<table>
<thead>
<tr>
<th>Title</th>
<th>Dimensionally reduced expression for the QCD fermion determinant at finite temperature and chemical potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Adams, David H.</td>
</tr>
<tr>
<td>Date</td>
<td>2004</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/18272</td>
</tr>
</tbody>
</table>

Rights: © 2004 The American Physical Society. This paper was published in Physical Review D and is made available as an electronic reprint (preprint) with permission of The American Physical Society. The paper can be found at the following official DOI: http://dx.doi.org/10.1103/PhysRevD.70.045002. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
A dimensionally reduced expression for the QCD fermion determinant at finite temperature and chemical potential is derived which sheds light on the determinant’s dependence on these quantities. This is done via a partial zeta regularization, formally applying a general formula for the zeta determinant of a differential operator in one variable with operator-valued coefficients. The resulting expression generalizes the known one for the free fermion determinant, obtained via Matsubara frequency summation, to the case of a general background gauge field; moreover there is no undetermined overall factor. Rigorous versions of the result are obtained in a continuous time–lattice space setting. The determinant expression reduces to a remarkably simple form in the low temperature limit. A program for using this to obtain insight into the QCD phase transition at zero temperature and nonzero density is outlined.

QCD at finite temperature and density exhibits interesting phase structure; in particular, at sufficiently high temperature and/or density there is a transition from the usual confined, chiral symmetry-broken hadronic phase to a deconfined, chirally symmetric phase where the quarks and gluons are “liberated” and form a quark-gluon plasma (QGP). The Universe was very likely a QGP for a brief moment after the big bang, and such a phase may also exist at present in the cores of very dense stars (neutron or quark stars). Furthermore, it is a major aim of current heavy ion collision experiments at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN to create a QGP for brief instants through the high-energy collisions of heavy nuclei. QCD at finite temperature and density is therefore an exciting field of major current research interest [1]. The equilibrium properties are governed by the QCD grand-canonical partition function (referred to hereafter simply as the “partition function”). A crucial quantity contained in this is the fermion determinant, which encodes the dynamical fermion effects. The central problem in QCD thermodynamics is to determine the dependence of the partition function on the temperature \(T \) and (quark) chemical potential \(\mu \), and to this end it is highly desirable to get as much information as possible on how the fermion determinant depends on these quantities. In this paper we derive a “dimensionally reduced” expression for the fermion determinant which sheds light on these dependencies.

The importance of the fermion determinant in this context has been demonstrated in another approach based on random matrix theory [3]. The phase transition at zero temperature and nonzero density is of central interest since, e.g., it is expected to occur in the formation of sufficiently dense stars. Unfortunately, this region of the phase diagram is not currently accessible by the currently developed (non-quenched) lattice methods or perturbative methods [1]. However, there is an indication that it may be possible to obtain insight into this region by nonperturbative analytic techniques. Recently, Cohen derived an interesting expression for the ratio \(\lim_{\mu \to 0} \text{det} D_A(\mu)/\text{det} D_A(0) \) where \(\text{det} D_A(\mu) \) is the finite temperature fermion determinant in a background gauge field \(A \) and at chemical potential \(\mu \) [4]. In the low temperature limit it reduces to a remarkably simple form and the fermion determinant is seen to undergo a transition from \(\mu \) independence to \(\mu \) dependence at precisely the critical value \(\mu_c \) mentioned above [4]. The zero-temperature QCD partition function itself should undergo a transition at the above-mentioned critical value \(\mu_c \). Its \(\mu \) independence in the region \(\mu_c < \mu < \mu_c \) must therefore involve a subtle cancellation in the functional integral of \(e^{-S_{YM}(A)}/\prod_{j=0}^{N_f} \text{det} D_A(\mu, m_j) \) over gauge fields [where \(S_{YM}(A) \) is the Yang-Mills action, \(N_f \) the number of quark flavors and \(m_j \) their masses]. This is intimately connected with the nature of the strong interactions, and in particular, confinement, in the usual QCD (i.e. at \(T = 0 \)), since in the absence of these interactions we would simply have \(m_j^2 = m_\pi^2 = \text{lightest quark mass, i.e. } \mu_\pi = \mu_c \). Therefore, understanding how this cancellation works is not only key to understanding the hadronic-to-QGP phase transition in QCD at zero temperature and nonzero density but should also give insight into confinement in the usual QCD.

Understanding this cancellation is therefore an interesting and important problem (dubbed the “baryon Silver Blaze” problem in [4]). To make progress on this, a necessary first step is to supplement the determinant ratio expression of [4] with an expression for \(\text{det} D_A(\mu) \) itself, since we need to know its full gauge field dependence in order to study the aforementioned cancellation in the functional integral over.
gauge fields. [A knowledge of \(\text{det}D_A(\mu)/\text{det}D_A(0) \) does not suffice for this since we cannot \textit{a priori} rule out the possibility that there are important gauge field-dependent factors which drop out in the determinant ratio.] This provides a concrete motivation for the considerations in the present paper. The “dimensionally reduced” expression for \(\text{det}D_A(\mu) \) that we obtain, Eq. (9) below, also reduces to a remarkably simple form in the low \(T \) limit [Eqs. (17), (18) below] and we identify a gauge field-dependent factor which drops out in the determinant ratio. Our results are derived both at the formal continuum level and rigorously in a continuous time–lattice space setting. (In the latter setting the evaluation requires certain choices to be made, resulting in different overall factors in the determinant expression, and it is a non-trivial question whether these are physically equivalent. This issue is intimately connected with a “universality anomaly” in lattice QCD uncovered recently in [5].) The natural next step in this program, which is currently under investigation, is to consider the strong coupling limit of the functional integral expression for the QCD partition function, in the low temperature limit with the fermion determinant expression obtained here, and compare it with the expression obtained in the strong coupling lattice Hamiltonian framework at finite chemical potential. (Note that this comparison makes sense in the continuous time–lattice space setting.) The latter has been studied, e.g., in [6] and the phase transition at the appropriate \(\mu_c \) has been explicitly demonstrated in that framework. Using the equivalence between the functional integral and Hamiltonian frameworks it should be possible to see how the aforementioned cancellation in the functional integral over gauge fields for \(\mu_s < \mu < \mu_c \) comes about in the strong coupling limit. The final, and most challenging, step in the program will then be to extend the understanding of this cancellation to the case of general couplings.

The “dimensional reduction” method introduced here is also potentially useful in other contexts and we briefly discuss several of these at the end of the paper.

The QCD partition function with \(N_f \) quark flavors with masses \(m_j \) and quark chemical potential \(\mu \) can be expressed as a functional integral,

\[
Z(\beta,\mu) = \int D\Lambda e^{-S_{YM}(\Lambda)} \prod_{j=1}^{N_f} \int D\bar{\psi}_j D\psi_j \\
\times \exp \left(-\int_0^\beta d\tau \int_{\text{space}} d^3x \bar{\psi}_j \right. \\
\left. \times \left[\gamma_4(\partial_\tau + A_\tau) + m_j - \mu \gamma_4 \right] \psi_j \right)
\]

(1)

where \(\beta = 1/T \). The fermion fields \(\psi_j, \bar{\psi}_j \) (gauge fields \(A_\tau \)) are required to satisfy anti-periodic (periodic) boundary conditions in the Euclidean “time” variable \(\tau \in [0,\beta] \). Space is taken to be a box (whose volume \(V \) is taken to infinity in the final step of calculating physical quantities). The spatial boundary conditions will not play a role in our considerations and we leave them unspecified. The integrals over the fermion fields in Eq. (1) give the fermion determinants, i.e. for \(m_j = m \) the integral gives \(\text{det}D_A(\mu) \) where

\[
D_A(\mu) = \gamma_4(\partial_\tau + A_\tau) + m - \mu \gamma_4.
\]

(2)

In the free field (\(A = 0 \)) case, where \(\text{det}D_A(\mu) \) is the partition function of a free Dirac fermion gas, the dependence of the determinant on \(\beta \) and \(\mu \) is well known: An application of the standard Matsubara frequency summation method gives [7]

\[
\text{det}D_0(\mu) = C_0 \prod_p \left[e^{\beta E(1 + e^{-\beta(E - \mu)})(1 + e^{-\beta(E + \mu)})} \right]^2
\]

(3)

with \(\pm E = \pm \sqrt{p^2 + m^2} \) being the (2-fold degenerate) energy eigenvalues of \(H_0 = \gamma_4(\gamma_i \partial_i + m) \) (summation over \(k = 1,2,3 \) is implied). From this, expressions for physical quantities such as the energy density \(\langle E \rangle/V = -(1/V)(\partial/\partial \beta) \log \text{det}D_0|_{\beta = \text{const}} \) and particle number density \(\langle Q \rangle/V = (1/V)(\partial/\partial \beta) \log \text{det}D_0 \) are obtained; in particular one finds for massless fermions the well-known results \(\langle E \rangle/V \sim \mu^3 \) and \(\langle Q \rangle/V \sim \mu^3 \) in the large \(\mu \) limit. The Matsubara summation produces an undetermined overall factor \(C_0 \) in Eq. (3); this is inconsequential though since it does not involve \(\beta, \mu \), or the energies \(\pm E \).

We now consider the problem of generalizing Eq. (3) to the case of an arbitrary background gauge field. The Matsubara summation method can be used to obtain an expression for the ratio \(\text{det}D_A(\mu)/\text{det}D_A(0) \) [4]; however, it is of limited use for \(\text{det}D_A(\mu) \) itself since, e.g., it produces an undetermined overall factor and we cannot exclude a \textit{a priori} the possibility that this factor may depend on the gauge field. Therefore we take a different approach. Regarding the spinor fields \(\psi(x,\tau) \) as functions \(\Psi(\tau) \) taking the values in the vector space \(W = \{\psi(x)\} \) of spinor fields living only in the spatial volume (i.e. the usual Hilbert space of quantum mechanical wave functions), we re-express \(D_A(\mu) \) as

\[
D_A(\mu) = \gamma_4 \left(\frac{\partial}{\partial \tau} + H_A(\tau) - \mu \right)
\]

(4)

where \(H_A(\tau):W \rightarrow W \) is the linear map defined by

\[
H_A(\tau)\psi(x) = \left[\gamma_4(\gamma_4(\partial_\tau + A_\tau(x,\tau)) + m) + A_4(x,\tau) \right] \psi(x).
\]

(5)

In this way \(D_A(\mu) \) can be viewed as a differential operator in one variable \(\tau \in [0,\beta] \) acting on \(W \)-valued anti-periodic functions. An expression for its determinant can then be obtained by application of a zeta-regularized determinant formula in [8] (see also [9] for related and overlapping results). Recall that the zeta determinant [10] of an operator \(D \) is defined by \(\det_z D = \prod \lambda_j^{-n_j} = e^{-\xi_D(0)} \) where \(\lambda_j \) are the eigenvalues of \(D \) and \(\xi_D(s) \) is the zeta function defined by \(\xi_D(s) = \sum_j (1/\lambda_j)^s = \text{Tr}(D^{-s}) \). Under certain ellipticity conditions \(\xi_D(s) \) is a well-defined smooth function of the complex parameter \(s \) when \(\text{Re}(s) \) is sufficiently large, and can be analytically continued to a meromorphic function in the
whole complex plane which is regular at \(s = 0 \), so that \(\zeta'_D(0) \) and hence \(\det D \) are well defined. The zeta-determinant formula of [8], in its most straightforward form, is for elliptic differential operators in one variable \(t \in [0, 1] \) acting on periodic functions taking values in some vector space. To apply it in the present case, we note that the spectrum of \(D_A(\mu) \) is the same as that of the operator

\[
\mathcal{D}_A(\mu) = \gamma_A \left[\frac{1}{\beta} \frac{\partial}{\partial t} + H_A(\beta t) - \mu - i \frac{\pi}{\beta} \right]
\]

acting on \(W \)-valued periodic functions \(\mathcal{V}(t), \ t \in [0, 1] \). It is easy to check that \(\mathcal{V}(\tau) \) is an eigenfunction for \(D_A(\mu) \) with eigenvalue \(\lambda \) if and only if \(\mathcal{V}(t) = e^{i \tau \lambda} \mathcal{V}(t) \) is an eigenfunction for \(\mathcal{D}_A(\mu) \) with the same eigenvalue. Hence

\[
\det D_A(\mu) = \det \mathcal{D}_A(\mu), \quad \text{and the result of [8] can be applied to evaluate the latter determinant. Writing}
\]

\[
\mathcal{D}_A(\mu) = L_1(t) d t \mathcal{L}_0(t) \]

where \(L_1(t) = i \gamma_A / \beta \), \(\mathcal{L}_0(t) = \gamma_A(H_A(\beta t) - \mu - i \pi / \beta) \), and formally setting \(N = \dim W \), Theorem 1 of [8] gives

\[
\det D_A(\mu) = \det \mathcal{D}_A(\mu)
\]

\[
= (-1)^N S_d(L_1, L_0) R(L_1, L_0) \det \{ 1 - \mathcal{U}(L_1, L_0) \}
\]

(6)

where the ingredients are as follows. Consider the operator

\[
\mathcal{D}_A(\mu) \mathcal{V}(t) = 0 \quad \text{without boundary conditions on } \mathcal{V}(t).
\]

The solutions are determined from their initial values via an evolution operator: \(\mathcal{V}(t) = \mathcal{U}(t) \mathcal{V}(0) \). Then \(\mathcal{U}(L_1, L_0) = \mathcal{U}(1) = T \exp(-i \int_{\beta}^{0} L_0(t) d t) \) (\(T = \tau \) ordering). The remaining ingredients are given by

\[
R(L_1, L_0) := \exp\left[\int_0^1 \exp\left(-i \int_{\beta}^{0} L_0(t) d t\right) \right] \]

and

\[
S_d(L_1, L_0) := \left(\det T \right)^{-1} \gamma_A \left(\frac{1}{\beta} \right) \gamma_A \left(\frac{1}{\beta} \right) \gamma_A \left(\frac{1}{\beta} \right)
\]

where \(\gamma_A \left(\frac{1}{\beta} \right) \) is the anti-Hermitian matrix \(A_4(\mathbf{x}, \tau) \):

\[
\mathcal{U}_d(\beta) = \exp\left(-\int_0^1 H_A(\tau) d \tau\right)
\]

(10)

and \(C = e^{\pm \beta N/2} \). [We use \(T = \tau \) ordering and the fact that \(N = \dim W \) is formally even, since spinor fields have an even number of components; hence \((-1)^N = 1 \).] We will discuss below how variants of this approach can produce different expressions for the overall factor \(C \) in Eq. (9). In the present case \(C = e^{\pm \beta N/2} \) is gauge field independent—its only effect is to give an overall shift in quantities obtained by taking derivatives of \(\log Z \) with respect to \(\beta \) or \(m \)—so the factors \(C e^{\pm \beta N/2} \) in Eq. (9) are physically inconsequential and can be absorbed into a normalization of the QCD partition function; hence the physics of the fermion determinant is described solely by \(\det (1 + e^{\beta \mu} \mathcal{U}_d(\beta)) \). Thus Eq. (9) is a dimensionally reduced expression for the fermion determinant.

The result (9) also provides another way to relate the functional integral and Hamiltonian frameworks for quantum field theories with fermions, alternative to the usual relation based on transfer matrices which requires a time discretization [11]. In the free field case this is easily seen using a standard algebraic rewrite of the determinant in the right-hand side of Eq. (9): Defining the extension of an operator \(Q \) on \(W \) to an operator \(Q^\Lambda \) on the Clifford algebra \(\otimes_{p=0}^N W^\otimes \) (= fermionic Fock space) by

\[
Q^\Lambda(\phi_1 \otimes \cdots \otimes \phi_p) := \left(Q \phi_1 \right) \otimes \cdots \otimes \left(Q \phi_p \right)
\]

we have

\[
\det (1 + e^{i \beta H_0} \mathcal{U}_d(\beta))
\]

(10)

and the latter can be identified with \(\mathcal{T}_R(\mu) \) where \(H \) and \(N \) are the fermionic Hamiltonian and number operators, respectively, on the Fock space. (In this description the vacuum state has an unfulfilled Dirac sea, i.e. it consists of no particles of either positive or negative energy. Vacuum subtractions then need to be done “by hand” to obtain physical results.) Relating the functional integral and Hamiltonian approaches via Eq. (9) in the general case where gauge fields are present is more involved and will be discussed in a separate paper.

The above derivation of Eq. (9) is formal since \(W = \{ \phi(\mathbf{x}) \} \) is infinite dimensional. However, a rigorous version can be obtained by putting the spatial volume on a lattice, i.e. by working in a continuous time–lattice space setting where \(W \) is the finite-dimensional vector space of spinor...
fields living on the sites of the spatial lattice. The Dirac operator in that setting was discussed in [5] [see Eq. (7) of that paper]; it is obtained from the above expressions (4), (5) for \(D_A(\mu) \) by replacing \(\partial_t + A_k \rightarrow \nabla_k \) (= the covariant finite difference operator constructed with the link variables of the gauge field on the spatial lattice) and \(m \rightarrow M_A(\tau) = m + (r'/2a^\Lambda)\Delta^{A}_{\text{space}}(\tau), \) where \((r'/2a^\Lambda)\Delta^{A}_{\text{space}} \) is the spatial Wilson term as defined in [5]. (We continue to denote the gauge field by \(A \) in the continuous time–lattice space setting even though its spatial components are link variables.) The derivation of the dimensionally reduced expression for the fermion determinant then goes through as above but with one small change: \(m \rightarrow M_A(\tau) \) in the right-hand side of Eq. (8), and consequently \(C = e^{\beta \mu N/2} \) gets replaced in Eq. (9) by

\[
C_\pm(A) = \exp \left(\pm \frac{1}{2} \int_0^\beta \text{Tr} M_A(\tau) d\tau \right).
\]

This modification is significant: \(C_\pm(A) \) is gauge field dependent and the indeterminacy of the sign in the argument of the exponential therefore constitutes an inconsistency in continuous time–lattice space QCD when the fermion determinant is defined via zeta regularization. There is a way to avoid this inconsistency though. Since \(\bar{\psi} = \psi^g \gamma_5 \) the fermion determinant can be expressed as \(\det[\gamma_4 D_A(\mu)] \) (in fact this is the starting point for the usual evaluation of the fermion determinant via Matsubara frequency summation in the free field case). Although formally \(\det[\gamma_4 D_A(\mu)] \) coincides with \(\det D_A(\mu) \), the expressions obtained from zeta regularization turn out to be different. The difference originates from a difference in \(\Gamma_\beta \): For \(\gamma_4 D_A(\mu) \) we find \(\Gamma_\beta = \pm 1 \) (with the sign depending on \(\theta \) in the same way as previously), and consequently Eq. (8) becomes \(\text{Tr}[\Gamma_\beta (H_A(\tau) - \mu)] = \text{Tr}[\pm [H_A(\tau) - \mu]] = \mp \mu N. \) The result is that \(\det[\gamma_4 D_A(\mu)] \) is given by Eq. (9) with \(C = e^{\beta \mu N/2} \), both in the formal continuum setting and in the regularized (spatial lattice) setting. Since this \(C \) is gauge field independent the sign indeterminacy does not matter and the factor can be absorbed into a normalization of the QCD partition function.

Thus in the continuous time–lattice space setting the overall factor \(C \) in the dimensionally reduced expression (9) for the fermion determinant depends on choices made in the evaluation: it can be either \(C_+(A) \), \(C_-(A) \) or \(e^{\beta \mu N/2} \). Clearly, the question of whether these choices are physically equivalent corresponds to the question of whether or not the gauge-field-dependent factor \(C_-(A) \) is physically consequential. This same question has recently arisen in an investigation of universality in lattice QCD [5]. In fact Eq. (9) has a very similar structure to a lattice QCD fermion determinant expression obtained previously by an algebraic method in [12] (see also [13]). Its continuous time limit was evaluated in [5] for various versions of the Wilson and naive lattice fermion formulations, and, depending on the choice of lattice formulation, the limit was found to coincide with Eq. (9) with \(C = C_+(A) \) or \(C = 1 \) (modulo some physically inconsequential factors). The factor \(C_+(A) \) was thus seen to represent a “universality anomaly” in that case.

How serious a problem is this in the present case? Zeta regularization has become a rather standard technique which seems to have always given sensible, consistent results in the cases where it has been applied (see, e.g., [14]), while lattice regularization is a well-established and successful approach at least in QCD. It would therefore be an unpleasant shock to find that the combination of these regularizations in the present setting leads to a physically ambiguous or inconsistent result for the fermion determinant. To determine whether this is actually the case one needs to determine the physical significance, or lack thereof, of the troublesome factor \(C_-(A) \). To this end, recall that \(M_A(\tau) = m + (r'/2a^\Lambda)\Delta^{A}_{\text{space}}(\tau) \) in Eq. (11). One could argue that this factor is physically inconsequential when one goes on to take the continuous space limit \((a' \rightarrow 0) \) since the spatial Wilson term \((r'/2a^\Lambda)\Delta^{A}_{\text{space}} \) formally vanishes in this limit. This is a delicate issue though, since \(\text{Tr}[M(1/a^\Lambda)\Delta^{A}_{\text{space}}] \) actually diverges in this limit (the largest eigenvalue is \(\sim 1/a^\Lambda \)). It is tempting to interpret this divergence as being due to the spatial “fermion doubler” modes, which get masses \(\sim 1/a^\Lambda \) from the spatial Wilson term and are supposed to decouple in the continuous space limit. But the situation may be more complicated than this and further study is required to clarify this issue.

In any case, the dimensionally reduced expression (9) sheds light on the \(\beta \) and \(\mu \) dependence of the fermion determinant and we study this in the remainder of the paper, focusing in particular on the \(\mu \) dependence. Further details of our calculations, along with some additional results, are given in [15]. We begin by noting some general features. The operator \(U_A(\beta) \) given in Eq. (10) has the properties

\[
[U_A(\beta)]^{-1} = (\gamma_4 \gamma_5)^{-1}U_A(\beta)(\gamma_4 \gamma_5),
\]

\[
\det U_A(\beta) = 1.
\]

The derivation of the first of these is postponed to [15]; it immediately gives \(|\det U_A(\beta)|^2 = 1 \), but to derive Eq. (13) we need to show the absence of a phase factor and this requires a direct calculation:

\[
(d/d\beta)\det U_A(\beta) = \det U_A(\beta)\text{Tr}[U_A(\beta)^{-1}(d/d\beta)U_A(\beta)]
\]

\[
= \det U_A(\beta)\text{Tr}[U_A(\beta)^{-1}[-H(\beta)]U_A(\beta)]
\]

\[
= -\det U_A(\beta)\text{Tr} H(\beta);
\]

this vanishes by Eq. (7); hence \(\det U_A(\beta) = \det U(0) = 1 \) as claimed. Using Eqs. (12), (13) it is straightforward to see that the dimensionally reduced expression (9) satisfies the standard relation

\[
\det D_A(\mu)^* = \det D_A(-\mu^*)
\]

[which follows at the formal level from \(D_A(\mu)^* = \gamma_4 D_A(-\mu^*) \gamma_5 \), showing that \(\det D_A(\mu) \) is complex valued in general but real for purely imaginary \(\mu \)].

Specializing to real \(\mu \) we consider now the large \(\mu \) limit of the fermion determinant. In this limit the fermion Lagrangian in Eq. (1) is dominated by the term \(\mu \bar{\psi} \gamma_4 \psi; \) thus,
formally, the dynamical fermion effects disappear from the QCD partition function in this limit and the thermodynamics is that of the pure gauge theory. This should correspond to the fermion determinant becoming independent of the gauge field in the large μ limit, and the question of whether this happens can be investigated directly from the dimensionally reduced expression derived in this paper. As a consequence of Eq. (13) we have $\det[1+e^{\beta\mu}]\approx e^{\beta\mu N}$ in the large μ limit, and it follows that in the formal continuum setting the expression (9) does indeed become independent of the gauge field. However, in the regularized (spatial lattice) setting a residual gauge field dependence remains, contained in the notorious factor $C_\infty(A)$. Thus the intuitive expectation of gauge field independence in the large μ limit is not entirely realized in this case.

To study the μ dependence of the fermion determinant in more detail it is useful to re-express Eq. (9) in terms of the eigenvalues of $\gamma_4 D_A(0)=\partial_\tau + H_A(\tau)$ as follows. Consider the eigenvalue equation

$$\frac{\partial \Psi}{\partial \tau} + H_A(\tau) \Psi(\tau) = \left(\lambda + i \frac{\pi}{\beta}\right) \Psi(\tau), \quad \Psi(\beta) = -\Psi(0).$$

(15)

A little analysis shows that the solutions are given by $\Psi(\tau) = e^{(\lambda+i\pi/\beta)\tau} U(\tau) \Psi(0)$ with $U(\lambda) \Psi(0) = e^{-\beta \lambda} \Psi(0)$. From this we see that the eigenvalues of $\partial_\tau + H_A(\tau)$ come in equivalence classes $\{\lambda + (i \pi/\beta)(2n+1)\}$, which are in one-to-one correspondence with the eigenvalues $e^{-\beta \lambda}$ of $U(\lambda)$. The representative λ for the equivalence class $\{\lambda + (i \pi/\beta)(2n+1)\}$ can be fixed by the condition $\text{Im}(\lambda) \in [-\pi/\beta, \pi/\beta]$. A known property of the eigenvalues that we exploit in the following is that the λ’s with $\text{Re}(\lambda) \neq 0$ come in pairs $(\lambda, -\lambda^*)$ (a derivation of this is provided in [15]). Using this in Eq. (9) we obtain

$$\det D_A(\mu) = C \prod_{\lambda} e^{-\mu/2} \left(1 + e^{\mu} e^{-\lambda \mu} \right).$$

$$= C \prod_{\text{Re}(\lambda)>0} e^{-\mu/2} \left(1 + e^{\mu} e^{-\lambda \mu} \right) \times \prod_{\text{Re}(\lambda)>0} e^{-\mu} \left(1 + e^{\mu} e^{-\lambda \mu} \right) \times (1 + e^{\mu} e^{-\lambda}) \times (1 + e^{\mu} e^{\lambda}).$$

Note that the last square-bracketed factors can be rewritten as $\prod_{\text{Re}(\lambda)>0} e^{\beta \lambda^*} \left(1 + e^{-\lambda \mu} \right) \left(1 + e^{-\lambda \mu^*} \right)$, which has the same structure as the earlier free field expression (3). This can now be used to obtain an expression for the fermion determinant in the limit of low temperature (i.e. large β). After some manipulations we find

$$\det D_A(\mu) \approx C e^{-\beta E_{\text{sea}}(A)} \epsilon(A) \prod_{\text{Re}(\lambda)>0} e^{\beta |\mu|/2} e^{-i\beta \mu} \left| |\mu|/\text{Im}(\lambda)/2 \right| e^{-i\beta \mu} \epsilon(A)$$

(17)

$$= \prod_{\text{Re}(\lambda)>0} 2 \cos[\beta \text{Im}(\lambda)/2]$$

(18)

where $E_{\text{sea}}(A) = \sum_{\text{Re}(\lambda)<0} \text{Re}(\lambda)$ is the sum of the negative quasi-energies (this is the natural generalization of the sum of energies of the negative energy states in the Dirac sea arising in the free fermion case), and

$$\epsilon(A) = \prod_{\lambda} e^{-i\beta \text{Im}(\lambda)/2}.$$

The latter is a gauge-field-dependent sign factor: $\epsilon(A)^2 = \prod_{\lambda} e^{-i\beta \text{Im}(\lambda)} = \prod_{\lambda} e^{-\beta} = \det U(\lambda) = 1$ by Eq. (13). We now consider this sign factor in more detail. Setting $\mu = 0$ in Eq. (16) we find

$$\det D_A(0) = \epsilon(A) \prod_{\text{Re}(\lambda)>0} \left(1 + e^{-\beta} \right)^2 e^{-\beta \text{Re}(\lambda)}.$$
negative when $m<0$, since in this case negative real eigenvalues are possible. This situation occurs in lattice QCD with Wilson fermions: to study the chiral limit m is tuned to negative values and there are so-called “exceptional configurations” for which the Dirac operator then has negative real eigenvalues.

The large β expressions (17), (18) have a remarkably simple form. In addition to the natural factor $e^{-\beta E_{\text{sea}}}$, and the sign factor $e(A)$, which is positive for all A when $m \geq 0$ but which can be negative in certain gauge backgrounds when $m<0$, the $\mu=0$ expression (18) consists only of a simple factor associated with the purely imaginary λ’s, while in the $\mu \neq 0$ case (17) there is a further simple factor associated with the λ’s for which $|\text{Re}(\lambda)| < |\mu|$. In particular, we see the following: The fermion determinant at large β is independent of μ for $|\mu| < \mu_\lambda(A)$ where

$$\mu_\lambda(A) := \min[|\text{Re}(\lambda)|].$$

This property was also found in [4] from an expression for the ratio $\det D_A(\mu)/\det D_A(0)$ derived via the Matsubara summation method. By considering (a suitable integral over) the pion propagator, $\min[\mu_\lambda(A)]$ can be identified with $m_{\pi}/2$ [4] (where the minimum is taken over the statistically significant gauge fields; similar considerations are standard in the lattice QCD setting; see, e.g., [12]). It follows that the zero temperature QCD partition function is independent of μ for $\mu < m_{\pi}/2$, as discussed at the beginning of this paper. The results (17), (18) reproduce the determinant ratio expression Eq. (6) of [4] [where it was implicitly assumed that $\text{Re}(\lambda) \neq 0$ for all λ], and extend that result to the fermion determinant itself, revealing the presence of gauge-field-dependent factors $e^{-\beta E_{\text{sea}}(A)}e(A)$ which cancel out in the determinant ratio. Having obtained the large β expression for the fermion determinant itself we are now in a position to investigate the subtle cancellation in the functional integral over gauge fields in Eq. (1), which, as discussed earlier, is required to explain the μ independence of the zero-temperature QCD partition function for $m_{\pi}/2 < \mu < m_{\pi}/3$. We hope to gain more insight into this in future work via the program outlined earlier.

In addition to the aforementioned program for gaining insight into the QCD phase transition at zero temperature and finite density there are other places where the results obtained here may be useful. For example, it would be interesting to see, if possible, how the high density effective theory of Hong and Hsu [16], where the effective fermion determinant is positive, emerges from the dimensionally reduced determinant expression (9). This may shed light on possible limitations of that approach. We conclude by mentioning another setting where the method introduced in this paper for obtaining dimensionally reduced determinant expressions via a (partial) zeta regularization, using the formula Theorem 1 of [8], may also have interesting applications. Following the Randall-Sundrum proposal [17] there has been much interest in gauge theory models where the spacetime includes a fifth dimension interval, with the geometry of the interval being warped so that the spacetime is a slice of AdS_5. In particular, a model has recently been proposed in this framework where the fermion masses arise not from the condensation of a Higgs field (the standard mechanism) but as a consequence of the boundary conditions on the fifth dimension interval [18]. It would be very interesting to derive a dimensionally reduced expression for the fermion determinant in this model—this would reveal a non-local 4-dimensional fermion theory to which the 5-dimensional model is equivalent. (This proposal is reminiscent of the derivation of the overlap Dirac operator in lattice gauge theory [19] from a dimensionally reduction of the fermion determinant of a 5-dimensional domain wall model [20]. Since the overlap Dirac operator has proved to be very interesting and useful both conceptually and for practical purposes, one may expect the same for the non-local Dirac operator in 4 dimensions obtained from a dimensionally reduced expression for the fermion determinant of the 5-dimensional model of [18].) The boundary conditions there may be too complicated for a simple application of the determinant formula of [8] such as the one in the present paper though; the result of [8] may first need to be extended to more general boundary conditions. (We remark that more general boundary conditions have been considered in [9], although the results there are mostly for determinant ratios.) The effect of the warped geometry of the AdS_5 slice on the fermion determinant will also need to be dealt with, although this appears not so difficult. We also remark that in light of the AdS conformal field theory (CFT) correspondence [21] the dimensionally reduced expression for the fermion determinant in this model can be expected to contain CFT structure and it would be interesting to uncover this.

Note added in proof. The question of the physical significance of the factor $C_\pi(A)$ defined in Eq. (11) has been resolved in subsequent work. Although $M_A(\tau)$ depends on the gauge field A, it turns out that $\text{Tr}M_A(\tau)$ is independent of A. Consequently, $C_\pi(A)$ is independent of the gauge field and is therefore physically inconsequential. The details of this will be provided elsewhere.

I thank Pierre van Baal for discussions related to this work and feedback on the manuscript, Tom Cohen for feedback, Philippe de Forcrand for feedback and pointing out [16], and Xiang-Qian Luo for pointing out [6]. The author is supported by the European Commission, contract HPMF-CT-2002-01716.

