<table>
<thead>
<tr>
<th>Title</th>
<th>Performance of 1–3 piezoelectric composites with porous piezoelectric matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Della, Christian Ngalatan.; Shu, D.</td>
</tr>
<tr>
<td>Citation</td>
<td>Della, C. N., & Shu, D. (2013). Performance of 1–3 piezoelectric composites with porous piezoelectric matrix. Applied physics letters, 103(13), 132905-.</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/18303</td>
</tr>
</tbody>
</table>

© 2013 AIP Publishing LLC. This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of AIP Publishing LLC. The paper can be found at the following official DOI: http://dx.doi.org/10.1063/1.4822109. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Performance of 1–3 piezoelectric composites with porous piezoelectric matrix

C. N. Della and D. Shu

Citation: Applied Physics Letters 103, 132905 (2013); doi: 10.1063/1.4822109

View online: http://dx.doi.org/10.1063/1.4822109

View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/103/13?ver=pdfcov

Published by the AIP Publishing
Performance of 1–3 piezoelectric composites with porous piezoelectric matrix

C. N. Della1,4 and D. Shu2

1University of Glasgow Singapore, 535 Clementi Road, Singapore 599489
2School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

(Received 25 April 2013; accepted 8 September 2013; published online 24 September 2013)

A micromechanics method is developed to investigate the effects of porosity in the matrix and the polarization orientations of the piezopolymer matrix and the piezoceramic fibers on the performance of 1–3 piezoelectric composites. The Mori-Tanaka (MT) method is first used to homogenize the porous piezopolymer matrix, and then the MT method for piezoelectric composites is used to analyze the porous piezopolymer matrix with embedded piezoceramic fibers. Results show that the performance of the composites is significantly enhanced by the presence of pores in the matrix and further enhanced by the opposite polarization orientation of the matrix and the fibers. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4822109]

Piezoelectric composites or piezocomposites with 1–3 connectivity are an important class of materials for biomedical imaging and underwater acoustic applications. These piezocomposites are flexible to conform to curved surfaces and have lower acoustic impedance and higher electromechanical coupling in comparison with single phase piezoceramic materials.

Analytical models2–10 and finite element models11–14 have been presented to study 1–3 piezocomposites with a non-porous matrix. Simple models for composites used in ultrasonic transducer application have been presented by Smith and co-workers2–4 and Chan and Unsworth. Nan and Weng6 presented a model using the effective medium theory for composites with piezopolymer matrix and piezoceramic fibers that was used to investigate the influence of polarization orientation of the piezoelectric matrix and fibers on the performance of the composites. Kar-Gupta and Venkatesh7 presented an equivalent layer composite model for composites with porous piezopolymer matrix and piezoceramic fibers, which consists of an array of parallel piezoceramic fibers embedded in a piezopolymer matrix, as shown in Fig. 1.

For linear piezoelectric materials, the constitutive equations are

\[\Sigma_{ij} = E_{iJMN} Z_{M}^{N}, \]

where Σ_{ij}, E_{iJMN}, and Z_{M}^{N} are

\[\Sigma_{ij} = \begin{cases} \sigma_{ij} & J = 1, 2, 3 \\ D_{i} & J = 4 \end{cases}, \]

\[E_{iJMN} = \begin{cases} C_{ijmn} & J = 1, 2, 3 \\ e_{ij} & J = 4, M = 1, 2, 3 \\ -\kappa_{im} & J, M = 4 \end{cases}, \]

\[Z_{M}^{N} = \begin{cases} \epsilon_{mn} & M = 1, 2, 3 \\ -E_{n} & M = 4 \end{cases}, \]

where σ_{ij}, ϵ_{ij}, E_{i}, and D_{i} are the stress tensor, strain tensor, electric field vector, and electric displacement vector, respectively. C_{ijmn}, e_{ij}, and κ_{im} are the elastic stiffness tensor, piezoelectric tensor, and permittivity tensor, respectively.

Equation (1) can be expressed in matrix form as

\[\Sigma = EZ, \]

where

\[\Sigma' = [\sigma_{11} \quad \sigma_{22} \quad \sigma_{33} \quad \sigma_{23} \quad \sigma_{13} \quad \sigma_{12} \quad D_{1} \quad D_{2} \quad D_{3}], \]

\[Z' = [\epsilon_{11} \quad \epsilon_{22} \quad \gamma_{23} \quad \gamma_{13} \quad \gamma_{12} \quad -E_{1} \quad -E_{2} \quad -E_{3}], \]
of the porous matrix. The porosity in the piezopolymer matrix occurs in a much finer length scale than the size of the piezoceramic fibers.

The MT method has been used by many to model a wide range of composites. For a porous piezopolymer matrix, elastic moduli of the porous piezoelectric fiber, voltage coefficient, and the permittivity matrix, respectively.

The MT method has been used by many to model a wide range of composites. For a porous piezopolymer matrix, elastic moduli of the porous piezoceramic fiber, and where the mechanical properties of the reference material (porous piezopolymer matrix) are those determined using Eq. (1). The dilute mechanical concentration tensor \(A' \) is

\[
A' = [I + S'(E^m)^{-1}(E' - E^m)^{-1}],
\]

where \(S' \) is the piezoelectric Eshelby tensor.

The hydrostatic parameters that are used to measure the performance of underwater acoustic transducers or hydrophones are: (a) hydrostatic charge coefficient \(d_h \); (b) hydrostatic voltage coefficient \(g_h \); and (c) hydrophone figure of merit (FOM) \(d_h g_h \). These parameters can be determined by using the calculated effective electroelastic properties using Eq. (11), and the higher the value of each of these parameters, the higher is the sensitivity of the transducer.

The hydrostatic charge coefficient \(d_h \) is defined by \(d_h = d_{33} + d_{31} + d_{32} + d_{33} \). Large values of \(d_h \) are desirable for hydrophones in order to achieve enhanced sensitivity to the detection of sound waves. The corresponding hydrostatic voltage coefficient \(g_h \) is defined by \(g_h = d_h^2 / \kappa_{33} \). A useful FOM is the product of \(d_h \) and \(g_h \), which should be maximized in order to enhance the signal-to-noise ratio of the transducer.

For biomedical imaging applications, the electromechanical coupling \(k_t \) and the acoustic impedance \(Z \) are used to measure the performance of medical ultrasonic imaging transducers, where a low acoustic impedance and high electromechanical coupling is desired. The electromechanical coupling \(k_t \) is defined as \(k_t = \sqrt{1 - \tilde{C}_{33}/C_{33}^D} \), where \(\tilde{C}_{33} = \tilde{C}_{33} + (\tilde{\varepsilon}_{33})^2 / \kappa_{33} \), and the acoustic impedance \(Z \) is given by \(Z = (C_{33}^D \rho)^{1/2} \), where \(\rho = \rho_f (1 - \nu_f) \rho_m \). The results for 1–3 piezocomposites with non-piezoelectric Araldite D matrix are also presented for purpose of comparison. When the non-piezoelectric matrix is dense (non-porous) the results are identical to the results using the micromechanics model by Dunn and Taya.

Figures 2(a)–2(c) show the effective hydrostatic parameters \(d_{th}, g_h \), and \(d_{th} g_h \) with respect to the piezoceramic fiber.
volume fraction v_f of the 1–3 PZT/P(VDF–TrFE) piezocomposites with cylindrical pores. The results for piezocomposites with parallel (0°) and antiparallel (180°) orientations of the piezopolymer matrix with respect to the piezoceramic fiber and with 0%, 10%, 20%, and 30% volume of porosity in the matrix are presented. It can be seen that the peak values of d_{33}, g_{33}, and $d_{33}g_{33}$ are much greater for the piezocomposites with piezoelectric polymer P(VDF–TrFE) matrix than for the piezocomposites with non-piezoelectric polymer Araldite D matrix. Furthermore, these parameters increase as the volume fraction of the porosity increase for up to $v_f < 0.3$. The polarization orientation has a more pronounced effect on the effective parameters of the piezocomposites for up to $v_f < 0.3$. The peak values of the effective parameters d_{33}, g_{33}, and $d_{33}g_{33}$ being higher for the antiparallel orientation (180°) and attained at lower volume fraction of the piezoceramic fibers as compared with the results for the parallel orientation (0°).

The electromechanical coupling k_t of the composites with respect to the fiber volume fraction v_f is shown in Fig. 3(a). It is observed that k_t increases as the volume fraction of the porosity increases, with k_t being higher for the antiparallel orientation. The effective electromechanical coupling k_t vs the effective acoustic impedance Z for the piezoelectric composites is shown in Fig. 3(b). It can be seen that k_t first increases rapidly with Z and approaches an asymptotic value after $Z = 6$ and that k_t further increases as the volume of porosity increases. The composites with antiparallel orientation reach higher k_t values at lower Z, as compared with the composites with parallel orientation.

In summary, the presence of porosity enhanced the effective hydrostatic performance parameters of the 1–3 piezocomposites by increasing the peak values of these parameters, since the peak values increased as the volume of porosity increased. The peak values were observed to be higher and attained at lower fiber volume ratio for composites with piezopolymer matrix and piezoceramic fibers poled in the opposite directions than composites with matrix and fibers poled in the same direction. The porosity in the piezopolymer matrix also improved the performance of the 1–3 piezocomposites by increasing the electromechanical coupling while reducing the acoustic impedance of the composite. The electromechanical coupling increased as the volume of the porosity in the matrix is increased and higher

FIG. 2. Effective hydrostatic performance parameters of 1–3 piezoelectric composites with a porous matrix as a function of the piezoceramic fiber (PZT-7A) volume fraction v_f for 0° and 180° polarization orientations of the piezopolymer matrix [P(VDF–TrFE)]: (a) Effective hydrostatic charge coefficient d_3; (b) effective hydrostatic voltage coefficient g_3; (c) effective hydrostatic figure of merit $d_{33}g_{33}$. When the Araldite D matrix is dense, i.e., 0% porosity, the results are identical to the results generated using the micromechanics model by Dunn and Taya.

FIG. 3. (a) Effective electromechanical coupling k_t of 1–3 piezoelectric composites with a porous matrix as a function of the piezoceramic fiber (PZT-7A) volume fraction v_f for 0° and 180° polarization orientations of the piezopolymer matrix [P(VDF–TrFE)]; (b) effective electromechanical coupling k_t vs the effective acoustic impedance Z. When the Araldite D matrix is dense, i.e., 0% porosity, the results are identical to the results generated using the micromechanics model by Dunn and Taya.
electromechanical coupling of the composites are attained when the piezopolymer matrix and piezoceramic fibers are poled in the opposite directions.

We thank the anonymous reviewer for the valuable contributions.

25Note that Eq. (9) enables us to evaluate the electroelastic moduli of the porous piezoelectric matrix, and then these constants are used at averaging to obtain the effective electromechanical properties of the piezoelectric composite as a whole. In this case, the size (diameter) of the pores is much less than the piezoceramic fibers. These fibers are embedded into the homogeneous medium and do not “feel” a single pore.