<table>
<thead>
<tr>
<th>Title</th>
<th>Effect of Ge diffusion on AlxGa${1-x}$N/GaN high electron mobility transistors on a thin silicon-on-insulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Bera, L. K.; Tham, W. H.; Kajen, R. S.; Dolmanan, S. B.; Kumar, M. Krishna; Lin, Vivian Kaixin; Ang, Diing Shenp; Bhat, T. N.; Yakovlev, N.; Tripathy, Sudhiranjn</td>
</tr>
<tr>
<td>Citation</td>
<td>Bera, L. K., Tham, W. H., Kajen, R. S., Dolmanan, S. B., Kumar, M. K., Lin, V. K. X., et al. (2013). Effect of Ge diffusion on AlxGa${1-x}$N/GaN high electron mobility transistors on a thin silicon-on-insulator. ECS solid state letters, 2(12), Q105-Q108.</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/18382</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 The Electrochemical Society. This paper was published in ECS Solid State Letters and is made available as an electronic reprint (preprint) with permission of The Electrochemical Society. The paper can be found at the following official DOI: [http://dx.doi.org/10.1149/2.002312ssl]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
In this letter, the effect of Ge diffusion at the gate area of Al$_{x}$Ga$_{1-x}$N/GaN high electron mobility transistors (HEMTs) on a thin silicon-on-insulator (SOI) substrate has been investigated. The pinch-off voltage shifted toward enhancement mode type operation behavior due to the Ge diffusion through the surface of the thin GaN cap layer. An anomalous hump observed in high frequency C-V plot is due to the electron confinement at the Ge-GaN/AlGaN interface. The threshold voltage reduces by 0.8 to 1.0 V after Ge diffusion. The drive current and the transconductance further reduced as compared to the control sample due to the parallel channel formation at the top Ge-GaN/Al$_{x}$Ga$_{1-x}$N interfaces.

© 2013 The Electrochemical Society. [DOI: 10.1149/2.002312ssl] All rights reserved.

Effect of Ge Diffusion on Al$_{x}$Ga$_{1-x}$N/GaN High Electron Mobility Transistors on a Thin Silicon-On-Insulator

L. K. Bera,a,b W. H. Tham,b R. S. Kajen,a S. B. Dolmanana, a M. Krishna Kumar,a V. K. X. Lin,a D. S. Ang,b T. N. Bhat,a N. Yakovlev,a and S. Tripathya,b, a

aInstitute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 117602 Singapore, Singapore
bThe Division of Microelectronics, The School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798

In this letter, we report on the innovative approach of realizing 2DEG AlGaN/GaN heterostructures on 150 mm diameter float zone SOI(111) substrates by metal organic chemical vapor deposition. The SOI(111) substrates, with the thin top Si overlayers of about 30–35 nm and buried oxide thickness of about 70–75 nm, were prepared on handle Si substrates of thickness 650–675 μm (starting Si resistivity of ~2500 Ω cm) by the separation by implantation of oxygen (SIMOX) process. About 100 nm of AlN buffer was first grown on top of the thin SOI overlayer, followed by ~2.1 μm of intermediate Al(Ga)N/GaN superlattice layers. About ~1.0 μm carbon-doped semi-insulating GaN was overgrown followed by the active layers consist of about 1.0 nm AlN spacer, ~20–25 nm Al$_{x}$Ga$_{1-x}$N barrier layer and a thin ~1.5 nm GaN cap layer. Wafer bonding measured from GaN on SOI and GaN on bulk-Si substrates is about 40 μm and 80 μm, respectively. Despite similar growth conditions of epilayers, the heterostructures on SOI substrates show a much uniform sheet resistivity profile with a variance within 20% with an average sheet resistance of about 350 Ω/sq estimated from Hall effect, whereas we observed a variation of about 27% for the case of bulk Si with an average value of 430 Ω/sq. The average sheet carrier concentration of such 2DEG layers is about 9.5 × 10^{12} cm^{-2} with a mobility of 1920–1940 cm^{2}/V s at the wafer center.

The device fabrication process consists of several steps: (i) active area was defined by optical lithography. (ii) After active lithography, the mesa isolation etch was performed using Cl$_2$/BCl$_3$ dry plasma etching. (iii) The gate level photolithography and Ge deposition followed by lift-off process was carried out to deposit 10 nm thick Ge at gate area. (iv) Then the S/D was patterned by photolithography and ohmic metal Ti/Al/Ni/Au (15/120/40/150 nm) stack was deposited using electron beam evaporation. (v) After metal lift-off, the wafers were annealed using RTA at 825°C for 60 s in an N$_2$ ambient to prepare ohmic contacts at S/D and the diffusion of Ge at top GaN cap and AlGaN layer in gate area, respectively. (vi) Schottky gate with several channel length were formed by Ni/Au E-beam evaporation and subsequent lift off process. For a comparative study, both Ge gated and control samples were fabricated in a same process run. To analyze the layer quality of the as-grown film, high-resolution X-ray diffraction (HRXRD) and cross-sectional scanning transmission electron microscopy (STEM) experiments were carried out. The cross-sectional TEM micrographs of the AlGaN/GaN heterostructure grown on SOI substrate are shown in Fig. 1, where the z-contrast STEM images with top GaN/AlGaN/AIN interfaces show accurate thicknesses of layers. Figures 1b and 1c show HRXRD reciprocal space maps (RSM) of full HEMT structure. The Al content in Al$_{x}$Ga$_{1-x}$N is about 24–25% in our HEMT barrier layer as estimated by the RSM maps.

To utilize such high electron mobility structure, both standard D-mode and Ge-diffused HEMTs are fabricated. The high frequency

The AlGaN/GaN-based high electron mobility transistors (HEMTs) are suitable for high power and high frequency electronic applications. The GaN-based power amplifiers offer superior performances than GaAs or Si-based transistors. The state of the art Si wafer processing platform with a lower cost and coupled with mature back-end technologies have driven the research direction for GaN integration onto Si substrate. However, the high lattice and thermal mismatches between Si and GaN lead to epilayer cracking, high density of threading dislocations and severe wafer bowing due to in-plane strain mismatch between Si and GaN,5 which results in abrupt degradation in device performance.6

To overcome the issues of wafer bowing, usually thick Si substrates are used to compensate the in-plane stress for thicker GaN on silicon wafer fabrication.5 The alternative approach is to use a thin silicon device layer an on SiO$_2$ substrate for the growth of GaN/AlGaN layers. In the case of GaN growth on a very thin silicon-on-insulator (SOI) substrate (top Si thickness <50 nm), the crystalline quality of initial AlN nucleation is influenced by the high growth temperatures (typical circuit design complexity. There are a few ways to tune the threshold nature of buried oxide contributes to the propagation of dislocations at the heterointerfaces. Compared to bulk Si, dislocation movement by thin Si template on viscous of buried oxide layer,7 leads to a change in the structural quality of overgrown nitride layers. When substrate diameter is larger, the strain balance mechanism could lead to a reduce wafer bowing compared to the case of growth of GaN directly on high resistive bulk Si substrates. A low bow epifafer may lead to much uniform electrical property of two-dimensional electron gas (2DEG) interfaces. The 2DEG-based AlGaN/GaN HEMTs are generally normally-on depletion-mode (D-mode) devices. But normally-off enhancement-mode (E-mode) operation is necessary to overcome the circuit design complexity. There are a few ways to tune the threshold voltage to achieve E-mode HEMTs such as recessed-gate,8 fluoride plasma treatment,7 and p-type AlGaN cap8 or InGaN cap.9

In this letter, we report on the innovative approach of realization of 2DEG AlGaN/GaN heterostructures on 150 mm diameter thin SOI(111) substrate where Si overlay thickness is about 35 nm. The HEMT fabrication process of threshold voltage tuning toward the E-mode type behavior is achieved by using the Ge diffusion in top thin GaN and AlGaN barrier layers. The carrier confinement, the threshold voltage shift measured from high frequency C-V, and the device drain currents are studied.

*E-mails: beralk@imre.a-star.edu.sg; tripathy-sudhirjanan@imre.a-star.edu.sg

The Al$_{x}$Ga$_{1-x}$N/GaN-based heterostructures are grown on 150 mm diameter float zone SOI(111) substrates by metal organic chemical vapor deposition. The SOI(111) substrates, with the thin top Si overlayers of about 30–35 nm and buried oxide thickness of about 70–75 nm, were prepared on handle Si substrates of thickness 650–675 μm (starting Si resistivity of ~2500 Ω cm) by the separation by implantation of oxygen (SIMOX) process. About 100 nm of AlN buffer was first grown on top of the thin SOI overlayer, followed by ~2.1 μm of intermediate Al(Ga)N/GaN superlattice layers. About ~1.0 μm carbon-doped semi-insulating GaN was overgrown followed by the active layers consist of about 1.0 nm AlN spacer, ~20–25 nm Al$_{x}$Ga$_{1-x}$N barrier layer and a thin ~1.5 nm GaN cap layer. Wafer bonding measured from GaN on SOI and GaN on bulk-Si substrates is about 40 μm and 80 μm, respectively. Despite similar growth conditions of epilayers, the heterostructures on SOI substrates show a much uniform sheet resistivity profile with a variation within 20% with an average sheet resistance of about 350 Ω/sq estimated from Hall effect, whereas we observed a variation of about 27% for the case of bulk Si with an average value of 430 Ω/sq. The average sheet carrier concentration of such 2DEG layers is about 9.5 × 10^{12} cm^{-2} with a mobility of 1920–1940 cm^{2}/V s at the wafer center.

The device fabrication process consists of several steps: (i) active area was defined by optical lithography. (ii) After active lithography the mesa isolation etch was formed using Cl$_2$/BCl$_3$ dry plasma etching. (iii) The gate level photolithography and Ge deposition followed by lift-off process was carried out to deposit 10 nm thick Ge at gate area. (iv) Then the S/D was patterned by photolithography and ohmic metal Ti/Al/Ni/Au (15/120/40/150 nm) stack was deposited using electron beam evaporation. (v) After metal lift-off, the wafers were annealed using RTA at 825°C for 60 s in an N$_2$ ambient to prepare ohmic contacts at S/D and the diffusion of Ge at top GaN cap and AlGaN layer in gate area, respectively. (vi) Schottky gate with several channel length were formed by Ni/Au E-beam evaporation and subsequent lift off process. For a comparative study, both Ge gated and control samples were fabricated in a same process run. To analyze the layer quality of the as-grown film, high-resolution X-ray diffraction (HRXRD) and cross-sectional scanning transmission electron microscopy (STEM) experiments were carried out. The cross-sectional TEM micrographs of the AlGaN/GaN heterostructure grown on SOI substrate are shown in Fig. 1, where the z-contrast STEM images with top GaN/AlGaN/AIN interfaces show accurate thicknesses of layers. Figures 1b and 1c show HRXRD reciprocal space maps (RSM) of full HEMT structure. The Al content in Al$_{x}$Ga$_{1-x}$N is about 24–25% in our HEMT barrier layer as estimated by the RSM maps.

To utilize such high electron mobility structure, both standard D-mode and Ge-diffused HEMTs are fabricated. The high frequency
gate to channel capacitance voltage (C-V) was used to study the effect of Ge. Fig. 2a shows the high frequency CV-GV for both Ge (W/Ge) and without Ge (W/O Ge) samples. The diffusion of Ge is confirmed from secondary ion mass spectroscopy analysis. The CV curve of a Schottky gate on AlGaN/GaN looks similar to the CV characteristics from a metal insulator semiconductor structure with a significant long flat terrain region from both the samples. The higher bandgap AlGaN behaves as a dielectric and such 2DEG is formed in GaN at AlGaN/AlN/GaN interface. Thus a high electron concentration beneath the AlGaN/AlN layers is responsible for the constant long flat terrain capacitance for a wide range of gate bias. The length of the C-V curve plateau is longer for W/O Ge sample compared to W/Ge. Osvald10 reported that higher sheet carrier concentration leads to longer plateau region. After annealing at 825 °C the Ge diffuse into the AlGaN layer. Group IV material Ge is the n-type dopant for GaN/AlGaN and hence AlGaN layer to be n-type doped after Ge diffusion at the gate region. We believe that Ge compensating some degree of positive sheet charge on the AlGaN surface which reduces the polarization effect. The lowering of polarization at gate region leads to lower carrier concentration (2DEG) at AlGaN/GaN heterointerface. The effective AlGaN thickness also slightly reduces due to the Ge diffusion at the gate region. Thus the combination of lower 2DEG concentration and effective thinner AlGaN contribution shorten the flat terrain region of CV curve for W/Ge sample compared to control sample. The maximum capacitance (C_{max}) is higher for W/Ge sample due to the lower thickness contribution of AlGaN layer. The slope of CV curve for both samples is similar which indicates that the dopning level at GaN layer is remaining unchanged. The minimum capacitance is observed for control sample at approximately -4.65 V, which is the pinch-off voltage, V_{in}. A special feature in CV curve observed for W/Ge sample. The capacitance value started to reduce from constant flat region due the depletion of AlGaN and GaN layer. As the bias is more and more negative, the electrons are drifted away from the surface and eventually observed a minimum capacitance. But W/Ge sample shows a first minimum at approximately -3.15 V and then a hump at approximately -3.45 V before reducing to final minimum value. The origin of hump in CV curve is probably due to the combination of interface state density and charge build up at the band offsets region for this voltage. The deposited Ge thickness is 10 nm and distribution of Ge through the depth of the film was determined using the secondary ion mass spectrometry (SIMS) in a time-of-flight spectrometer (ToF-SIMS-IV from ION-ToF GmbH) with detection of negative ions. The sputtering beam used was Cs 1 keV and 10 nA current; pulsed analysis beam was Bi 25 keV and 0.5 pA current. The sputtering rate during spectral recording was about 3.6 nm/min and about top 3 nm SIMS data is influenced by the experimental limitations. The ToF-SIMS analysis results in Fig. 3 show that Ge diffuses to GaN/AlGaN layer and a thin Ge cap layer remains after diffusion. The remaining Ge on top of GaN/AlGaN layer modifies the band structure as shown in Fig. 4. The diffused Ge will cause n+ doping at GaN cap/AlGaN layer and the presence of Ge cap layer would cause threshold voltage change toward enhancement mode type due to the combined effect of lower bandgap of top Ge cap layer with n+ doping at GaN/AlGaN layer. The presence of a lower bandgap Ge on GaN cap or AlGaN layer causes a large conduction band offset. As the bias increases from positive to negative, the electron start to deplete from metal/semiconductor interface but large conduction band offset creates a barrier for pile up of electrons up to a certain bias range. The consequence of charge build up is the increase of capacitance as shown in Fig. 2a for W/Ge sample at approximately -3.4 V. Further increase of negative bias provides sufficient energy to the electrons to tunnel through this barrier height at band offset and thus increases the depletion width, which reduces capacitance value.
Figure 3. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) analysis of Ge and O2 diffusion profile at GaN/AlGaN layer after annealing at 825°C for W/Ge and W/O Ge samples. The dashed line in the upper curve is the SIMS background limit of Ge.

Figure 4. Band bending of AlGaN/GaN heterostructure with presence of Ge layer. The electrons piled up at large conduction band offset region at Ge/GaN heterointerface.

Figure 5. Surface morphology observed after Ge deposition (a), and pre-gate clean (b) on the sample surface by atomic force microscopy.

The extrapolated pinch-off voltage, V_{th}, is -3.5 V observed for W/Ge sample. Fig. 2a also shows the G-V characteristics of both samples appearing at depletion region. Depletion charges are interfacial 2DEG at AlGaN/GaN and Ge/GaN cap interface. The electron confinement observed in W/Ge sample is due to Ge/GaN conduction band offset, which is prone to oppose of higher interfacial carrier concentration than W/O Ge sample and such higher density gives rise to a shorter G-V peak intensity at the depletion region. The high interface state density (D_{it}) is also responsible for frequency dispersion of CV-GV characteristics, hump in C-V and G-V peak but the frequency dispersion of G-V is more sensitive than C-V method. Both the samples reveal a very weak G-V dispersion behavior as shown in Figure 2c which demonstrates the presence of moderate level of D_{it} even though strong CV dispersion observed for W/Ge sample as seen in Figure 2b. The density of interface states (D_{it}) and the interface trap time constant ($τ$) extracted from the $G_p/ω$ versus $ω$ plot using G_p, $ω$, and $τ$ relationship as expressed in equations 1 and 2.

$$G_p/ω = qD_{it} 2ωτ \ln[1 + (ωτ)^2]$$ \[1\]

$$D_{it} = \frac{2.5}{q} \left(\frac{G_p}{ω} \right)_{\text{max}}$$ \[2\]

Several interfaces (e.g., Metal-GaN, AlGaN-GaN) are present in Schottky diodes for both W/O Ge and W/Ge samples. The peak in the $G_p/ω$ versus $ω$ plot is caused by the presence of interface traps from these interfaces. The D_{it} value is achieved for W/O Ge sample is $\sim 2.7 \times 10^{11} \text{ cm}^{-2} \text{ eV}^{-1}$ which is similar to reported value by Freedman et al., but a higher ($4.5 \times 10^{11} \text{ cm}^{-2} \text{ eV}^{-1}$) value is obtained for W/Ge sample, respectively. The extracted interface trap time constant ($τ$) obtain for both the samples about $\sim 3.5 \times 10^{-5} \text{ s}$. We believe that piled up electrons at the Ge/GaN interface are responsible for the hump and the related CV dispersion rather than D_{it}. Apart from Ge diffusion, O2 diffusion in AlGaN and surface roughness may also lead to the pinch-off voltage shift and high D_{it}. ToF-SIMS analysis of O2 depth profile (Fig. 3) from W/Ge and W/O Ge sample shows negligible oxygen diffusion during annealing.

Surface morphology has been studied using atomic force microscopy (AFM) after Ge deposition, annealing, and pre gate cleaning. The AFM of the surface topography are shown in Figs. 5a and 5b. Our study shows that surface roughness increases after annealing significantly due to the agglomeration of Ge on top of GaN/AlGaN. However, it reduces after pre-gate clean, which consists of acetone, IPA and HCl chemistries as evident in Fig. 5b. The slight lowering of surface roughness after pre-gate clean is probably due to the chemical etching of residual Ge. The surface morphology change observed for W/Ge sample probably responsible for a higher D_{it}. Also the presence of a lower bandgap Ge cap at top coupled with Ge diffusion at GaN/AlGaN expected to lead higher gate leakage current. Figure 6 shows the gate to drain leakage characteristics for both W/Ge and W/O Ge samples. The reverse gate leakage is higher for
The I_{DS}-V_{GS} and transconductance (g_{m}) characteristics of fabricated HEMT devices W/Ge and W/O Ge cap at gate area are shown in Fig. 7. The threshold voltages extracted from I_{DS}-V_{GS} curves using linear extrapolation method are very close to the pinch-off values obtained from the high frequency CV plot. I_{DS} and g_{m} values are lower for W/Ge compared to control sample due to the formation of dual channel as observed in CV curve. The electron mobility in Ge/AlGaN interface expected to be much lower than AlGaN/GaN 2DEG channel and therefore, reduces the drive current and g_{m}.

In summary, the effect of Ge diffusion on electrical properties of GaN/AlGaN HEMT on SOI has been demonstrated. The gate to channel high-frequency CV characteristics show electron confinement at Ge/AlGaN interface that causes n-type doping at AlGaN after diffusion. The presence of residual Ge top cap layer and diffusion to GaN/AlGaN creates threshold voltage shift toward enhancement mode type behavior. The reduction of drain current and transconductance for Ge-diffused sample is due to the reduction of 2DEG carrier concentration by Ge diffusion at AlGaN layer.

References