<table>
<thead>
<tr>
<th>Title</th>
<th>The peroxisomal enzyme L-PBE is required to prevent the dietary toxicity of medium-chain Fatty acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ding, Jun; Loizides-Mangold, Ursula; Rando, Gianpaolo; Zoete, Vincent; Michielin, Olivier; Reddy, Janardan K.; Wahli, Walter; Riezman, Howard; Thorens, Bernard</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/18745</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 The Authors. This paper was published in Cell Reports and is made available as an electronic reprint (preprint) with permission of The Authors. The paper can be found at the following official DOI: [http://dx.doi.org/10.1016/j.celrep.2013.08.032]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids

Jun Ding, Ursula Loizides-Mangold, Gianpaolo Rando, Vincent Zoete, Olivier Michielin, Janardan K. Reddy, Walter Wahli, Howard Riezman, and Bernard Thorens

INTRODUCTION

The liver plays a critical role in lipid metabolism with multiple enzymatic pathways controlling lipid uptake, modifications, catabolism, as well as lipid biosynthesis and export. The routes followed by fatty acids to reach the liver and the adaptation of liver lipid metabolism differ according to fatty acid chain length. Following their uptake by enterocytes, long- and very-long-chain fatty acids (≥C14) are re-esterified into triglycerides and incorporated into chylomicrons. These are transported via lymph vessels into the blood to distribute fatty acids to peripheral tissues. Chylomicron remnants are eventually taken up by the liver (Williams, 2008). In contrast to this indirect pathway, medium-chain fatty acids (C8–C12) are taken up by enterocytes and directly transported through the hepatoportal circulation to the liver for uptake and degradation (Papamandjari et al., 1999). Thus, hepatocytes must be able to cope with rapid and potentially massive influxes of medium-chain fatty acids. Coconut oil, a major source of fat for millions of people living mainly in tropical areas, but also an important component of several processed foods, consists mainly of medium-chain fatty acids with a particularly high abundance of lauric acid (Kumar, 2011). The impact of coconut oil feeding on health is still debated. Because it contains high amounts of saturated fat, it is considered potentially harmful for health. On the other hand, many studies indicate that it has beneficial effects (DebMandal and Mandal, 2011; Houssay and Martínez, 1947). The lack of knowledge concerning the molecular mechanisms and physiology associated with coconut oil consumption still prevents a clear understanding of its potential impact on health.

SUMMARY

Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR) α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe−/− mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.

L-pbe−/− mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.

http://dx.doi.org/10.1016/j.celrep.2013.08.032

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

http://dx.doi.org/10.1016/j.celrep.2013.08.032
L-PBE in the adaptation to HFD-CO feeding and demonstrated its role in regulating the amount of medium-chain dicarboxylic fatty acids, which are essential activators of all fatty acid oxidation pathways and whose accumulation correlates with liver failure.

RESULTS

Coconut Oil, but Not Lard, Induces Weight Loss and Death in L-pbe^{−/−} Mice

L-pbe^{−/−} mice fed a normal chow (NC) are phenotypically indistinguishable from their wild-type littermates (Qi et al., 1999) (Figure 1A, for body weight). However, when fed a HFD-CO diet, the L-pbe^{−/−} mice rapidly lost weight and most of them died within 3 weeks, whereas wild-type mice gained weight and remained healthy (Figures 1B and 1C). In initial studies, we also compared wild-type with L-pbe^{+/−} and L-pbe^{−/−} littermates. No phenotype could be observed in HFD-CO-fed heterozygous mice, and in the rest of the study we only compared wild-type and L-pbe^{−/−} mice.

Because mouse milk is rich in C16 and C18 triglycerides (Smith et al., 1968) and L-pbe^{−/−} mice grew normally during the suckling period, the lipid species rather than the amount of...
Fat absorbed may have caused death of the L-pbe^{−/−} mice. To test this hypothesis, we fed L-pbe^{−/−} mice a lard-based HFD (HFD-L) and saw that these mice gained weight normally and remained healthy (Figure 1A). These results indicate that L-pbe is required selectively for the adaptation to HFD-CO.

Fulminant Liver Failure in HFD-CO-Fed L-pbe^{−/−} Mice

To assess the cause of death in HFD-CO-fed L-pbe^{−/−} mice, we analyzed them shortly before death, when they were severely sick or when their original body weight was reduced by ~25%. Histological examination of different organs revealed no abnormalities in heart, lung, kidneys, or stomach (Figure S1). However, the livers of the HFD-CO-fed mice were larger (Figure 1D) and characterized by hepatocyte ballooning, macrophage infiltration, and increased fibrosis as revealed by collagen and smooth muscle actin staining (Figures 1E–1H). Increased expression of the mRNAs for alpha smooth muscle actin (Sma), monocyte chemoattractant protein 1 (Ccr2), and interleukin-1 beta (Il1b) (Figure 1J). Increased expression of the mRNAs for alpha smooth muscle actin (α-Sma), transforming growth factor beta 1 (Tgfb1), and collagen type I alpha 1 (Col1a1) confirmed development of fibrosis (Figure 1K). Total liver triglycerides, free cholesterol, and cholesteryl esters were not different between HFD-L and NC mice (Figure S2A and S2B). Biochemical analysis of the liver content of the lipid peroxidation products 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) (Figures S2E and S2F).

Furthermore, none of these effects were seen when mice were fed a lard-based HFD.

L-pbe Deficiency Leads to Dicarboxylic Fatty Acid Accumulation

Lipidomic analysis of NC, HFD-CO, and HFD-L (Figure 1L) showed absence of very-long-chain FAs (≥C20) in either diet; long-chain FAs (C16 and C18) were the major species in HFD-L and NC, whereas HFD-CO predominantly consisted of the medium-chain fatty acids (MCFAs) decanoic (C10), lauric (C12), and myristic (C14) acids with lauric acid representing ~50% of total FAs.

As a first step to identify why the HFD-CO caused the observed liver phenotype, we assessed the expression of key enzymes involved in fatty acid oxidation, i.e., in mitochondrial and peroxisomal β-oxidation and in mitochondrial ω-oxidation. In NC-fed mice, mitochondrial β-oxidation (medium-chain acyl-CoA dehydrogenase [Mcad], long-chain acyl-CoA dehydrogenase [Lcad], and trifunctional protein alpha subunit [Hadhα]), peroxisomal β-oxidation (acyl-coenzyme A oxidase 1 [Acox1], Hsd17b4, thiolase B [Acaa1b]), and mitochondrial ω-oxidation (cytochrome P450 family 4 subfamily a polypeptide 10 and 14, Cyp4a10 and Cyp4a14) genes were expressed at similar levels in wild-type and L-pbe^{−/−} mice (Figure 2A). After 2 days of HFD-CO feeding, there was a small increase in the expression of the peroxisomal β oxidation gene Acaa1b and a strong induction of ω-oxidation genes in the L-pbe^{−/−} mouse livers (Figure 2B). After long-term HFD-CO feeding, all the mitochondrial, peroxisomal, and microsomal fatty acid oxidation (FAO) genes were significantly induced (Figure 2C).

The above data show that among the genes tested Cyp4a4s were the first and most induced genes. These encode microsomal cytochromes (CYP4A10 and CYP4A14) that are responsible for the first step in the production of dicarboxylic fatty acids (DCAs) by ω-oxidation (Hardwick, 2008). Lipidomic analysis revealed a striking accumulation of DCAs in the livers of HFD-CO-fed L-pbe^{−/−} mice with dodecanedioic acid (C12DCA) being the most induced species, both after 2 days or long-term HFD-CO feeding (Figures 2D–2F). Figure S4A shows the relative amount of DCA species extracted from livers of wild-type mice fed a HFD-CO. No accumulation of lauric acid was seen in the livers of L-pbe^{−/−} mice fed a NC or a HFD-CO (Figures S4B and S4C), and no difference in hepatic acyl-CoA or phospholipid contents could be observed in control or L-pbe^{−/−} mice (Figures S4D and S4E).

Thus, the immediate increase in Cyp4a4 expression and the accumulation of dicarboxylic fatty acids were early events in the liver pathology. As DCAs are normally degraded in the peroxisomes (Suzuki et al., 1989), these data suggested that L-PBE was required for their degradation. Previous studies have indeed proposed that DCAs are preferential substrates for L-PBE (Dirx et al., 2007; Ferdinandusse et al., 2004; Houten et al., 2012; Nguyen et al., 2008). These studies have been performed using C10, C14, C16, and C20DCAs as substrates. Here, we measured the rate of degradation of C12DCA in liver homogenates from wild-type and L-pbe^{−/−} mice. This analysis showed a significantly higher rate of degradation of C12DCA in control compared to L-pbe^{−/−} liver homogenates (Figure 2G), with faster degradation rates.

Collectively, these data indicated that death of HFD-CO-fed L-pbe^{−/−} mice was a consequence of liver inflammation, fibrosis, and failure but was not associated with liver steatosis.
rates of appearance of the C12DCA degradation products C10, C8, C6, C4, and C3DCAs as shown for adipic acid (C6DCA) (Figure 2H; data not shown) (Jin and Tserng, 1991).

To provide an independent indication of the role of medium-chain fatty acids in inducing liver failure, we fed wild-type and L-pbe−/− mice for 5 days with a NC complemented with 25% glyceryl trilaurate. This induced body weight loss, alteration of liver histology, increased plasma AST and ALT, increased hepatic expression of phase II and sphingolipid synthesis genes, of the inflammatory and fibrosis markers Tnfa, Mcp1, Il-1β, Tgfβ1, α-Sma, and Col1a1, as well as of Cyp4a10 and Cyp4a14 (Figures 3A–3H). These defects were also associated with increased hepatic accumulation of DCAs (Figure 3I). Importantly, DCAs larger than C12 were induced by glyceryl trilaurate feeding, showing that the induction of ω-oxidation mobilizes fat from sources other than the C12 triglyceride.

Together, the above observations indicate that the toxic effect of coconut oil on L-pbe−/− mouse livers is replicated by lauric acid feeding and is associated with the rapid accumulation of DCAs, which are normally degraded by L-PBE.

Lauric Acid and DCAs Activate Peroxisome Proliferator Activated Receptors and Fatty Acid Oxidation Pathways

The fatty acid oxidation genes measured in Figures 2A–2C are typical peroxisome proliferator activated receptor (PPAR) targets (Pyper et al., 2010). To determine whether HFD-CO indeed induced a greater activation of PPARs in L-pbe−/− than wild-type mice, we transfected the liver of mice using a hydrodynamic...
delivery system with a plasmid containing a peroxisome proliferator response elements (PPREs) driving the expression of a luciferase reporter gene. Mice were then fed a NC or HFD-CO, and luciferase activity was monitored on 3 consecutive days. Luciferase activity was much higher in HFD-CO-fed L-pbe−/− mice than wild-type mice, whereas there was no difference in luciferase activity between the two types of mice on NC (Figures 4A and 4B).

Because the PPRE reporter plasmid used in these experiments can be activated by PPARα and PPARγ, we assessed the hepatic expression of PPARs under the different feeding conditions. Figures 4C–4E show that upon HFD-CO feeding expression of PPARα in the livers of L-pbe−/− mice was unchanged; PPARβ/δ was induced only after long-term HFD-CO feeding, and PPARγ expression was rapidly induced in 2 days and much more after long-term feeding. This suggests that the in vivo transcriptional response (Figure 4A) may be controlled by different PPARs at different times after initiation of HFD-CO feeding.

To determine whether lauric acid and DCAs were activators of PPARs, we performed a transactivation assay using Gal4-ligand binding domain-luciferase reporter constructs. We found that lauric acid could induce PPARα and PPARγ transcriptional activity, and also mildly activate PPARβ/δ (Figure 4F). Furthermore, we showed that C12DCA and C16DCA could activate both PPARα and PPARγ (Figure 4G). Molecular modeling of the binding mode of C12DCA and C16DCA to the ligand binding sites of human PPARs showed a more optimal binding of C12DCA to PPARα and PPARγ. This involves one carboxylate group binding the polar head of the ligand binding domain (S317, H351, H477, and Y501 in PPARγ) with the other carboxylate possibly interacting with R308; this double interaction of carboxylates is more difficult to establish with the shorter C12DCA. Due to the strong sequence identity among important residues of the human and the mouse isoforms of the proteins (see Table S2), we can expect that the differences in the calculated binding modes found between isoforms of human PPARs will be conserved between isoforms of mouse PPARs.

Collectively, these data show that lauric acid and DCAs can activate PPARα and PPARγ and that PPARγ expression is rapidly induced in the liver of HFD-CO-fed L-pbe−/− mice. Thus, in the absence of L-PBE-dependent degradation of DCAs, these induce a feedforward mechanism to increase the PPAR-dependent expression of all fatty oxidation pathways.

DCAs Mediate the Toxic Effect of Coconut Oil
To determine if DCAs mediate the toxic effect of coconut oil, we fed L-pbe−/− mice with C12DCA-supplemented NC. After a 4 day feeding period, L-pbe−/− mice lost more than 6 g of

Figure 3. Glyceryl-Trilaurate-Supplemented Normal Chow Diet Induces Liver Damage in L-pbe−/− Mice
(A–G) WT and L-pbe−/− mice were fed a NC complemented with glyceryl trilaurate for 5 days and the following analysis were performed. (A) Change in body weight. (B) Hematoxylin and eosin staining of liver sections. (C) Plasma AST and ALT levels. (D) Hepatic expression of phase II genes. (E) Sphingolipid biosynthesis genes. (F) mRNAs for proinflammatory cytokines. (G) Fibrosis markers of WT and L-pbe−/− mice. (H) Cyp4a10 and Cyp4a14 expression levels. (I) Hepatic accumulation of DCAs. Values are means ± SEM (n = 6), *p < 0.05, **p < 0.01, and ***p < 0.001.
body weight, whereas wild-type mice lost ~1 g (Figure 5A). Histological analysis demonstrated severe liver damage in the \(\text{L-pbe}^{-/-} \) mice as well as massively increased plasma AST and ALT levels (Figures 5B–5D). This was also associated with marked induction of the liver mRNAs for phase II proteins, sphingolipid synthesis enzymes, and cytokines (Figures 5E–5G). In agreement with the transcriptional regulatory activity of DCAs, 1 day of C12DCA-supplemented diet feeding induced mitochondrial, peroxisomal, and microsomal FAO pathways (Figures 5H–5J), with a striking >30-fold induction of \(\text{L-pbe} \) in wild-type mouse livers supporting that L-PBE is a major enzyme required for adaptation to this DCA feeding. Also remarkable was the 60- to >100-fold induction of \(\text{Cyp4a} \) in \(\text{L-pbe}^{-/-} \) mice, further supporting our proposal that DCAs induce a positive feedback loop between CYP4A enzymatic products and expression of these enzymes.

To test whether inhibiting DCA production would prevent liver failure, we fed \(\text{L-pbe}^{-/-} \) mice for 3 weeks a HFD-CO with simultaneous treatment with 1-aminobenzotriazole (ABT), an inhibitor of CYP4As (Isayama et al., 2003; Kaikaus et al., 1993; Kroetz and Xu, 2005). This treatment suppressed the production of DCAs (Figure 6A), allowed survival of the mice (Figure 6B), and protected them against liver failure, as shown by their normal plasma AST and ALT levels (Figure 6C) and normal liver histology.
The treatment also prevented the induction of phase II, sphingolipid synthesis, and inflammatory cytokines genes (Figures S6B–S6D). As ABT may also inhibit other enzymes than CYP4As, we specifically silenced their activity by tail vein injection of small interfering RNA (siRNAs) directed toward \(\text{Cyp4a10} \) and \(\text{Cyp4a14} \) mRNAs. This treatment suppressed both \(\text{Cyp4a10} \) and \(\text{Cyp4a14} \) expression (Figure 6D) and the production of DCAs (Figure 6E) and markedly improved the survival of HFD-CO-fed \(\text{L-pbe}^{-/-} \) mice (Figure 6F). This treatment also prevented liver damage as revealed by normal liver histology, plasma AST, and ALT levels and absence of induction of phase II, sphingolipid synthesis, and inflammatory cytokines genes (Figures S6E–S6I).

Finally, as a further control that DCAs are the downstream product of CYP4A activity in HFD-CO-fed \(\text{L-pbe}^{-/-} \) mice leads to hepatic failure and death.

DISCUSSION

Here, we describe a liver regulatory mechanism that is required to prevent the dietary toxicity of MCFAs. This mechanism (Figure 6G) involves the induction by MCFAs of CYP4As leading to an increased production of DCAs. These activate, in a PPAR\(\alpha \)/PPAR\(\gamma \)-dependent manner, the expression of CYP4As as well as the expression of mitochondrial and peroxisomal fatty acid \(\beta \)-oxidation genes. We show that genetic inactivation of the peroxisomal enzyme L-PBE leads to intracellular DCA accumulation, inflammation, fibrosis, and liver failure. Thus, our data suggest that the balance between DCA production by CYP4As and their degradation by L-PBE is a mechanism that normally fine-tunes hepatic \(\beta \)- and \(\omega \)-oxidation activities in response to MCFAs absorption. An imbalance between these mechanisms may cause massive nutrient-induced inflammation.

Several beneficial effects of MCFAs as compared to long-chain fatty acids have been described when added as food complement, notably a reduction of different aspects of the metabolic syndrome (Papamandjaris et al., 1998; St-Onge et al., 2003, 2008), in part by increasing energy expenditure and reducing fat mass and by preventing development of insulin resistance (Rubin et al., 2000; Turner et al., 2009). The way by which MCFAs increase energy expenditure and FAO appears to be related to their ability to activate PPARs. Two recent reports demonstrated that MCFAs can activate PPAR\(\gamma \), PPAR\(\alpha \),
and PPARβ/δ and can reduce adipogenesis in a cellular model of adipocyte differentiation (Liberato et al., 2012; Malapaka et al., 2012). In agreement with these publications, we show that lauric acid can transactivate PPARα and PPARγ and, consequently, liver FAO pathways in the liver (Patsouris et al., 2006; Peters et al., 2003). We show that feeding of mice with glyceryl trilaurate induces ω-oxidation of other fat sources than the C12 triglyceride. This suggests that the pathway of ω-oxidation of MCFAs is used to stimulate reduction of fat mass in general and is not only a specific mechanism to deal with MCFAs.

The transcriptional response to lauric acid includes increased expression of Cyp4a, which preferentially use this fatty acid as a substrate to initiate its conversion to dodecanedioic acid (C12DCA) (Adas et al., 1999; Hardwick, 2008). In the absence of the L-PBE, a DCA degrading enzyme, there is accumulation of DCAs in the liver. These are good transcriptional activators of both PPARα and PPARγ, providing an explanation for the observation that DCAs can induce FAO (Fan et al., 1998; Lundgren et al., 1992). Also, as compared to lauric acid, DCAs are relatively better activators of PPARγ than PPARα, and C16DCA is more potent than C12DCA. This can be understood in the context of our results showing that MCFAs induce ω-oxidation from a variety of fat sources increasing DCAs of all chain lengths. It is remarkable that the induction of L-pbe and Cyp4as in vivo by C12DCA feeding of wild-type mice was about 40- and >100-fold, respectively. This was a more robust induction than seen in the in vitro PPRE-luciferase reporter assay, suggesting that some of the DCAs or other oxidation intermediates produced in vivo by the C12DCA-induced ω-oxidation pathway are better activators of PPARs. Less likely, it could be that the sensitivity of the luciferase reporter assay is less than the sensitivity of the endogenous transcription regulatory system. Also, because HFD-CO feeding increases expression of Pparb/d and Pparγ, the full activation by DCAs of FAO pathways involves the combined control of PPAR expression and transcriptional activity.

Thus, our data indicate that rapidly after coconut oil, or glyceryl trilaurate ingestion, MCFAs absorbed by the liver first activate PPARα. This is rapidly followed by induction of microsomal ω-oxidation and formation of DCAs. These then more strongly activate PPARγ, whose expression becomes markedly induced. This feedforward loop accelerates induction of

![Figure 6](image_url)

Figure 6. Preventing DCA Production by Suppressing CYP4A Activity Protects against Liver Failure

(A–C) WT or L-pbe−/− mice were fed a HFD-CO and treated with the CYP4 inhibitor ABT or with PBS. (A) ABT treatment suppressed DCA formation, (B) protected the mice from death, and (C) normalized plasma AST and ALT levels. PBS group: WT, n = 5; L-pbe−/−, n = 11. ABT group: WT, n = 5; L-pbe−/−, n = 13.

(D) Western blot analysis of CYP4A10 and mRNA level of Cyp4a14 in the livers of fasted mice treated with Cyp4a specific or control siRNAs.

(E and F) DCA levels (E) and survival curves (F) of HFD-CO-fed L-pbe−/− mice treated with Cyp4a specific or control siRNAs. L-pbe−/−, n = 9; L-pbe−/− +RNAi, n = 12. Values are means ± SEM. **p < 0.01.

(G) Schematic description of the mechanism by which coconut oil (MCFAs) induces CYP4A-dependent production of DCAs. DCAs then activate a feedforward mechanism to further activate the three fatty oxidation pathways. This feedforward loop is normally regulated by L-PBE-dependent DCA degradation. In the absence of L-PBE, accumulation of DCAs leads to liver failure through the induction of inflammation and fibrosis. See also Figure S6.
FAO pathways (Figure 6G). These observations suggest that formation of DCAs by \(\omega\)-oxidation upon MCFA feeding is an adaptive mechanism to rapidly induce all FA disposal mechanisms. Under normal conditions, only \(\sim 10\%\)–20% of the MCFAs absorbed by the liver are channeled through microsomal \(\omega\)-oxidation (Björkhem, 1978; Handler and Thurman, 1988), supporting that this may be a regulatory rather than a major degradation pathway. It is interesting to note that DCAs have been proposed as potential drugs for diabetes treatment (Mingrone et al., 2012). Our data suggest that this may be mediated by their capacity to induce PPAR transcriptional activity and activate all FAO pathways.

An important aspect of our study is the demonstration that accumulation of DCAs caused by the genetic inactivation of \(L\text{-pbe}\) leads to massive inflammation, fibrosis, and liver failure. The mechanisms by which DCAs, or some of their metabolites, induce this reaction, is still unknown. However, earlier studies showed that medium-chain DCAs can inhibit mitochondrial respiration and reduce ATP production by affecting electron transfer reactions (Passi et al., 1984; Tonsgard and Getz, 1985), thus favoring reactive oxygen species (ROS) production. Increased peroxisomal \(\beta\)-oxidation also contributes to the production of ROS. This oxidative stress may explain the accumulation of lipid peroxidation products, which are chemoattractants for inflammatory cells (Cuzzio et al., 1985). Increased ceramide production is also a sign of cellular stress and inflammation (Bikman and Summers, 2011), and ceramides can uncouple oxidative phosphorylation leading to increased leakage of electrons to generate ROS and induce apoptosis (Corda et al., 2001; Li et al., 2010). Thus, the inflammatory and fibrotic response to HFD-CO feeding may combine several, cross-amplifying mechanisms.

Whether the deregulation of this adaptive mechanism may cause liver diseases in humans is still to be discovered. However, a recent study reported association of SNPs in the \(L\text{-PBE}\) gene with elevated fasting serum insulin and plasma glucose levels (Banasik et al., 2011), parameters that are highly influenced by inflammation (Glass and Olefsky, 2012), and a genome-wide association study identified CYP4A as a risk locus for hepatic steatosis (Suhre et al., 2011). Further studies in humans may uncover a clearer link between MCFA-rich diets and liver inflammation in the context of individual genetic susceptibilities. It is, however, interesting to note that MCAD deficiency, a disease caused by homozygous inactivation of the mitochondrial medium-chain acyl-CoA dehydrogenase gene (\(MCAD\) or \(ACADM\)), can cause acute hypoketotic hypoglycemia, lethargy, seizures, and coma leading to sudden death, a condition that is associated with hepatomegaly, acute liver disease, and urine secretion of \(C6, C8,\) and \(C10\)DCAs (Feil et al., 2003; Schatz and Ensenauer, 2010). This condition is favored by fasting suggesting that, in absence of \(MCAD\), MCFAs are channeled to \(CYP4\)As to generate excessive DCAs causing conditions similar to that observed in HFD-CO-fed mice.

Thus, collectively, our data show that the physiological function of the peroxisomal enzyme \(L\text{-PBE}\) is to degrade medium-chain dicarboxylic acids whose role is to induce all FAO pathways in response to MCFA feeding. This represents an unsuspected mechanism required to adapt liver metabolism to the ingestion of a specific type of lipid. This also demonstrates that impaired medium-chain fatty acid metabolism may rapidly induce an inflammatory reaction that can have fatal consequences.

EXPERIMENTAL PROCEDURES

Mice and Diets

\(L\text{-pbe}^{-/-}\) mice from a mixed 129/Ola-C57Bl/6 background have been previously described (Qi et al., 1999). For our initial studies, \(L\text{-pbe}^{-/-}\) mice were crossed with C57Bl/6 mice to generate \(L\text{-pbe}^{+/+}\) mice, which were then intercrossed to obtain \(L\text{-pbe}^{+/+}(WT), L\text{-pbe}^{-/-},\) and \(L\text{-pbe}^{-/-}\) littersmates. Mice were maintained at 24°C on a 12-hr/12-hr-light/dark cycle (7:00–19:00), with free access to water and NC (3436 from Provimi Klíba AG) and were used when 6–8 weeks old. Only male mice were used for the experiments presented here. For HFD feeding, mice were fed with coconut-oil-based HFD (HFD-CO) or lard-based HFD (HFD-L) (D12331 and D12492 from Research Diets). The customized diets were prepared by grinding the normal chow (3436 from Provimi Klíba) and mixing with glycerol trilaurate (Yaco) to 25% (w/w) and dodecanedioic acid (C12DCA) (Sigma-Aldrich) to 10% (w/w).

\(L\text{-pbe}^{-/-}\) mice fed a HFD-CO were killed when they were severely sick (markedly reduced mobility and feeding behavior) or had lost 25% of their original body weight (long-term feeding). Wild-type mice were killed after 21–24 day feeding. In feeding experiments, all mice were killed in the fed state. Blood samples were collected by heart puncture in EDTA and aprotinin (Sigma-Aldrich). Liver samples were rapidly dissected, weighed, frozen in liquid nitrogen, and stored at –80°C. All animal studies were approved by the Veterinary Office of Canton de Vaud, Switzerland.

Histology and Immunohistochemistry

Livers were fixed with 4% paraformaldehyde and embedded in paraffin, and sectioned with elevation of fasting serum insulin and plasma glucose levels (Banasik et al., 2011), parameters that are highly influenced by inflammation (Glass and Olefsky, 2012), and a genome-wide association study identified CYP4A as a risk locus for hepatic steatosis (Suhre et al., 2011). Further studies in humans may uncover a clearer link between MCFA-rich diets and liver inflammation in the context of individual genetic susceptibilities. It is, however, interesting to note that MCAD deficiency, a disease caused by homozygous inactivation of the mitochondrial medium-chain acyl-CoA dehydrogenase gene (\(MCAD\) or \(ACADM\)), can cause acute hypoketotic hypoglycemia, lethargy, seizures, and coma leading to sudden death, a condition that is associated with hepatomegaly, acute liver disease, and urine secretion of \(C6, C8,\) and \(C10\)DCAs (Feil et al., 2003; Schatz and Ensenauer, 2010). This condition is favored by fasting suggesting that, in absence of \(MCAD\), MCFAs are channeled to \(CYP4\)As to generate excessive DCAs causing conditions similar to that observed in HFD-CO-fed mice.

Analysis of Dicarboxylic Acids

Extraction and analysis of dicarboxylic fatty acids was adapted from Kushnir et al. (2001). Briefly, 15 mg of ground liver tissue was resuspended in 1 ml H_2O. One hundred microliters of an internal standard (1 \(\mu\)mol/l methyl malonic acid [MMA]) and 3 ml of MTBE containing 30 ml/l phosphoric acid were added. Samples were vortexed for 5 min and centrifuged. The supernatant was transferred to a new glass tube and dried under a flow of nitrogen. One hundred sixty microliters of HCl (3 M) in 1-butanol was added. The mixture was incubated at 50°C for 5 min. Samples were dried under nitrogen and then resuspended with 300 \(\mu\)l methanol containing 50 ml/l ammonium formate. Analysis of dicarboxylic fatty acids was achieved by a liquid chromatography system equipped with an Uphisphere Strategy C18-2 high-performance liquid chromatography (HPLC) column (Interich) coupled to a Varian 320-MS triple quadrupole mass spectrometer (Agilent Technologies) or a TSQ Vantage triple quadrupole mass spectrometer (Thermo). Mass spectrometer settings of selected dicarboxylic fatty acids are shown in Table S3.

RNA Extraction and Real-Time PCR

Total RNA was prepared from livers using RNA Stat-60 according to the manufacturer’s instructions (Amsbiol). First-strand cDNA was synthesized from 2.5 \(\mu\)g of total RNA using random primers (Promega) and Superscript II reverse transcriptase (Invitrogen). Real-time PCR was performed using PowerSYBR Green Master Mix (Applied Biosystems). All reactions were normalized to
Other statistical methods were mentioned and indicated where they were used. Figures, and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2013.08.032.

Luciferase Assay in Cell Culture
Gal4-ligand binding domain of mouse PPARα, mouse PPARβ/δ, or human PPARγ plasmids were gifts from B. Staels (Université Lille Nord de France, Lille, France) and Johan Auwerx (École polytechnique fédérale de Lausanne). The 5x-UAS-TK-Luc was purchased from Promega. The NIH 3T3 mouse fibroblasts in 12-well plates were transiently transfected with 0.8 μg of DNA: Gal4-LBD, 5x-UAS-TK-Luc, and CMV Renilla. Lauric acid and C12:0 were dissolved in sodium hydroxide for the stock solution (100 and 200 mM, respectively), bound to fatty-acid-free BSA (1 mM fatty acid to 1% BSA), and then added to the medium for 24 hr. Luciferase assay was performed with Dual-luciferase reporter assay system (Promega). Firefly luciferase activity was normalized to CMV Renilla luciferase.

Hydrodynamic Injection
The hydrodynamic injection was performed as previously described with small modifications (Belt et al., 2007). Briefly, 10 mg/ml PPRE (l-phe promoter, position –2952 to –2918)-luciferase plasmid (Bardot et al., 1993) (generously provided by C. Carling) solution was prepared and intravenously injected in –5 s to the mice based on body weight (10% v/w). After injection and full recovery, mice were divided into NC- and HFD-CO-fed groups. Mice were then injected with luciferin and anesthetized with isoflurane, and luciferase activity was measured using an in vivo bioluminescence imaging system (Xenogen IVIS 3D, Caliper).

β-Oxidation Measurements
β-Oxidation measurements were described elsewhere (Hall et al., 2010) with small modifications. Mice were fasted for 24 hr before liver collection, C12:0 (0.5 mM) was added to the reactions, which were incubated at 37°C and then snap frozen in liquid nitrogen at different time points. Fatty acid oxidation or formation rates were analyzed after lipid profiling.

In Vivo siRNA Treatment
RNA siRNA duplexes (Ambion and Invitrogen) complementary to the Cyp4a10 and Cyp4a14 genes were complexed with Invitrofectamine 2.0 (Invitrogen) according to manufacturer recommendation before the injection. For each gene, two to four siRNAs with different sequences were tested, and that yielding maximal suppression was selected for the experiments. An equimolar mix of the two Cyp4a siRNAs or control siRNA was injected intravenously through the tail vein of 6-week-old mice at a dose of 7 mg/kg. After 7–10 days HFD-CO feeding, the same injection was performed again.

Statistics
Statistical analysis was performed with Student’s t test. Quantitative data are expressed as mean ± SEM. p values less than 0.05 were considered significant. Other statistical methods were mentioned and indicated where they were used. For additional details, see the Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Extended Experimental Procedures, six figures, and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2013.08.032.

