<table>
<thead>
<tr>
<th>Title</th>
<th>A survivable colorless wavelength division multiplexed passive optical network with centrally controlled intelligent protection scheme.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhu, Min.; Zhong, Wende; Xiao, Shilin.</td>
</tr>
<tr>
<td>Date</td>
<td>2012</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/18697</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2012 OSA. This paper was published in Journal of Optical Communications and Networking and is made available as an electronic reprint (preprint) with permission of OSA. The paper can be found at the following official DOI: [http://dx.doi.org/10.1364/JOCN.4.000741]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
A Survivable Colorless Wavelength Division Multiplexed Passive Optical Network With Centrally Controlled Intelligent Protection Scheme

Min Zhu, Wen-De Zhong, and Shilin Xiao

Abstract—Several protection schemes have been proposed for wavelength division multiplexed passive optical networks (WDM-PONs). However, these existing schemes only work under the assumption that all the optical network units (ONUs) and the optical light terminal (OLT) continuously transmit optical signals. In practice, some ONUs may be in sleep mode to save power consumption or may be shut down whenever users are offline. Under such scenarios, the existing schemes would not work. To deal with more practical operation scenarios, we propose a centrally controlled intelligent protection scheme for survivable WDM-PONs, whereby the optical power on both the working and protection paths is monitored simultaneously, and the monitored results are fed to a novel logical decision unit which performs the protection switching. It provides 1:1 downstream protection and 1 + 1 upstream protection capabilities. The logic decision unit in conjunction with a power monitoring unit is implemented in the OLT to enable intelligent protection switching in more practical operation scenarios. Moreover, our proposed protection scheme can tell the connection status of every fiber path (working and protection), thus facilitating a faster failure recovery. The scheme feasibility is experimentally verified with 10 Gb/s downstream and 1.25 Gb/s upstream transmissions. The network performances in terms of complexity and availability are also evaluated.

Index Terms—Intelligent protection switching; Reflective semiconductor optical amplifier (RSOA); Wavelength division multiplexed passive optical network (WDM-PON).

I. INTRODUCTION

The wavelength division multiplexed passive optical network (WDM-PON) is a promising broadband access solution, because it offers huge bandwidth, protocol transparency, excellent security and easy upgradeability [1,2]. With the rapid increase of WDM-PON transmission capacity, any possible failure of either feeder fibers (FFs) or distribution fibers (DFs) will lead to a large amount of data loss [3]. Thus failure monitoring and network protection are imperative for network operators to enhance the network survivability.

To date, several protection schemes for WDM-PONs have been reported based on simple power monitoring [4–10]. In [4,5], the periodic property of arrayed waveguide gratings (AWGs) is used to enable each DF to carry data traffic for more than one optical network unit (ONU), while ONUs are either adjacent connected to form a group [4] or connected in sequence to form a ring [5] to offer a backup protection path. In [8], both working FF and DF are duplicated for protection and connected to an $N \times N$ AWG located at the remote node (RN). However, these distributed control schemes require optical switches (OSs) and monitoring units installed at each ONU to perform the protection switching, which increases the complexity and cost of ONUs. Although some centrally controlled protection schemes [7,8] have been proposed, they either require N OSs [7] or N electrical switches [8] in the optical light terminal (OLT), which increases the complexity. Compared with the schemes in [7,8], the protection schemes in [9,10] require only one OS located in the OLT; but only the DF [9] or the FF [10] is protected from fiber failure and thus the network availability is relatively low (refer to the network performance analysis in Section IV).

Moreover, and more importantly, all the existing protection schemes based on simple power monitoring [4–10] only work under the assumption that all the transmitters (TXs) in the ONUs and the OLT continuously transmit optical signals. However, in practice, (i) some TXs of ONUs or the OLT may frequently enter into sleep mode whenever there is no data to be sent in order to save power [11,12], (ii) some ONUs may be shut down whenever users are offline, and (iii) fiber faults may occur during the time when ONUs are offline or when ONUs are in sleep mode. In the above three cases, none of the existing protection schemes based on simple power monitoring [4–10] work. Specifically, for case (i) (or case (ii)) when an ONU is in sleep mode (or is offline), no optical signal is transmitted from that ONU. In such a case, if one of the previous schemes is employed, since no optical signal is received from that ONU, the corresponding power monitor in the OLT would assume that the working FF or the DF of that ONU is faulty and hence would trigger a false protection switching, resulting in a malfunction. In case (iii), if a fiber failure occurs in the working path of an ONU (e.g., the working DF fails) during the time when that ONU is offline or when that ONU is in sleep mode,
the corresponding power monitor in the OLT cannot detect the recovery signal when that ONU wakes up (or is turned on). Hence that ONU would be treated as if it is still offline or in sleep mode, even though that ONU actually turns on its TX and transmits optical signal. Also in case (iii), if a fiber failure occurs in the protection path of an ONU (e.g., the protection DF fails), the corresponding power monitor in the OLT, which is designed to detect the upstream power in the working path only, would never know what happened in the protection path, so a hidden fiber failure would be left behind.

To deal with all the above scenarios for more practical operation, we here propose a centrally controlled intelligent protection scheme for survivable WDM-PONs with colorless ONUs, whereby the optical power on both the working and protection paths is monitored simultaneously. Note that, in the existing schemes, the optical power of the working path only is monitored without any intelligent decision. In our scheme, a novel logic decision unit in conjunction with a power monitoring unit is implemented in the OLT to enable the protection switching in more practical operation scenarios described above. By monitoring the optical power of each channel on both the working and protection paths, the proposed scheme can tell the connection status of both the working and protection paths of each channel, and hence can perform an effective protection switching with the aid of the proposed logic decision unit. Moreover, the detection results recorded by the power monitoring unit facilitate a faster failure recovery. The scheme feasibility is verified experimentally with 10 Gbit/s downstream and 1.25 Gbit/s upstream transmissions in Section III. The network performances in terms of complexity and availability are also evaluated in Section IV.

II. PROPOSED ARCHITECTURE AND OPERATION PRINCIPLE

The proposed centrally controlled self-protected WDM-PON architecture with \(N \) colorless ONUs is shown in Fig. 1. The OLT has three function units: transceiver unit, power monitoring unit and logic decision unit, which are interconnected to realize intelligent protection switching. The transceiver unit includes \(N \) transceivers, supporting \(N \) ONUs. In each transceiver, a TX generates a downstream signal and an optical circulator is used to separate down/upstream signals. Apart from receiving the upstream signal, an upstream receiver (RX) also acts as a monitor for monitoring the upstream power in the working path in the normal mode and generates an electrical signal to the logic decision unit upon detecting a drastic power loss. The wavelengths of all channels are multiplexed by a \(1 \times N \) AWG at the OLT. The multiplexed signal is fed to port 1 of a \(2 \times 2 \) OS. Port 3 of the \(2 \times 2 \) OS is connected to another AWG with the same free spectral range (FSR) in the power monitoring unit. The power monitoring unit includes \(N \) power monitors for just monitoring the power of respective upstream signals on the protection path and generating respective electrical logic signals to the logic decision unit.

Ports 2 and 4 of the OS are connected respectively to the two \(1 \times N \) AWGs with the same FSR at the RN, via two separate FFs (working and protection FFs). After being de-multiplexed at the RN, each downstream signal is transmitted on one of the two alternate DFs (DF-\(i \) and DF-\(i^* \)), which are connected to the corresponding ONU-\(i \). In each ONU, a \(2 \times 2 \) optical coupler (OC) is used to combine two DFs and to split the downstream optical power into two parts: one part is fed to a downstream receiver (RX); the other is amplified and re-modulated with upstream data via a reflective semiconductor optical amplifier (RSOA) operating in its gain-saturated region.

As shown in Fig. 1, the novel logic decision unit consists of \(N \) identical logic modules, each of which is related to a channel, and a multi-input–single-output logic OR gate. For each logic module, two input signals respectively come from the upstream RX and the monitor of the corresponding channel, and its output serves as one of the \(N \) input signals of the logic OR gate. The output of the logic OR gate controls the connection state (cross or bar) of the \(2 \times 2 \) OS. A single-link-failure scenario is assumed, because the chance of simultaneous multiple-link failures is negligibly small in an access network. Thus, when both the upstream RX and its associated monitor simultaneously experience a drastic power loss, it is assumed that the corresponding ONU either enters into sleep mode or is shut down. In such a case, no protection switching will take place. It is also noted that the proposed protection scheme can also protect against simultaneous multiple-link failures, except for a rare case where the two DFs for an ONU or the two FFs break down simultaneously. (In this rare case, that ONU or all the ONUs will completely lose the connection with the OLT, and hence any self-protection scheme would not work if no human intervention is involved.) Table I provides the decision states of the logic decision unit based on the logic inputs on both the working and protection paths of each channel.

In the normal working mode, the OS in the OLT is set to the bar state (i.e., 1–2 and 3–4 connection). Thus, a downstream signal is delivered only on the working path, consisting of the working FF and respective DF-\(i \) (red path). The downstream optical power is split into two parts by a \(2 \times 2 \) OC at each ONU, one of which is fed to a downstream RX; the other is amplified and re-modulated with upstream data via a gain-saturated RSOA. The upstream signal is split into two copies by the \(2 \times 2 \) OC, one of which transmitted in the working path is sent to the transceiver unit in the OLT; the other in the protection path is fed into the power monitoring unit. Hence, the WDM-PON can offer 1:1 downstream protection and 1+1 upstream protection capability.

In the case of any working DF failure, the corresponding upstream RX in the transceiver unit will detect the loss of that upstream signal, and hence a logic “0” signal will be generated to the logic decision unit. But, in this case, a monitor associated with the same channel in the power monitoring unit can detect light power, and a logic “1” signal will be generated. Consequently, the output of the logic decision unit will be a logic “1” signal, which triggers the \(2 \times 2 \) OS to the cross state (i.e., 1–4 and 3–2 connections) to set up the alternate (protection) path. Hence, all of the bidirectional transmissions are switched from the working path (red path) to the protection path (blue path). After protection switching, based on the detection results of the \(N \) monitors, the power monitoring unit can tell if it is a DF or FF failure in the working path; if it is a DF failure, it can also tell which DF fails. Thus, a fast failure restoration can be performed. In contrast, if an upstream RX
detects the presence of light while its corresponding monitor detects no light, it indicates that the protection DF fails (and thus the network manager will be notified that the corresponding protection fiber link must be repaired in time), but in this case no protection switching will take place.

The logic expression of each logic module is \((w \cdot p_i)\). If any of the above detection results occurs in all channels, it means the fiber failure takes place in either the working or protection FF. A logic OR gate is used to synthetically respond to the detection states from all \(N\) logic modules. Therefore, the logic expression of the output of the whole logic decision unit is

\[
\left[(w_1 \cdot p_1) + (w_2 \cdot p_2) + \cdots + (w_N \cdot p_N) \right].
\] (1)

The proposed WDM-PON can provide centrally controlled protection capability against the failures of both FFs and DFs. It should be mentioned that the proposed protection scheme is not restricted to a specific WDM-PON protection topology, and hence it is applicable to any protection topologies, including group protection [4], ring protection [5] and duplication protection [6].

As stated above, the upstream signal of any wavelength channel is always received by the corresponding transceiver in the OLT, while the corresponding power monitor in the OLT only needs to detect the presence (i.e., the power) of the upstream signal. Hence, there is no synchronization issue in receiving the upstream signal of each channel. On the other hand, since the working path is geographically disjoint with the protection path, which may be much longer than the working path (depending on the fiber cable rollout), the fiber length difference (and thus the light propagation time difference) between the working path and the protection path may affect the decision results of the logic decision unit in some situations. Specifically, (i) when an ONU turns off its transceiver to enter into the sleep mode (or offline state) from the normal working state, or (ii) when an ONU turns on its transceiver to wake up from the sleep mode (or offline state), both the transceiver and the power monitor of the corresponding channel in the OLT would detect the power loss (or rise) in different times, respectively. Let us consider an upper-bound case in which the protection path is 20 km longer than the working path. Thus, in the normal working state, the transceiver can detect the power loss (or rise) by \(0.1 \text{ ms} = 20 \text{ km}/(2 \times 10^5 \text{ km/s})\) earlier than the power monitor. Thus, when an ONU turns off its transceiver to enter into the sleep mode (or offline state) from the normal working state, or (ii) when an ONU turns on its transceiver to wake up from the sleep mode (or offline state), both the transceiver and the power monitor of the corresponding channel in the OLT would detect the power loss (or rise) in different times, respectively. Let us consider an upper-bound case in which the protection path is 20 km longer than the working path. Thus, in the normal working state, the transceiver can detect the power loss (or rise) by \(0.1 \text{ ms} = 20 \text{ km}/(2 \times 10^5 \text{ km/s})\) earlier than the power monitor. Thus, when an ONU turns off its transceiver to enter into the sleep mode (or offline state) from the normal working state (i.e., case (i)), the logical signal “0” from the transceiver arrives at the logic decision unit by \(0.1 \text{ ms}\) earlier than the logical signal “1” from the power monitor. As a result, a logic “1” will be generated by the logic decision unit, which may trigger a false protection switching, resulting in a malfunction. However, in a practical system, the switching speed of the commercial opto-mechanical switch (e.g., the DiCon prism used in our experiment) or thermo-optical switch is about several milliseconds [13], which is much larger than
the maximum time difference of 0.1 ms. Such an OS would not change its switching state within 0.1 ms and hence would not result in false protection switching. Thus, we can conclude that if the switching time of the OS used in the proposed WDM-PON is much larger than the maximum time difference $\delta_{\text{max}} (=\Delta_{\text{max}}/2 \times 10^9 \text{ km/s})$, where Δ_{max} is the maximum path difference between the protection and working paths. This time difference δ_{max} would not cause any false protection switching and hence the synchronization of the logic signals associated with the working and protection paths is not required. However, if the switching time of the OS is comparable to (or smaller than) the maximum time difference δ_{max}, the logic signal synchronization issue arising from the path length difference cannot be ignored and should be dealt with carefully. In such a case, a simple solution is to insert a digital RC integrating circuit [14] with a time constant two to three times larger than the δ_{max} between the output of the logic decision unit and the optical switch, to eliminate the influence of the path length difference.

It is noted that in the current synchronous optical network/synchronous digital hierarchy (SONET/SDH) based optical networks, the required failure restoration time is within 50 ms [15]. Therefore, in a practical optical access network, a failure recovery time of a few milliseconds can meet the requirement of current optical network standards and ultrafast switching is not a necessity. The use of OSs with a relatively low switching speed of a few milliseconds is the preferred choice, since this can not only reduce the cost, but also eliminate the need for the logic signal synchronization due to the path length difference.

III. Experimental Setup and Results

The transmission performance and the protection switching time of the proposed WDM-PON architecture were experimentally studied, using the setup shown in Fig. 2. The ONU-1 was implemented to demonstrate the operation principle. In the OLT, continuous wave (CW) light from a laser diode at 1545.5 nm was modulated via a Mach–Zehnder modulator (MZM), which was biased at the transmission null point and driven by 10 Gbit/s data with a pseudo-random bit sequence (PRBS) with length of $2^{31} − 1$ to generate a downstream non-return-to-zero (NRZ) on-off keying (OOK) signal. Note that since the downstream light is reused and re-modulated with upstream data, the downstream signal should have a low extinction ratio (ER) (e.g., up to 5 dB) so that the interference from the downstream to the upstream is minimized and the error-free upstream transmission can be achieved [16]. After being amplified by an erbium-doped fiber amplifier (EDFA), the downstream signal passed through an optical circulator and a band-pass filter (BPF) before it was fed to a 2×2 OS. The EDFA was used to compensate the downstream power loss and to improve the power budget. The optical circulator was used to separate the down/upstream signals. The BPF with an insertion loss of 3.5 dB was used to emulate a $1 \times N$ AWG at the OLT. The 2×2 OS used in the experiment was a commercial DiCon prism switch, which has a switching speed of a few milliseconds (maximum 10 ms), a maximum insertion loss of 1 dB and a maximum crosstalk of -70 dB. Two 1×16 AWGs located in the RN have a channel spacing of 100 GHz and a FSR of 31 nm. The FF and DF were single mode fibers (SMFs) with the lengths of 15 km and 5 km, respectively. At the ONU, one part of the downstream signal was detected by an avalanche photodiode (APD) receiver; the other was amplified and re-modulated with 1.25 Gbit/s $2^{31} − 1$ PRBS upstream data via a gain-saturated RSOA, which was uncooled and packaged in a TO-can. The RSOA was biased at 30 mA via a bias-T circuit and the optical power injected into the RSOA was -15 dBm. At these conditions, the RSOA was saturated with an output power of 7.5 dBm (i.e., optical gain = 22.5 dB), and its 3 dB modulation bandwidth was measured to be 1.5 GHz.

We first investigated the effect of the downstream (DS) ER on the bit-error-rate (BER) performances for both DS and upstream (US) transmissions over 20 km (FF + DF) SMF. The power injected into the RSOA was maintained at -15 dBm so that the RSOA was operated in its saturation region. We were able to achieve the error-free upstream transmission with the DS ER of up to 5 dB. An error floor at $\sim 7.5 \times 10^{-7}$ was observed for the upstream transmission when the DS ER was set to be 5.6. Figure 3 shows the BER performances of the DS and US signals at 1545.5 nm for different DS ERs. As shown in Fig. 3, when the DS ER was increased from 3 dB to 5 dB, the BER of the DS signal was improved, while the BER of the US signal was degraded due to the higher interference from the DS signal. The eye patterns of the DS and US signals when the DS ER was 5 dB are shown in the insets of Fig. 3.

Figure 4 shows the BER for downstream and upstream signals at 1545.5 nm when the DS ER was 5. The receiver sensitivities of the DS signal in the working and protection paths were -17.7 dBm and -17.9 dBm, respectively. In the

Fig. 2. (Color online) Experimental setup for the centrally controlled self-protection operation in the proposed WDM-PON architecture.
US case the sensitivities in the working and protection paths were −29.4 dBm and −29.6 dBm, respectively. To investigate the power penalties, the BER performances of the back-to-back (BTB) case are also shown in Fig. 4. The power penalties between the BTB and the 20 km SMF transmission cases in the working path were about 0.7 dB and 2.3 dB for the DS and US transmissions, respectively. The power penalty for the DS transmission is mainly due to the chromatic dispersion, as the DS data rate is 10 Gbit/s, while the power penalty for the US transmission is attributed to the backscattering noise, since the upstream reuses the downstream wavelength.

Using the experimental setup, the fiber link (DF-1) between the AWG and the ONU-1 was intentionally disconnected to simulate the fiber cut scenario. Upon disconnecting DF-1, the US RX detected no optical power from the working path and hence generated a logic “0” signal (\(w_1 = 0 \)), while the power monitor \(M_1 \) still detected optical power from the protection path and hence generated a logic “1” signal (\(p_1 = 1 \)). As a result, the resultant output from the logic decision unit was a logic “1” signal (\(w_1 \cdot p_1 = 1 \)), which activated the protection switching by changing the connection state of the 2 × 2 OS from its bar state (1–2 and 3–4 connections) to the cross state (1–4 and 3–2 connections) (please refer to Fig. 2). The protection switching time was measured to be 2 ms (see inset in Fig. 4), which is mainly determined by the switching response of the commercial DiCon 2 × 2 prism switch used in the experiment. It is noted that the upper trace of the inset represents the US signal in the working path, while the lower trace is for the US signal in the protection path after the protection switching.

To show the network scalability of the proposed WDM-PON architecture, a power budget analysis was carried out and the results are given in Table II. In the analysis, we assume that the output power of CW light from a laser diode is about 4 dBm, the downstream EDFA (being placed after the AWG in the transceiver unit) has a gain of 20 dB and the RSOA has a saturated output power of 7.5 dBm when it is biased at 30 mA and the injected optical power is equal to or greater than −15 dBm. The total power losses include a 5 dB insertion loss induced by the MZM, an insert loss of 0.8 dB for the optical circulator, an insert loss of 5 dB for the 1 × N AWG, an insert loss of 1 dB for the OS, a 6 dB transmission loss for 20 km (FF + DF) SMF and a 3 dB loss of the 50:50 OC. Consequently, the power margin of the DS transmission is about 17 dB with the DS average receiver sensitivity of around −17.8 dBm, and the power margin for the US case is about 17.2 dB with the US average receiver sensitivity of −29.5 dBm. These higher power margins indicate the feasibility of a longer transmission distance in the proposed WDM-PON.

Table II

<table>
<thead>
<tr>
<th>Element insertion loss</th>
<th>Downstream</th>
<th>Upstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser output power at OLT (dBm)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>EDFA amplifier gain (dB)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Injected power into RSOA (dBm)</td>
<td>>= −15</td>
<td></td>
</tr>
<tr>
<td>RSOA saturated output power (dBm)</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>MZM loss (dB)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Circulator insertion loss (dB)</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>AWG insertion loss (dB)</td>
<td>(5 \times 2^a)</td>
<td>(5 \times 2^a)</td>
</tr>
<tr>
<td>OS insertion loss (dB)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20 km (FF + DF) SMF loss (dB)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>OC insertion loss at ONU (dB)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Insertion loss (dB)</td>
<td>24.8</td>
<td>19.8</td>
</tr>
<tr>
<td>Average(^b) receiver sensitivity (dBm)</td>
<td>−17.8</td>
<td>−29.5</td>
</tr>
<tr>
<td>Power margin (dB)</td>
<td>17</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Notes.

\(^a\) “×2” means the optical signal experiences the loss twice.

\(^b\) An average value is taken between the working and protection modes.

IV. Performance Analysis and Discussion

To show the simplicity and effectiveness of the proposed architecture, we compare the proposed scheme with those in [4,6,9,10] in terms of the number of elements and the
network availabilities as shown in Table III. In the proposed scheme, only one OS is used in the OLT, which is a significant reduction from $2N + 1$ OSs in [4] or $N − 1$ OSs in [6]. In each ONU, only one OC is required without a WDM filter. Thus, the ONU structure is much simplified, but also the device cost is greatly reduced. Meanwhile, the number of wavelengths used per ONU in our scheme is minimized among all existing schemes. This means that, with the same total number of wavelengths, our proposed WDM-PON can support the greatest number of users and hence has the least investment cost per user. However, there are still some limitations in this scheme. One limitation of the proposed scheme, as in the other schemes [4–10], is that it cannot support simultaneous multiple fiber cuts in a working path as well as a protection path, although the occurrence probability of simultaneous multiple fiber cuts is negligibly small in an access network. Besides, the protection switching for any DF failure will lead to a transient interruption to all the ONUs.

We next evaluate the overall network availability using the availability modeling methodology reported in [17,18]. The block diagrams for calculating the unavailability of different protection schemes are given in Fig. 5. Each block in the figure represents either a device/system or a fiber link. For a series connection of two or more blocks, the series connection system fails if one or more blocks fails. For a parallel connection of two or more blocks, the parallel connection system fails if and only if all of the blocks in parallel fail. We assume that all the blocks are independent of each other, and each block has a very small value of unavailability (refer to Table IV).

Hence, the unavailability of a parallel connection system is equal to the product of the unavailabilities of the blocks in parallel, while the unavailability of a series connection system is approximately equal to the sum of the unavailabilities of the blocks in series. The unavailability of a block a in Fig. 5 is denoted by U_a. The descriptions of symbols and their typical values of element unavailability are listed in Table IV [17,18]. The unavailabilities U_{FF}, U_{DF} and U_{IF} are calculated by multiplying the length of the FF, DF and interconnection fiber (IF) by the fiber unavailability of a unit length U_F. We assume that the average length of the FF is 15 km, DF 5 km and protective IF 2 km. The expressions of the connection unavailabilities for the considered protection schemes are given by the following equations:

$$U_{[4]} = \left[U_{\text{OLT}}^{\text{TRX}} + U_{\text{OC}} + U_{\text{WDM}} + U_{\text{AWG}} + U_{\text{OS}} \right] + \left[U_{\text{FF1}} \times U_{\text{FF2}} \right] + U_{\text{OC}} + U_{\text{AWG}} + U_{\text{OC}}$$

$$+ \left[U_{\text{DF1}} + U_{\text{WDM}} + U_{\text{OS}} \right] \times \left[U_{\text{DF2}} + U_{\text{WDM}} + U_{\text{IF}} + 3 \times U_{\text{OS}} \right] + U_{\text{ONU}}^{\text{TRX}} + U_{\text{WDM}}$$

$$U_{[6]} = U_{\text{OLT}}^{\text{TRX}} + U_{\text{WDM}} + U_{\text{AWG}} + 2 \times U_{\text{BLS}} + 2 \times U_{\text{WDM}}$$

$$+ U_{\text{Circulator}} + U_{\text{OC}} + \left(U_{\text{FF1}} + U_{\text{AWG}} + U_{\text{DF1}} \right)$$

$$\times \left(U_{\text{FF2}} + U_{\text{AWG}} + U_{\text{DF2}} + U_{\text{OS}} \right) + U_{\text{ONU}}^{\text{TRX}} + U_{\text{WDM}}$$

$$U_{[9]} = U_{\text{OLT}}^{\text{TRX}} + U_{\text{WDM}} + U_{\text{AWG}} + U_{\text{OS}} + \left(U_{\text{FF1}} + U_{\text{FF2}} \right)$$

$$+ U_{\text{AWG}} + \left(U_{\text{DF1}} + U_{\text{WDM}} \right)$$

$$\times \left(U_{\text{DF2}} + U_{\text{IF}} + U_{\text{WDM}} \right) + U_{\text{OC}} + U_{\text{ONU}}^{\text{TRX}} + U_{\text{WDM}}$$

Notes.

a A $2 \times N$ AWG or $N \times N$ AWG are functionally equivalent to a pair of $1 \times N$ AWGs.

b In our scheme, two $1 \times N$ AWGs are used in the OLT; one is in the transceiver unit and the other is in the power monitoring unit.
Our calculations are based on unavailability data in Table IV [17,18]. Hence, the connection availability A of a PON system is calculated by $A = 1 - U$, where U is the unavailability obtained from Eqs. (2)–(6). The results given in Table III show that our protection scheme achieves the highest availability, higher than 99.999% (5 nines) due to simple architecture and simultaneous protection against both FFs and DFs.

V. Conclusion

We have proposed and experimentally demonstrated a centrally controlled intelligent protection scheme for survivable colorless WDM-PONs. A novel logic decision unit in conjunction with a power monitoring unit is implemented in the OLT to enable intelligent protection switching in more practical operation scenarios. The proposed scheme provides 1:1 downstream protection and 1 + 1 upstream protection capabilities. The scheme can deal with practical protection switching scenarios by monitoring the optical power of each channel on both the working and protection paths and performing intelligent logic decisions, which have not been considered previously. In addition, the power monitoring unit in the OLT can record these detection results on the connection status of each fiber path in each channel, thus facilitating an effective protection switching and a faster failure recovery. The scheme feasibility has been experimentally verified with 10 Gb/s downstream and 1.25 Gb/s upstream transmissions. The proposed architecture not only simplifies the ONU design, but also significantly reduces network complexity in terms of number of network elements while offering the improved wavelength resource utilization and the highest network availability as compared with all other existing schemes.

References

