<table>
<thead>
<tr>
<th>Name</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Comparison of electronic band structure and optical transparency conditions of InxGa1xAs1yNyGaAs quantum wells calculated by 10-band, 8-band, and 6-band kp models</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Ng, S.; Fan, Weijun; Dang, Y.; Yoon, S.</td>
</tr>
<tr>
<td>Citation</td>
<td>Ng, S. T., Fan, W. J., Dang, Y. X., & Yoon, S. F. (2005). Comparison of electronic band structure and optical transparency conditions of InxGa1xAs1yNyGaAs quantum wells calculated by 10-band, 8-band, and 6-band kp models. Physical review B, 72(11).</td>
</tr>
<tr>
<td>Date</td>
<td>2005</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/18006</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2005 The American Physical Society. This paper was published in Physical Review B and is made available as an electronic reprint (preprint) with permission of American Physical Society. The paper can be found at the following official DOI: [http://dx.doi.org/10.1103/PhysRevB.72.115341]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Comparison of electronic band structure and optical transparency conditions of $\text{In}_{x}\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y/\text{GaAs}$ quantum wells calculated by 10-band, 8-band, and 6-band $k\cdot p$ models

S. T. Ng, W. J. Fan, Y. X. Dang, and S. F. Yoon

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

Received 16 September 2004; revised manuscript received 18 July 2005; published 28 September 2005

We have investigated the electronic band structure and optical transparency conditions of $\text{In}_{x}\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y/\text{GaAs}$ quantum well (QW) using 10-band, 8-band and 6-band $k\cdot p$ models. The transition energy calculated by the 8-band model agrees very well with the values calculated by the 10-band model, especially in the range of high indium composition (35%). Electron effective mass (m^*_e) predicted by band anticrossing model, with nitrogen-related enhancement weakened as indium composition increases, was used in the 8-band model and was favored compared to the heavier value predicted by the phenomenological relationship. We have calculated the optical transition matrix element ($Q^m_{\alpha\beta}$) using the Bloch wave functions for the $k\cdot p$ models and discovered that the inclusion of nitrogen-related energy level (E_N) into the calculation of the conduction band by the 10-band $k\cdot p$ model yields lower differential gain (dG/dN) than that calculated by the 8-band $k\cdot p$ model on the same structure. Contrary to earlier reports that the reduction of dG/dN in $\text{In}_{x}\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y/\text{GaAs}$ QW and thus the lower obtainable optical gain is due to the increase in m^*_e, we have concluded that the reduction was due to the increased interaction between the $|S\rangle$ conduction-band state and $|S_0\rangle$ nitrogen-related energy state, which weaken the optical transition matrix elements between valence band and conduction band. Our results also show that if m^*_e is very large (as predicted by the phenomenological model), dG/dN will increase monotonously with nitrogen composition. Moreover, neglecting valence band and conduction band interaction in $k\cdot p$ models will result in the prediction of higher dG/dN which is not accurate.

DOI: 10.1103/PhysRevB.72.115341

PACS number(s): 73.21.Fg

I. INTRODUCTION

Ever since the $\text{In}_{x}\text{Ga}_{1-x}\text{As}$ material was introduced as a possible candidate to replace InGaAsP/InP material as the conventional long-wavelength laser emitter and detector, it has continued to attract attention from the research community. Not only that samples were grown by both molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) to explore the possibility of achieving 1.3 μm (Refs. 2–10) and near 1.55 μm (Refs. 11–18) emission, but also various theories were proposed in an attempt to predict the compositional dependence of the $\text{In}_{x}\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y$ bulk material. The $\text{In}_{x}\text{Ga}_{1-x}\text{As}/\text{GaAs}$ quantum well (QW) has been shown to exhibit very low threshold current density due to the presence of compressive strain in the well layer under lattice mismatch. However, the compressive strain will build up when more indium are being added to the well layer to increase the emission wavelength and thus imposed a limit to the thickness of the QW. By adding nitrogen atom into the matrix to form $\text{In}_{x}\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y/\text{GaAs}$, it was found to further reduce the band gap energy and simultaneously reduce the compressive strain present in the well layer. This special material exhibits very different behaviors, including the larger than normal band gap bowing factor and enhancement of electron effective mass (m^*_e) by the addition of a nitrogen atom.

The dependence of band gap energy (E_G) on nitrogen composition has been predicted very well by the band anticrossing (BAC) model, which states that the large reduction of the fundamental band gap energy of $\text{In}_{x}\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y$ is due to the repulsion between a localized nitrogen-related energy level (E_N) and the extended conduction band (E_C) of the $\text{In}_{x}\text{Ga}_{1-x}\text{As}$ host matrix. To date, the BAC model is used extensively and successfully in the prediction of E_G of $\text{In}_{x}\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y$ with low indium composition and $\text{GaAs}_{1-y}\text{N}_y$. However, it was discovered that the interaction between E_N and E_C depends not only on the nitrogen composition, but it is also a function of indium composition. Consequently, the rate of reduction of band gap energy with respect to nitrogen composition (dE_G/dy) decreases when the indium composition increases, as the downward shift of E_C with respect to valence band maximum is greater than that of E_N. Therefore, the next question is whether m^*_e in the conduction band is showing the same kind of weakened dependence on nitrogen composition when indium composition in the well layer is being increased. This is important to study since the technologically important 1.3 μm emission will require the indium composition to be in the range of 30% to 40%. The validity of this weakened enhancement will undoubtedly affect the prediction of transparency conditions of QWs, which will be assessed in this paper.

In order to understand the performance figure of $\text{In}_{x}\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y/\text{GaAs}$ system, various studies have been undertaken using $k\cdot p$ method, which include, the performance of $\text{InGaAsN}/\text{GaAs}$ semiconductor optical amplifiers emitting at 1.3 μm (with 6-band model in the valence band plus BAC in the conduction band), the comparison of material gain of $\text{InGaAsN}/\text{GaAs}$ with $\text{InGaAsP}/\text{InGaAsP}$ and $\text{InGaAs}/\text{AlInGaAs}$ (4-band model in the valence band plus BAC in the conduction band), nitrogen-induced modification to the gain characteristics (10-band for both valence and conduction bands), and interdiffusion in $\text{InGaAsN}/\text{GaAs}$...
QW (8-band model with phenomenological m^*_c),
and also the effect of adding nitrogen into the GaAs barrier (6-band model in the valence band and single band in the conduction band). Despite the saving on computing requirement by using various assumptions to simplify the simulation, either by flattening of the band structure using large m^*_c or neglecting valence band (VB) and conduction band (CB) interaction, we are aware that these simplified $\mathbf{k} \cdot \mathbf{p}$ models (other than the 10-band model) may not give an accurate prediction of the real properties. We are not sure whether the presence of VB and CB interaction will yield different results to some of the findings in these literatures, or whether a heavier m^*_c predicted by phenomenological model will be able to give agreeable results with the supposedly most complete and realistic 10-band $\mathbf{k} \cdot \mathbf{p}$ model. Therefore, it is of great importance that these doubts be clarified to ascertain that whether simplified models are to be used for future investigation of material properties on III-N-V compounds.

In this paper, we give a detail description of the various $\mathbf{k} \cdot \mathbf{p}$ formalisms, which include different combination of bands considered in the model, and compared their results to determine if there is any obvious discrepancy in the results.

Section II will highlight the method that was used to compute the band structure and optical properties of InGaAsN/GaAs QW, including the choice of nitrogen-related band parameters. Section III will focus on the results calculated by different formalisms and the effect of neglecting VB and CB interaction and using heavier m^*_c on the prediction of transition energy and optical transparency conditions. Section IV will give an overall conclusion for this study.

II. METHOD

A. 8-band model

The 8-band Hamiltonian for strained bulk semiconductor, which takes into account the energy levels from conduction band (CB), heavy hole (hh), light hole (lh), and spin-orbit split-off (so) bands, is given below

\[
H_k + H_J = \begin{bmatrix}
C & 0 & -\frac{1}{\sqrt{3}} P^* & \sqrt{\frac{2}{3}} P^* & \frac{1}{\sqrt{6}} P^* & \frac{1}{\sqrt{3}} P^* & \frac{1}{\sqrt{3}} P^* & \frac{1}{\sqrt{3}} P^* \\
0 & C & 0 & \frac{1}{\sqrt{6}} P^* & \sqrt{\frac{2}{3}} P^* & \frac{1}{\sqrt{3}} P^* & \frac{1}{\sqrt{3}} P^* & \frac{1}{\sqrt{3}} P^* \\
-\frac{1}{\sqrt{2}} P^* & 0 & H & \alpha & \beta & 0 & i\frac{\alpha}{\sqrt{2}} & -i\sqrt{2}\beta \\
\sqrt{\frac{2}{3}} P^* & -\frac{1}{\sqrt{6}} P^* & \alpha^* & L & 0 & \beta & i\left(\sqrt{2}e^{-\frac{D}{\sqrt{2}}}\right) & i\frac{\sqrt{3}}{2}\alpha \\
\frac{1}{\sqrt{6}} P^* & \sqrt{\frac{2}{3}} P^* & \beta^* & 0 & L & -\alpha & -i\frac{\sqrt{3}}{2}\alpha^* & i\left(\sqrt{2}e^{-\frac{D}{\sqrt{2}}}\right) \\
0 & \frac{1}{\sqrt{2}} P^* & 0 & \beta^* & -\alpha^* & H & -i\sqrt{2}\beta^* & -i\frac{\alpha^*}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} P^* & \frac{1}{\sqrt{3}} P^* & -\frac{\alpha^*}{\sqrt{2}} & i\left(D - \sqrt{2}e\right) & \frac{\sqrt{3}}{2}\alpha & i\sqrt{2}\beta & S & 0 \\
\frac{1}{\sqrt{3}} P^* & -\frac{1}{\sqrt{3}} P^* & i\sqrt{2}\beta^* & -i\sqrt{\frac{3}{2}}\alpha^* & i\left(D - \sqrt{2}e\right) & i\frac{\alpha}{\sqrt{2}} & 0 & S \\
\end{bmatrix}
\]

where

\[
C = E_G + \epsilon_1(\zeta) + \frac{\hbar^2}{2m_0} \left[\frac{1}{m_e} - \frac{\hbar^2}{3} \left(\frac{2}{E_G} + \frac{1}{E_G + \Delta} \right) \right] \times (k_x^2 + k_y^2 + k_z^2),
\]

\[
H = -\frac{\hbar^2}{2m_0} \left[(k_x^2 + k_y^2)(\gamma_1 + \gamma_2) + k_z^2(\gamma_1 - 2\gamma_2) \right] + \epsilon_2(\zeta),
\]

\[
L = -\frac{\hbar^2}{2m_0} \left[(k_x^2 + k_y^2)(\gamma_1 - \gamma_2) + k_z^2(\gamma_1 + 2\gamma_2) \right] - \epsilon_2(\zeta),
\]

\[
S = -\frac{\hbar^2}{2m_0} \left[(k_x^2 + k_y^2 + k_z^2)\gamma_1 \right] - \Delta,
\]

\[
P_x = P(x_i \pm ik_i) - P(e_{x_i}k_i \pm ie_{y_i}k_i),
\]

\[
P_z = P(k_z - P(e_{z_i}k_z),
\]

\[
\]
\[\alpha = - \frac{\hbar^2}{2m_0} 2 \sqrt{3} [k_s(i k_x - k_y) \gamma_3], \]
\[\beta = - \frac{\hbar^2}{2m_0} 2 \sqrt{3} [2 i k_s k_x \gamma_3 - (k_x^2 - k_y^2) \gamma_2], \]
\[D = - \frac{\hbar^2}{2m_0} (2(k_x^2 - k_y^2) \gamma_2 - 4k_z^2 \gamma_2), \]
\[\varepsilon_1(z) = \begin{cases} 2(a_x + a_y)(1 - c_{12}/c_{11})e_{xx}, & \text{in the well,} \\ 0, & \text{in the barrier,} \end{cases} \]
\[\varepsilon_2(z) = \begin{cases} b(1 + 2 c_{12}/c_{11})e_{xx}, & \text{in the well,} \\ 0, & \text{in the barrier.} \end{cases} \]

\(E_G \) is the unstrained band gap of the material. \(\Delta \) is the spin-orbit splitting energy. \(a_e \) and \(a_h \) are the hydrostatic deformation potential for conduction and valence band, respectively. \(b \) is the shear deformation potential. \(c_{11} \) and \(c_{12} \) are the elastic stiffness constants. \(e_{xx} = (a_x - a_y)/a_n \) is the in-plane strain, \(a_i \) and \(a_n \) are the lattice constants for the substrate and well layer, respectively. \(e_{zz} = -2 c_{12}/c_{11} e_{xx} \) is the strain in the perpendicular direction. \(P \) is the Kane matrix element and is normally expressed in terms of energy units as \(\frac{2m_0}{\hbar^2} P^2 \).

[Equation 1]

The valence band parameters \((\gamma_1, \gamma_2, \gamma_3)\) used in the 8-band Hamiltonian is not identical to Luttinger parameters \((\gamma_1^L, \gamma_2^L, \gamma_3^L)\) used in 6-band Hamiltonian, since the conduction band is now treated exactly in the 8-band Hamiltonian and must be subtracted off the original Luttinger parameters.35 These parameters are called modified Luttinger parameters and are related to Luttinger parameters in the following manner:

\[\gamma_1 = \gamma_1^L - \frac{1}{3} \frac{E_p}{E_G}, \]
\[\gamma_2 = \gamma_2^L - \frac{1}{6} \frac{E_p}{E_G}, \]
\[\gamma_3 = \gamma_3^L - \frac{1}{6} \frac{E_p}{E_G}. \]

The total Hamiltonian for strained QW is given by

\[H = H_k + H_z + V(z), \]
where, \(V(z) \) describes the conduction and valence band offset.

The eight-dimensional electron and hole envelope wave function for the QW can be expressed as

\[\Phi_n = \{ \Phi_n^j \} \quad (j = 1, 2, \ldots, 8), \]

where

\[\Phi_n' = \exp[i(k_x x + k_y y)] \sum_m a_{n,m}^* \frac{1}{\sqrt{L}} \exp \left[i \left(k_z + m \frac{2\pi}{L} \right) z \right]. \]

By calculating \(P_n^e, P_n^{hh}, P_n^{hh}, \) and \(P_n^{so} \), the constituting components of the electron, heavy hole, light hole, and spin-orbit split-off states in the QW state \(\Phi_n \) can be known. These probability functions are particularly useful in identifying the dominant character in a particular energy state. However, the following sum rule is valid:

\[\sum_i P_i^n = 1, \quad i = e, hh, lh, so. \]

The wave function \(\Phi_n \) can be classified into two categories, \(\Phi_{n_e} \) and \(\Phi_{n_v} \) belongs to conduction band and valence band, respectively, determined according to the position of the energy subband and also the calculated probability functions.

B. Optical transition matrix elements

The squared optical transition matrix elements, which measure the momentum of the transitions between the hole subbands and the electron subbands, are given by

\[Q_i^{n,n_e} = \frac{2}{m_0} \frac{1}{2} \left| \langle \Psi_{n_e} | P_{i} \Psi_{n} \rangle \right|^2, \quad i = x, y, z, \]

where \(\hat{e} \) is the unit vector in the direction of the electric field, \(P_i \) is the momentum operator, and \(\Psi_{n} \) and \(\Psi_{n_e} \) are the real electron and hole wave functions, respectively. The real wave function is the product of the envelope wave functions in Eq. (6) and the Bloch wave functions as listed below:

\[\Phi_e(+) = |S\rangle, \]
\[\Phi_h(-) = |S\rangle, \]
\[\Phi_s \left(\frac{3}{2}, \frac{3}{2} \right) = - \frac{i}{\sqrt{2}} |X + iY\rangle, \]

\[\Phi_n' = \exp[i(k_x x + k_y y)] \sum_m a_{n,m}^* \frac{1}{\sqrt{L}} \exp \left[i \left(k_z + m \frac{2\pi}{L} \right) z \right]. \]
\[\phi_x \left(\frac{3}{2}, \frac{1}{2} \right) = -\frac{i}{\sqrt{6}} [(X + iY)_\uparrow - 2Z_\uparrow], \]
\[\phi_y \left(\frac{3}{2}, \frac{1}{2} \right) = \frac{i}{\sqrt{6}} [(X - iY)_\uparrow + 2Z_\uparrow], \]
\[\phi_x \left(\frac{1}{2}, \frac{1}{2} \right) = \frac{i}{\sqrt{3}} [(X + iY)_\downarrow + Z_\downarrow], \]
\[\phi_y \left(\frac{1}{2}, \frac{1}{2} \right) = \frac{i}{\sqrt{3}} [(X - iY)_\downarrow - Z_\downarrow], \]

where \(|X\), |Y\), and |Z\) are the orbital wave functions of the top of the valence band and the bottom of the conduction band, respectively. \(\uparrow\) and \(\downarrow\) denote spin-up or spin-down components.

The final expression for squared optical transition matrix elements in the X, Y, and Z direction is given below,

\[Q_x^{n, m} = \frac{2P_0^2}{m_0} \sum m \left(-\frac{i}{\sqrt{2}} a_{\alpha, m}^3 + \frac{i}{6} \sqrt{a_{\alpha, m}^2 + a_{\alpha, m}^6} \right) |a_{\alpha, m}^{1*}|^2, \]
\[Q_y^{n, m} = \frac{2P_0^2}{m_0} \sum m \left(\frac{i}{\sqrt{2}} a_{\alpha, m}^4 + \frac{i}{6} \sqrt{a_{\alpha, m}^2 + a_{\alpha, m}^6} \right) |a_{\alpha, m}^{1*}|^2, \]
\[Q_z^{n, m} = \frac{2P_0^2}{m_0} \sum m \left(\frac{i}{\sqrt{2}} a_{\alpha, m}^5 + \frac{i}{6} \sqrt{a_{\alpha, m}^2 + a_{\alpha, m}^6} \right) |a_{\alpha, m}^{1*}|^2, \]
\[Q_y^{n, m} = \frac{2P_0^2}{m_0} \sum m \left(\frac{i}{\sqrt{2}} a_{\alpha, m}^4 + \frac{i}{6} \sqrt{a_{\alpha, m}^2 + a_{\alpha, m}^6} \right) |a_{\alpha, m}^{1*}|^2, \]
\[Q_z^{n, m} = \frac{2P_0^2}{m_0} \sum m \left(\frac{i}{\sqrt{2}} a_{\alpha, m}^5 + \frac{i}{6} \sqrt{a_{\alpha, m}^2 + a_{\alpha, m}^6} \right) |a_{\alpha, m}^{1*}|^2, \]
\[Q_z^{n, m} = \frac{2P_0^2}{m_0} \sum m \left(\frac{i}{\sqrt{2}} a_{\alpha, m}^5 - \frac{i}{6} \sqrt{a_{\alpha, m}^2 + a_{\alpha, m}^6} \right) |a_{\alpha, m}^{1*}|^2, \]

\[Q_{ci}^{n, m} = Q_{ci}^{n, m} + Q_{ci}^{n, m}, \quad i = x, y, z, \]

where \(P_0 = \langle S|p_x|X \rangle = \langle S|p_y|Y \rangle = \langle S|p_z|Z \rangle\). To obtain \(Q_x^{n, m}\) for the TE model, \(Q_x^{n, m}\) and \(Q_y^{n, m}\) are averaged in the calculation. \(Q_x^{n, m}\) alone indicates the TM model.

Due to the interaction between VB and CB, \(\Phi_{n_c}\) is not fully a conduction state but will have some components contributed by the valence band and vice versa. Therefore, if more accurate results are required, the contribution from the nonconduction band components in \(\Phi_{n_c}\) and the nonvalence band components in \(\Phi_{n_v}\) must be considered in the derivation of \(Q_x^{n, m}\). However, the contribution of these nonconventional transitions will be very small as compared to the stronger transitions as depicted in Eq. (12).

C. Carrier density and quasi-Fermi levels

In order to investigate the maximum optical gain obtainable at certain carrier density, the corresponding quasi-Fermi levels must be determined from the integration of the two-dimensional density of states in the quantum well. We have not used the carrier density as calculated for the parabolic energy subbands since the interaction between VB and CB has caused the energy dispersion curves to be nonparabolic. Therefore, a determination of carrier density by numerically integrating over k-space is more appropriate,

\[N = \sum_{n_e} \int \frac{1}{4\pi^2} f_c [E_{en_e}(k_x, k_y)] dk_x dk_y, \]
\[P = \sum_{n_v} \int \frac{1}{4\pi^2} f_v [E_{en_v}(k_x, k_y)] dk_x dk_y, \]

where \(N\) and \(P\) are the electron and hole density, respectively. \(E_{en_e}\) is the electron energy in the conduction subband while \(E_{en_v}\) is the hole energy (not the electron energy) in the valence subband. \(f_c\) and \(f_v\) are the Fermi-Dirac distributions for electrons in the conduction band and holes (not for electrons) in the valence band, respectively. They are given by

\[f_c = \frac{1}{1 + \exp[(E_{en_e} - E_f)/k_B T]}, \]
\[f_v = \frac{1}{1 + \exp[(E_{en_v} - E_f)/k_B T]}, \]

where \(E_{en_e}\) and \(E_{en_v}\) are the electron and hole quasi-Fermi level, respectively, and dependent on carrier density. \(k_B\) is the Boltzmann’s constant and \(T\) is the temperature.

D. Optical gain model

The optical gain spectra are calculated using

\[G(E) = \left[1 - \exp \left(\frac{E - \Delta E}{k_B T} \right) \right] \frac{n^2 c^2 h^2}{n^2 E^2} R_{sp}(E), \]

115341-4
where \(R_{sp}(E) \) is the spontaneous emission rate, \(\Delta F = E_f - E_v \) is the quasi-Fermi levels separation and dependent on carrier density, \(E \) is the photon energy, \(e \) is the electron charge, \(\epsilon_0 \) is the free-space dielectric constant, \(n \) is the refractive index, \(c \) is the speed of light, \(Q^{n,n'} \) is the squared optical transition matrix element as given in Eqs. (12) and (13). \(E_{ch} \) is the transition energy, and \(\tau \) is the intraband relaxation time. \(\tau = 0.1 \) ps is used in all our calculations, which are performed at \(T=300 \) K, as it is the value widely used for the ideal case of QW simulations.\(^{28,41,42} \) Although smaller value of \(\tau \) was proven to better fit the experimental measured spontaneous emission spectrum at room temperature, it will only reduce the peak gain and differential gain linearly.\(^ {28} \) We believe that the fitting of \(\tau \) depends very much on the quality of samples under study, and our conclusion should not be affected by the value of \(\tau \) chosen. The radiative current density, which is related to the spontaneous emission spectrum, is given by

\[
J_{rad} = e \int R_{sp}(E)dE.
\]

This is different from injection current density, which includes not only \(J_{rad} \) but also contribution from monomolecular, Auger recombinations, etc.

E. 10-band model

In order to take into account the influence of the band structure by the nitrogen-induced level, \(E_N \), a 10-band \(k \cdot p \) model was proposed which add two more spin-degenerated states to the 8-band Hamiltonian in Eq. (1) through the following matrix:\(^ {28,43} \)

\[
H_k + H_s = \begin{bmatrix}
N & 0 & V_{NC} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & N & 0 & V_{NC} & 0 & 0 & 0 & 0 & 0 \\
V_{NC} & 0 & 0 & C & 0 & 0 & 0 & 0 & 0 \\
0 & V_{NC} & 0 & 0 & C & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(18)

where

\[
N = E_N + \varepsilon_2(z).
\]

(19)

We have shifted \(E_N \) by the amount of energy caused by the shear strain, \(\varepsilon_2(z) \), since the origin of our calculation is at the middle of the heavy-hole and light-hole band edge after splitting. For compressive strain, the heavy-hole band edge is taken as the valence band maximum. We have neglected the interaction between \(E_N \) and the valence subbands,\(^ {44} \) which is consistent with assumption of the band anticrossing model that the influence of \(E_N \) on valance band energy is minimal and negligible.\(^ {21} \) The two new additional Bloch wave functions are\(^ {28} \)

\[
\phi_N(±) = |S_N|, \quad \phi_N(±) = |S_N|.
\]

The significance of \(E_N \) and \(V_{NC} \) will be explained in a later section.

F. Band parameters

The band parameters of the parental binary compounds used in our calculations is taken from Ref. 33 and listed in Table I. The parameters for \(\text{In}_x\text{Ga}_{1-x}\text{As} \) and \(\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y \) are interpolated as follows:\(^ {45} \)

\[
P(\text{In}_x\text{Ga}_{1-x}\text{As}) = (1-x)P(\text{GaAs}) + xP(\text{InAs}),
\]

\[
P(\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y) = (1-x)(1-y)P(\text{GaAs}) + x(1-y)
\times P(\text{InAs}) + (1-x)yP(\text{GaN})
\]

\[
+ xyP(\text{InN}).
\]

(21)

However, for band gap energy and electron effective mass of \(\text{In}_x\text{Ga}_{1-x}\text{As} \), we have included the bowing parameters as recommended,\(^ {33} \)

\[
E_G(\text{In}_x\text{Ga}_{1-x}\text{As}) = (1-x)E_G(\text{GaAs}) + xE_G(\text{InAs})
\]

\[
- 0.477x(1-x),
\]

\[
m^*_e(\text{In}_x\text{Ga}_{1-x}\text{As}) = (1-x)m^*_e(\text{GaAs}) + x m^*_e(\text{InAs})
\]

\[
- 0.0091x(1-x).
\]

(22)

The phenomenological relationship that predicts the heavy \(m^*_e \) of \(\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y \) is given by\(^ {41} \)

\[
m^*_e(\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y) = m^*_e(\text{In}_x\text{Ga}_{1-x}\text{As}) + 18.1667m_0
\]

\[
\times \Delta e(x,y).
\]

(23)

where \(\Delta e(x,y) \) is the difference of strain between \(\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y \) and \(\text{In}_x\text{Ga}_{1-x}\text{As} \). While the \(m^*_e \) of \(\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y \) as predicted by the BAC model is given by\(^ {22,45} \)

Table I. Parameters for binary compounds used in the band structure calculation (Ref. 33).

<table>
<thead>
<tr>
<th>Quantity</th>
<th>GaAs</th>
<th>InAs</th>
<th>GaN</th>
<th>InN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_0) (Å)</td>
<td>5.6533</td>
<td>6.0583</td>
<td>4.50</td>
<td>4.98</td>
</tr>
<tr>
<td>(\Delta) (eV)</td>
<td>0.341</td>
<td>0.390</td>
<td>0.017</td>
<td>0.006</td>
</tr>
<tr>
<td>(a_c) (eV)</td>
<td>-7.17</td>
<td>-5.08</td>
<td>-2.20</td>
<td>-1.85</td>
</tr>
<tr>
<td>(a_v) (eV)</td>
<td>1.16</td>
<td>1.00</td>
<td>5.20</td>
<td>1.50</td>
</tr>
<tr>
<td>(b) (eV)</td>
<td>-2.0</td>
<td>-1.8</td>
<td>-2.2</td>
<td>-1.2</td>
</tr>
<tr>
<td>(c_{11}) (GPa)</td>
<td>122.1</td>
<td>83.29</td>
<td>293.0</td>
<td>187.0</td>
</tr>
<tr>
<td>(c_{12}) (GPa)</td>
<td>56.6</td>
<td>45.26</td>
<td>159.0</td>
<td>125.0</td>
</tr>
<tr>
<td>(\gamma_1)</td>
<td>6.98</td>
<td>20.00</td>
<td>2.67</td>
<td>3.72</td>
</tr>
<tr>
<td>(\gamma_2)</td>
<td>2.06</td>
<td>8.50</td>
<td>0.75</td>
<td>1.26</td>
</tr>
<tr>
<td>(\gamma_3)</td>
<td>2.93</td>
<td>9.20</td>
<td>1.10</td>
<td>1.63</td>
</tr>
<tr>
<td>(E_p) (eV)</td>
<td>28.8</td>
<td>21.5</td>
<td>25.0</td>
<td>25.0</td>
</tr>
</tbody>
</table>

\[\phi_N(+) = |S_N|, \quad \phi_N(-) = |S_N| \]

(20)
m^*_y(\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y) = 2m^*_y(\text{In}_x\text{Ga}_{1-x}\text{As}) \left(1 - \frac{E_C - E_N}{\sqrt{(E_C - E_N)^2 + 4V_{NC}^2}} \right). \tag{24}

G. Nitrogen-related band parameters

Two of the most important parameters in BAC model are E_N and V_{NC}, which characterize the position of the nitrogen-induced energy level with respect to valence band maximum (VBM) and the matrix element measuring the strength of interaction between E_C and E_N, respectively. The E_- in the BAC model is taken to be the fundamental band gap energy (E_G) for $\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y$,

$$E_-=\frac{1}{2}[E_N + E_C - \sqrt{(E_N - E_C)^2 + 4V_{NC}^2}], \tag{25}$$

where y is the nitrogen composition in $\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y$.

There are two sets of E_N and V_{NC} available. The first set has been proven to agree very well with experimental E_G in GaAs$_{1-y}$N$_y$,

$$E_N = 1.65(1-x) + 1.44x - 0.38x(1-x),$$

$$V_{NC} = 2.7(1-x) + 2.0x - 3.5x(1-x). \tag{26}$$

However, the second set is able to yield better agreement with $\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y$ in the range where indium is 30% to 40%, after taken into consideration the statistical local N environment,

$$E_N = 1.65 + 0.25x - 0.56x,$$

$$V_{NC} = 2.4(1-x) + 1.75x. \tag{27}$$

The bulk band gap energy and m^*_y [using Eq. (24)] predicted by these two sets of parameters is compared in Figs. 1(a) and 1(b), respectively. In Fig. 1(b), we observe that m^*_y calculated by BAC model depends not only on nitrogen composition but also indium composition. As indium composition increases, the enhancement of m^*_y by the addition of nitrogen atom is reduced significantly. We have also plotted the m^*_y given by the phenomenological relationship in Eq. (23) in Fig. 1(b) for comparison and observed that it generally predicted heavier m^*_y than the BAC model. A comparison between the calculations of 10-band $k\cdot p$ model with the experimental values of measured photoluminescence wavelengths has been performed and will be presented in next section.

H. Other considerations

Due to the various $k\cdot p$ models presented in the literatures, we have also included three other $k\cdot p$ models without VB and CB interaction, namely, 6+2-band, 6+2-band with heavy m^*_y as predicted by Eq. (23), and the 6+4-band. These models can be obtained from the same Hamiltonians for 8-band and 10-band models by setting the matrix elements (P) to zero, which signifies no interaction between CB and VB. The Hamiltonians are then decoupled into the 6-band model for valence band and 2-band for 8-band model, or 4-band for 10-band model in the conduction band. Under such condition, the modified Luttinger parameters are identical to the original Luttinger parameters. The details for the $k\cdot p$ models used in the report are summarized in Table II.

The strained conduction band offset (Q_C) for $\text{In}_x\text{Ga}_{1-x}\text{As}/\text{GaAs}$ QW is taken to be 0.63 and 0.70 at indium composition of 15% and 35%, respectively. These values were derived from the best-fit curve to the available experimental data. Q_C for $\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y/\text{GaAs}$ QW is calculated by assuming that the unstrained valence band offset for both $\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y/\text{GaAs}$ and $\text{In}_x\text{Ga}_{1-x}\text{As}/\text{GaAs}$ to be identical. The band gap energy for $\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y$ is then lowered from that of $\text{In}_x\text{Ga}_{1-x}\text{As}/\text{GaAs}$ according to the BAC model to determine Q_C for $\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y/\text{GaAs}$ QW.

III. RESULTS AND DISCUSSIONS

The results were calculated using an $\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y/\text{GaAs}$ QW, with well width (l) of 7 nm and barrier width (d) of 20 nm at $T=300$ K. The main focus of the calculation is in the range of $x=35\%$ and $y=0$ to 4%. These should cover the range of composition of reported laser structures emitting at 1.3 and near 1.55 μm. We have compared our calculation of band structure with a strained 3 nm $\text{InAs}/\text{In}_{0.4}\text{Ga}_{0.6}\text{Sb}$ superlattice and an unstrained 5 nm $\text{GaAs}/\text{Al}_{0.5}\text{Ga}_{0.5}\text{As}$ quantum well. Our results agree very well with the published literatures. In order to verify our theoretical model, we have performed some calculations based on the 10-band $k\cdot p$ model and compared them with the emission wavelengths reported

![FIG. 1. Dependence of (a) bulk band gap energy and (b) electron effective mass m^*_y of $\text{In}_x\text{Ga}_{1-x}\text{As}_{1-y}\text{N}_y$ material on indium and nitrogen composition. In (a), the bulk band gap energy was calculated using Eq. (25). In (b), m^*_y (except the dotted-dashed lines) is calculated using Eq. (24). Solid lines and dashed lines in both figures are the results calculated using the sets of E_N and V_{NC} from Eq. (27) and Eq. (26), respectively. Dotted-dashed lines in (b) are for m^*_y calculated using phenomenological relationship from Eq. (23).](115341-6)
in the literatures. The results are presented in Table III. As can be seen, the transition energies \(E_{eh} \) predicted by the 10-band model agrees reasonably well with the experimental values. We expect a better agreement if many-body effects, which include band gap renormalization and Coulomb enhancement, are being considered in the optical gain calculation. The typical shift caused by band gap renormalization in In\(_{x}\)Ga\(_{1-x}\)As/GaAs QW has been shown to be around 40 to 50 meV. 48

We have calculated the energy dispersion curves along \([100]\) and \([110]\) crystal directions for conduction and valence subbands for In\(_{x}\)Ga\(_{1-x}\)As\(_{0.98}\)N\(_{0.02}\)/GaAs QW using the five models described in Table II. The results for nitrogen composition of 2\%, and indium composition of 35\% and 15\% are

<table>
<thead>
<tr>
<th>Well layer composition</th>
<th>Theoretical values (1) (eV)</th>
<th>Experimental value (2) (eV)</th>
<th>Difference (1)--(2) (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indium (%)</td>
<td>Nitrogen (%)</td>
<td>Well width (nm)</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1.9</td>
<td>6.8</td>
<td>0.946</td>
</tr>
<tr>
<td>32</td>
<td>1.5</td>
<td>7.0</td>
<td>1.002</td>
</tr>
<tr>
<td>36</td>
<td>1.6</td>
<td>6.0</td>
<td>0.978</td>
</tr>
<tr>
<td>32</td>
<td>1.0</td>
<td>9.0</td>
<td>1.020</td>
</tr>
<tr>
<td>37</td>
<td>0.5</td>
<td>7.7</td>
<td>1.028</td>
</tr>
<tr>
<td>32</td>
<td>0.9</td>
<td>10.0</td>
<td>1.025</td>
</tr>
<tr>
<td>40</td>
<td>0.5</td>
<td>6.0</td>
<td>1.020</td>
</tr>
<tr>
<td>35</td>
<td>1.5</td>
<td>6.0</td>
<td>0.993</td>
</tr>
<tr>
<td>35</td>
<td>1.8</td>
<td>6.5</td>
<td>0.964</td>
</tr>
<tr>
<td>35.5</td>
<td>3.6</td>
<td>9.2</td>
<td>0.828</td>
</tr>
<tr>
<td>38</td>
<td>5.0</td>
<td>7.6</td>
<td>0.759</td>
</tr>
<tr>
<td>38</td>
<td>5.3</td>
<td>8.2</td>
<td>0.739</td>
</tr>
<tr>
<td>38</td>
<td>5.0</td>
<td>7.6</td>
<td>0.759</td>
</tr>
<tr>
<td>34</td>
<td>5.3</td>
<td>6.5</td>
<td>0.786</td>
</tr>
<tr>
<td>38</td>
<td>3.3</td>
<td>8.0</td>
<td>0.836</td>
</tr>
<tr>
<td>20.4</td>
<td>5.5</td>
<td>7.2</td>
<td>0.852</td>
</tr>
<tr>
<td>26</td>
<td>3.0</td>
<td>9.0</td>
<td>0.932</td>
</tr>
</tbody>
</table>

\(^a\)Reference 2.
\(^b\)Reference 3.
\(^c\)Reference 4.
\(^d\)Reference 5.
\(^e\)Reference 6.
\(^f\)Reference 7.
\(^g\)Reference 8.
\(^h\)Reference 9.
\(^i\)Reference 10.
\(^j\)Reference 11.
\(^k\)Reference 12.
\(^l\)Reference 13.
\(^m\)Reference 14.
\(^n\)Reference 15.
\(^o\)Reference 16.
\(^p\)Reference 17.
\(^q\)Reference 18.
shown in Figs. 2 and 3, respectively. The solid lines are the results calculated by 10-band model, and are being compared with the remaining four models. As can be observed from Fig. 2(a), the 8-band’s results agree very well with that of 10-band at high indium composition (35%). This confirmed our initial assumption that by using the electron effective mass \(m^* \) calculated by the BAC model in the 8-band model, we should be able to obtain identical conduction band structure with the 10-band model, at least for the first two conduction subbands. However, at low indium composition (15%), the agreement deteriorates; see Fig. 3(a). In this case, the second and third conduction subbands are very close to one another. This is due to the fact that in the 10-band model, the conduction band structures of In\(_{0.15}\)Ga\(_{0.85}\)As\(_{1−x}\)N\(_x\)/GaAs calculated by the 8-band model will interact with the two nitrogen-related resonant states. Moreover, at low indium, the conduction band barrier height in the In\(_{0.15}\)Ga\(_{0.85}\)As\(_{1−x}\)N\(_x\)/GaAs QW is very low, this causes that only first conduction subband is confined in the well, and the subsequent two higher energy subbands are unbound. After interacting with the \(E_N \), the second and third energy subbands remain very near to one another as in 10-band’s results. However, in the 8-band model, the conduction band barrier height used is that of In\(_{0.15}\)Ga\(_{0.85}\)As\(_{0.98}\)N\(_{0.02}\)/GaAs QW, which is larger than that of In\(_{0.15}\)Ga\(_{0.85}\)As\(_{1−x}\)N\(_x\)/GaAs QW. In addition, \(m^* \) being used in the 8-band model is that of In\(_{0.15}\)Ga\(_{0.85}\)As\(_{0.98}\)N\(_{0.02}\), which is heavier than that of In\(_{0.15}\)Ga\(_{0.85}\)As. This explains why the first three energy subbands in the 8-band model are still confined in the potential well.

When comparing the results calculated by the 6+2-band with those of 10-band model in Figs. 2(b) and 3(b), we can observe that with the interaction of VB and CB taken into account, and further flattening of the band structure by \(E_N \), the 10-band results are highly nonparabolic. Another effect of the VB and CB interaction as in the 8-band model is to bring down the second conduction subband and this reduces the energy separation between the first two conduction subbands. This will definitely increase the density of states near the conduction band edge, and may have detrimental effect on the differential gain. However, when the heavy \(m^*_c \) predicted by the phenomenological relationship was being used in the 6+2-band model, as being shown in Fig. 2(c), the energy separation is the same as that of the 10-band model despite the VB and CB interaction was neglected in the model. Upon closer examination, the first conduction subband is flatter than that of the 10-band, which implies that if the band structure calculated by the 10-band is the correct one, then the real bulk \(m^*_c \) of the In\(_{0.15}\)As\(_{1−x}\)N\(_x\) material may not be that heavy as predicted by the phenomenological relationship in Eq. (23).

From the comparison of the energy dispersion curves calculated by 6+4-band and 10-band models, see Fig. 2(d) and 3(d), we can observe that agreement between the calculated transition energy is reasonably good although the VB and CB interaction was neglected in the former model. This has something to do with the strain band parameters, such as \(a_s \), \(a_v \), and \(b \), used in the calculation. As can be observed from Table II, the strain band parameters for 6+4-band and 10-band models are that of In\(_{0.15}\)As\(_{1−x}\)N\(_x\) and In\(_{0.15}\)Ga\(_{0.85}\)As, respectively. While the VB and CB interaction was not considered, the calculated \(E_{eh} \) should be higher for the 6+4-band’s results, as in the comparison between 6+2-band and 8-band models. However, the strained band gap energy calculated for the 6+4-band model is actually lower than that calculated for the 10-band model and thus compensating the increase due to the lack of VB and CB interaction. For a clearer view of these results, we have plotted the deviation of the calculated results for other models when compared to the 10-band model. Figures 4 and 5 show the consolidated results for \(E_{eh} \) and \(e^2−e1 \), respectively.
FIG. 5. Dependence of energy separation between the first two conduction subbands \(e2−e1\) for a 7 nm In\(_{x}\)Ga\(_{1−x}\)As\(_{1−y}\)N\(_y\)/GaAs quantum well on nitrogen composition for \(In_x = 15\%\) and 35\%. (a) Results of the 10-band \(k\cdot p\) model. (b) and (c) are the deviations of \(e2−e1|\Delta(e2−e1)|\) for other models from that of the 10-band calculation for \(In_x = 35\%\) and 15\%, respectively. Same legend from Fig. 4 applies.

As pointed out in the last paragraph, at indium composition equal to 35\%, \(E_{eh}\) predicted by the 6+2-band with BAC’s \(m^*\) is consistently about 20 meV higher than that predicted by the 8-band due to the lack of interaction between VB and CB, although both models used the same set of band parameters for the calculation. This confirmed that VB and CB interaction must be included in the simulation of In\(_{x}\)Ga\(_{1−x}\)As\(_{1−y}\)N\(_y\) QW for a more realistic representation of the band structure, especially when the band gap energy is lower. However, in the case of 6+4-band and 10-band model, their band parameters are not the same, except for \(m^*\). This different treatment is due to the fact that we would like to replicate some of the results as presented in Ref. 25 for the 10-band model.

In summary, at high indium composition, both \(E_{eh}\) and \(e2−e1\) predicted by the 8-band model are the closest to that calculated by the 10-band model, which implies that 8-band model is a good enough alternative for the 10-band model from the aspect of band structure calculation in the high indium range (35\%). However, at low indium range (15\%), \(E_{eh}\) and \(e2−e1\) calculated by the 6+4-band is the closest thus far to the results predicted by the 10-band. Nevertheless, we are aware that the validity of the very closely located second and third conduction subbands cannot be established without any further investigation by accurate absorption measurements.

After comparing the band structure calculated by different models, we are interested to know their impact on the prediction of optical properties at transparency condition since that was the focus of most studies. We have determined the quasi-Fermi energy levels \(E_{fup}^b\) and \(E_{fup}^v\) for the preselected interval of carrier density, because they will be the input to the optical gain calculation instead of the carrier density. Subsequently, the dependence of material optical gain of In\(_{x}\)Ga\(_{1−x}\)As\(_{1−y}\)N\(_y\)/GaAs on carrier density and radiative current density is being determined. We are interested to know the point when the optical gain transits from the negative (loss) to the positive (amplification) region. The results are being plotted in Fig. 6. Figures 6(a) and 6(b) show the carrier density \(N_p\) and radiative current density \(J_{rad}^{tr}\) at transparency. As anticipated, since the valence subbands for all models are almost similar, even for the 10-band model which uses InGaAs’s parameters or the 8-band and 6-band model which uses InGaAsN’s band parameters, \(N_p\) can be concluded to be mainly dependent on the \(m^*\) in the conduction band structure and VB and CB interaction. The relationship is consistent with the \(m^*\) plotted in Fig. 1(b). The increase in \(N_p\) from 0\% to 2\% of nitrogen is greater than that from 2\% to 4\% of nitrogen and can be easily understood since the increase in \(m^*\) is greater for 0\% to 2\% of nitrogen. Of greater importance is that the 6+2-band model with heavy \(m^*\) predicts \(N_p\) which is almost double that of other models. Therefore, the value of \(m^*\) does affect \(N_p\) very much. In Fig. 6(b), however, only the 6+2-band model with heavy \(m^*\) is showing a monotonous increase in \(J_{rad}^{tr}\). These may at first seem to be contrary to the results calculated by the 10-band model, which observed weak dependence of \(J_{rad}^{tr}\) on nitrogen composition. Upon closer comparison, we observed that in Ref. 41, both indium and nitrogen composition were varied while maintaining the emission wavelength at 1.3 \(\mu\)m, as opposed to ours, which only varied nitrogen composition and results in different emission wavelengths. Therefore, the weak dependence observed is partly due to the decrease in indium composition and compressive strain that could result in higher \(J_{rad}^{tr}\) in the QWs. The reduction in \(J_{rad}^{tr}\) with increasing nitrogen composition, in our results, can be attributed to two factors, (1) the reduction in transition energy which directly affects the radiation current density at transparency [according to Eqs. (16) and (17)], (2) the stronger interaction between the conduction subbands with either the nitrogen resonant energy level (for the 10-band and the 6+4-band models) or valence subbands (for 10-band, 8-band) thus causing lower strength of \(Q_{N}^{tr}\) at \(k = 0\). Since in the...
In0.4Ga0.6As/GaAs/GaAs0.85P0.15 single QWs with well higher reduced a greater achieve transparency at higher carrier density, but it also pro-

tion. layer than with InGaAs layer of the same indium composi-

me

Figure 7

POS

Qxy

me

POS

me

PO
In conclusion, we have performed calculation of energy dispersion curves and optical emission spectra with different formalisms of \(\mathbf{k} \cdot \mathbf{p} \) method. We have found that at high indium composition (35\%), both \(E_{eh} \) and \(e2 - e1 \) predicted by the 8-band model are the closest to that calculated by the 10-band model, which implies that the 8-band model is a good enough alternative for the 10-band model from the aspect of band structure calculation in the high indium range; at low indium range (15\%), the \(E_{eh} \) and \(e2 - e1 \) calculated by 6+4-band model is the closest to the results predicted by the 10-band model. The \(m^* \) of In\(_{0.52}\)Ga\(_{0.48}\)As/In\(_{0.86}\)Ga\(_{0.14}\)As\(_0.3\)P\(_0.7\), as predicted by the BAC model is more reasonable and the enhancement caused by the addition of nitrogen atom is weakened as the indium composition increased. We have discovered that whenever the interaction between VB and CB is neglected, the differential gain (\(dG/dN \)) obtained is higher and the \(N_{tr} \) is lower, than the values obtained by those models which considered VB and CB interaction in the calculations due to the effect of band mixing. In addition, the higher \(m^* \) predicted by the phenomenological relationship, when used in
the 6-band model, monotonously predicted higher dG/dN and also $J_{\text{rad}(\omega)}$ when the nitrogen content increases. The degrading of dG/dN and even optical gain obtainable at fixed carrier density calculated by the inclusion of the BAC model into the 10-band $k \cdot p$ model is due to the fact that more components of the conduction band states are intermixed with the nonradiative nitrogenlike states. The difference in the prediction of dG/dN by the 8-band (predicted an increase) and the 10-band model (predicted a reduction) in this paper will prompt for a more detailed investigation of the use of the various simplified $k \cdot p$ formalisms to predict the various device performances.

27 S. Tomic and E. P. O’Reilly, Physica E (Amsterdam) 13, 1102 (2002).