Language of household head in MICS samples

<table>
<thead>
<tr>
<th>Language</th>
<th>KazMICS 2006</th>
<th>%</th>
<th>KyrMICS 2005-6</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazakh</td>
<td>49</td>
<td></td>
<td>Kyrgyz</td>
<td>61</td>
</tr>
<tr>
<td>Russian</td>
<td>35</td>
<td></td>
<td>Russian</td>
<td>13</td>
</tr>
<tr>
<td>Other</td>
<td>16</td>
<td></td>
<td>Uzbek</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Other</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 2. Children ever born, Poisson regression with an offset for duration since first union, ever married women aged 15-49, KazMICS and KyrMICS (parameter estimates)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>A. KazMICS 2006</th>
<th>B. KyrMICS 2005-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russian</td>
<td>-0.343**</td>
<td>-0.541**</td>
</tr>
<tr>
<td>Uzbek</td>
<td>n/a</td>
<td>-0.036</td>
</tr>
<tr>
<td>Age at first union</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Secondary education or less</td>
<td>0.058**</td>
<td>0.067**</td>
</tr>
<tr>
<td>Secondary specialized education</td>
<td>-0.043*</td>
<td>n/a</td>
</tr>
<tr>
<td>Wealth index – 1 (poorest)</td>
<td>0.394**</td>
<td>0.120**</td>
</tr>
<tr>
<td>Wealth index – 2</td>
<td>0.260**</td>
<td>0.106**</td>
</tr>
<tr>
<td>Wealth index – 3</td>
<td>0.172**</td>
<td>0.090*</td>
</tr>
<tr>
<td>Wealth index – 4</td>
<td>0.051*</td>
<td>0.027</td>
</tr>
<tr>
<td>Urban residence</td>
<td>-0.041*</td>
<td>-0.117**</td>
</tr>
<tr>
<td>Intercept</td>
<td>-2.025**</td>
<td>-1.718**</td>
</tr>
<tr>
<td>Number of cases</td>
<td>8990</td>
<td>4431</td>
</tr>
</tbody>
</table>

Notes: Reference categories: Kyrgyz, higher education, highest wealth category, rural residence; secondary special education not available in KyrMICS; significance level * p<.1, * p<.05, ** p<.01.
Figure 1. GNI per capita, PPP (current international $), Kazakhstan and Kyrgyzstan

Figure 2. Predicted probability of entry into first marital union, 3-year moving average

A. Kazakhstan

B. Kyrgyzstan

Source: Estimated by the authors from KazMICS and KyrMICS data
Figure 3. Trends in total fertility rates in Kazakhstan and Kyrgyzstan

Source: UNICEF Regional Office for CEECIS TransMONEE 2011 Database
Figure 4. Overall and ethnic-specific total fertility rates

A. Kazakhstan

B. Kyrgyzstan

Source: Computed by the authors from KazDHS 1995, 1999; KyrDHS 1997; KazMICS 2006; and KyrMICS 2005-6.