<table>
<thead>
<tr>
<th>Title</th>
<th>An enriched 6-node MITC plate element for yield line analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Xu, Jin; Lee, Chi King; Tan, Kang Hai</td>
</tr>
<tr>
<td>Citation</td>
<td>Xu, J., Lee, C. K., & Tan, K. H. (2013). An enriched 6-node MITC plate element for yield line analysis. Computers & Structures, 128, 64-76.</td>
</tr>
<tr>
<td>Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/18890</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2013 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Computers & Structures, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [DOI:http://dx.doi.org/10.1016/j.compstruc.2013.07.008].</td>
</tr>
</tbody>
</table>
A enriched 6-node XFEM MITC plate element for yield line analysis

Jin Xua, 1, C.K. Leea and K.H. Tana

School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore
1xu0003in@e.ntu.edu.sg

Abstract

A 6-node triangular Reissner-Mindlin plate element with eXtended Finite Element Method (XFEM) formulation for yield line analyses is presented. The XFEM formulation with regularized enrichment is employed to reproduce a displacement field with a locally high gradient in the vicinity of a yield line in plate structures. The MITC technique is employed to mitigate shear locking in both the smooth and the locally non-smooth displacement fields. Several numerical examples are presented to illustrate the effectiveness of the XFEM enrichment in yield line analysis as well as the necessity and the effectiveness of the MITC technique in shear locking alleviation in the XFEM formulation.

Key words: MITC, XFEM, yield line analysis, regularized enrichment

1 Introduction

Shear locking is a major concern in developing a robust Reissner-Mindlin plate element [1]. It is well known that compatible plate elements behave too stiff when the ratio of thickness to length of the plate/shell structure approaches zero. The Mixed Interpolation of Tensorial Components (MITC) technique is an effective way to circumvent shear locking in plate elements [2-4] and shell elements [5-9]. In the MITC technique, an assumed strain field is employed instead of the compatible strain field derived from the displacement approximation. The unknown variables of the assumed strain field are evaluated by tying the assumed strain field and the compatible strain field at some selected points [10, 11]. Up to now, much efforts [12-17] have been devoted to improve the performance of the MITC elements. The MITC
The technique has also been extended beyond FEM analysis: Nguyen et al [18] applied the MITC technique in the smoothed finite element method to alleviate shear locking for shell analysis. Carrera et al [19] adopted the MITC technique in Carrera Unified Formulation for the analysis of layered structures.

The application of the XFEM formulation in yield line analyses for plate structures has been presented in [20, 21], as well as for the plastic mechanism analyses in beam structures [22]. The locally non-smooth displacement field resulted from a yield line can be reproduced by the XFEM formulation with regularized enrichment [23-27]. The regularized enrichment contains a locally non-smooth part, which is able to describe the displacement field inside a high gradient zone (HGZ). In general, when conducting a yield line analysis by the XFEM formulation, the location and the size of the non-smooth part is usually regarded as a priori knowledge. Relatively accurate results can be obtained by a coarse mesh and no additional mesh refinement technique is necessary during analyses. Hence a large amount of computational effort is saved. Different from the XFEM formulation with a real discontinuous enrichment [28-35], the XFEM formulation with a regularized enrichment expands the Ritz space of the numerical solution. Furthermore, the regularized enrichment is suppressed and activated automatically during an XFEM analysis. Therefore, the regularized enrichment could be included in the formulation at the initial stage of a nonlinear analysis and no specially designed criterion is needed to activate the enrichment during an analysis [20].

In this paper, a 6-node triangular C0 plate element with the XFEM formulation aiming to model the non-smooth displacement approximation fields near a yield line is presented. The aim of the present XFEM formulation is to capture the elasto-plastic behavior of a plate by very few elements. The enrichments are constructed at the structure level and they exhibit a high gradient normal to the yield line but a zero gradient along the yield line. The rotation and the deflection approximation fields are enriched simultaneously by employing a regularized step function for rotation and a regularized level set function for deflection. The enrichments for the rotational displacement field are shifted so that the formulation is free from problems due to blending elements: the Partition of Unity (PU) condition can be satisfied over the whole physical domain naturally [32] and there is no unwanted strain term in blending elements [36]. The MITC6 scheme [9] is employed to alleviate the shear locking in the XFEM plate elements. It is noted that the MITC6 scheme is first proposed to be used with a 6-node triangular shell element, while a similar MITC7 scheme [4] is proposed for a
triangular plate element with quadratic displacement approximation field. However, the existence of an interior node with deflection DOF only makes the MITC7 plate element inconvenient to be adopted in the present XFEM formulation. Thus, the MITC6 scheme is selected instead of the MITC7 scheme, despite that the MITC7 scheme has a rigorous mathematic proof on its convergence [3] and performs better than the MITC6 scheme in pure bending cases [11].

In the next section, the MITC6 assumed transverse shear strain field and its alternative expressions which is specially developed to be used in conjunction with the XFEM plate element are presented. The enrichments for the rotation and the deflection displacements are then introduced in Section 3. They are then followed by the formulations of the XFEM plate elements. In Section 5, four examples are given to show the effectiveness of the XFEM enrichments proposed in yield line analysis and the MITC6 technique in shear locking control. The paper is then completed with conclusions and discussions.

2 The MITC technique and its alternative expressions

In the MITC technique, the assumed transverse shear strain field is constructed by the interpolation of compatible transverse shear strain at some selected tying points. Therefore, the relationship between the assumed shear strain components and the nodal displacement variables is only defined indirectly. In order to make the implementation of the MITC scheme more convenient in the XFEM formulation, a direct relationship between the assumed shear strain components and the nodal displacement variables is established as an alternative expression of the MITC6 scheme. It should be stressed that while such direct relationship does not present the tying points explicitly, the assumed transverse shear strain prescribed by the alternative expression is exactly the same as that by the original form.

2.1 The original form of the MITC6 scheme

In the original form of the MITC6 shell element, the assumed transverse shear strain field $\tilde{\varepsilon}_n$ and $\tilde{\varepsilon}_\alpha$ are expressed in terms of the element parent coordinate system r-s:

\[\tilde{\varepsilon}_n = a_1 + b_1 r + c_1 s + d_1 rs + e_1 r^2 + f_1 s^2 \]
\[\tilde{\varepsilon}_\alpha = a_2 + b_2 r + c_2 s + d_2 rs + e_2 r^2 + f_2 s^2 \]
where the coefficients a_1, a_2, b_1, \ldots, f_2 are calculated from the compatible transverse shear strain components at the tying points shown in Fig. 1:

$$a_1 = \bar{m}_n^1 - \bar{l}_n^1, \quad b_1 = 2\bar{l}_n^1, \quad e_1 = 0,$$

$$a_2 = \bar{m}_n^1 - \bar{l}_n^2, \quad c_2 = 2\bar{l}_n^2, \quad f_2 = 0,$$

$$c_1 = 6e_{ct} - 3e_{st} + 2\bar{m}_n^3 - 2\bar{l}_n^3 - 4a_i - b_1 + a_2,$$

$$b_2 = -3e_{ct} + 6e_{st} - 2\bar{m}_n^3 + 2\bar{l}_n^3 + a_i - 4a_2 - c_2,$$

$$e_2 = 3e_{ct} - 6e_{st} + 3\bar{m}_n^3 - \bar{l}_n^3 - 3\bar{l}_n^3 + \bar{l}_n^3 + b_1 + 3a_2 + c_2,$$

$$f_1 = -6e_{ct} + 3e_{st} - 3\bar{m}_n^3 - \bar{l}_n^3 + 3\bar{m}_n^3 + \bar{l}_n^3 + 3a_1 + b_1 + c_2,$$

$$d_1 = -e_2, \quad d_2 = -f_1$$

and

$$\bar{m}_n^j = \frac{1}{2} (e_{1,j} + e_{2,j}), \quad \bar{l}_n^j = \frac{\sqrt{3}}{2} (e_{2,j} - e_{1,j})$$

with $j = r, s$ and $i = 1, 2, 3$. In Fig. 1, $r_1 = s_1 = \frac{1}{2} - \frac{1}{2\sqrt{3}}, \quad r_2 = s_2 = \frac{1}{2} + \frac{1}{2\sqrt{3}}$ and $r_3 = s_3 = \frac{1}{3}$.

2.2 The alternative form of the MITC6 scheme

In the present paper, an alternative expression of the assumed transverse shear strain field for the MITC6 scheme is derived. By substituting the natural coordinates of the tying points into Eqns. (1) and (2), the alternative expression can be written as:

$$\tilde{e}_n = -h_{ri}\beta_i - h_{si}\beta_s + h_{ni}w_i$$

$$\tilde{e}_s = -h_{ri}\beta_i - h_{si}\beta_s + h_{si}w_i$$

where w_i is the nodal deflection, β_{ri} and β_{si} are the nodal rotation angles of the lines normal to the undeformed neutral surface in the $r-t$ and $s-t$ planes, respectively (Fig. 2). h_{tri} and h_{tri} are the interpolation functions for the assumed shear strain \tilde{e}_n corresponding to β_{ri} and β_{si}, respectively. Finally, h_{stn} and h_{stn} are the interpolation functions for the assumed shear strain \tilde{e}_n corresponding to β_{ri} and β_{si}, respectively.
From Eqns. (3) and (4) it can be seen that, different from the compatible strain field, the assumed shear strain \(\varepsilon_n \) not only depends on the rotation \(\beta_r \) and the deflection \(w_i \), but also depends on the rotation \(\beta_s \). Similar observation can be found for the assumed shear strain \(\varepsilon_a \).

This contribution comes from the two tying points on the hypotenuse edge and the tying point at the center of the triangular element (Fig. 1a). It can be seen that the alternative expression can be written in terms of an interpolation of the nodal displacement variables.

The interpolation functions \(h_{ri}, h_{si}, h_{si} \) and \(h_{si} \) are obtained by substituting the natural coordinates into the coefficients \(a_1, a_2, b_1, \ldots, f_2 \) in Eqns. (1) and (2). After simplification, the interpolation functions are written as:

\[
\begin{align*}
 h_{r1} &= -r + \frac{7}{3}s + \frac{4}{3}rs + \frac{5}{3}s^2, \\
 h_{r2} &= -r + \frac{7}{3}s + \frac{2}{3}rs + \frac{2}{3}s^2, \\
 h_{r3} &= -s + \frac{1}{3}rs + \frac{5}{3}s^2, \\
 h_{r4} &= -\frac{4}{3}rs - \frac{2}{3}s^2, \\
 h_{r5} &= \frac{4}{3}s + \frac{2}{3}rs - \frac{2}{3}s^2, \\
 h_{r6} &= \frac{8}{3}s - \frac{4}{3}rs - \frac{8}{3}s^2,
\end{align*}
\]

\[
\begin{align*}
 h_{s1} &= s - \frac{5}{3}rs - \frac{4}{3}s^2, \\
 h_{s2} &= \frac{2}{3}s - \frac{5}{3}rs - \frac{1}{3}s^2, \\
 h_{s3} &= \frac{1}{3}s - \frac{2}{3}rs - \frac{1}{3}s^2, \\
 h_{s4} &= -\frac{4}{3}s + \frac{8}{3}rs + \frac{4}{3}s^2, \\
 h_{s5} &= \frac{2}{3}rs - \frac{2}{3}s^2, \\
 h_{s6} &= -\frac{2}{3}s + \frac{2}{3}rs + \frac{4}{3}s^2,
\end{align*}
\]

\[
\begin{align*}
 h_{s1} &= r - \frac{5}{3}rs - \frac{4}{3}r^2, \\
 h_{s2} &= \frac{1}{3}r - \frac{2}{3}rs - \frac{1}{3}r^2, \\
 h_{s3} &= \frac{2}{3}r - \frac{5}{3}rs - \frac{1}{3}r^2, \\
 h_{s4} &= -\frac{2}{3}r - \frac{5}{3}rs - \frac{1}{3}r^2, \\
 h_{s5} &= \frac{2}{3}rs - \frac{2}{3}r^2, \\
 h_{s6} &= -\frac{4}{3}r + \frac{8}{3}rs + \frac{4}{3}r^2
\end{align*}
\]

\[
\begin{align*}
 h_{s1} &= \frac{2}{3}r + \frac{7}{3}s - \frac{4}{3}rs + \frac{5}{3}r^2, \\
 h_{s2} &= -r + \frac{1}{3}rs + \frac{5}{3}r^2, \\
 h_{s3} &= -\frac{1}{3}r + \frac{2}{3}rs + \frac{1}{3}rs + \frac{2}{3}r^2, \\
 h_{s4} &= \frac{8}{3}r - \frac{4}{3}rs - \frac{8}{3}s^2, \\
 h_{s5} &= \frac{4}{3}r + \frac{2}{3}rs - \frac{2}{3}r^2, \\
 h_{s6} &= \frac{2}{3} - \frac{4}{3}rs - \frac{2}{3}r^2
\end{align*}
\]

\[
\begin{align*}
 h_{ri} &= \frac{\partial N_i}{\partial r}, \\
 h_{wi} &= \frac{\partial N_i}{\partial s}
\end{align*}
\]

where \(N_i \) are the standard shape functions for a 6-node triangular element.

3 The XFEM enrichment functions
For a plate structure, non-smoothness often appears locally in displacement fields in the vicinity of a yield line. Different from a real discontinuity such as a crack in a plate, this non-smoothness is formed within a finite range which is not zero in width, but with a finite width l_{ns}. Such non-smoothness is associated with the term ‘high gradient’ [37], and the region with the locally non-smooth displacement is often referred as the high gradient zone.

In the present XFEM formulation, both of the rotation and the deflection displacement fields are enriched. The enrichments for the rotation and the deflection displacements field are at least C^1 continuous over the whole physical domain. Furthermore, the enrichment for the rotation is a function in which its value changes sign sharply along the direction of the yield line, while the enrichment for the deflection field is a function in which its gradient changes sign within a short range. Besides, the variation of rotation displacement and the gradient of deflection displacement along the yield line direction are smooth. Hence, in the present formulation, the ridge functions are used in both the rotation and deflection fields.

In the present XFEM plate element, a high gradient zone is defined at the structure level by a level set function, $\phi(x, y) = 0$ and width l_{ns}. An example of a HGZ with $\phi = 3x - 2y + 8 = 0$ and $l_{ns} = 1.5$ in a square domain $(x, y) \in [0, 10] \times [0, 10]$ is shown in Fig. 3.

The enrichment function S for the rotation approximation field is expressed by

$$ S_i(\phi) = R(\phi) - H(\phi_i) $$

where $R(\phi)$ is the regularized enrichment function for the rotation displacement approximation field before shifting, which can be expressed as [21]

$$ R = \begin{cases}
-1 & \phi < -0.5l_{ns} \\
3l_{ns} \phi - 4l_{ns}^3 \phi^3 & -0.5l_{ns} \leq \phi \leq 0.5l_{ns} \\
1 & \phi \geq 0.5l_{ns}
\end{cases} $$

In Eqn. (10), $H(\phi_i) (i = 1, 2, \ldots, n_{node})$ is the nodal value of the Heaviside function at node i.

$$ H(\phi) = \begin{cases}
1 & \phi > 0 \\
0 & \phi = 0 \\
-1 & \phi < 0
\end{cases} $$
A plot of $R(\phi)$ and its first derivative with respect to the global coordinates corresponding to the particular case of $\phi = 3x - 2y + 8 = 0$ and $l_{ns} = 1.5$ is shown in Fig. 4. Since the enrichment is shifted, the enrichment function S_i is non-zero within the domain of enriched elements only. Therefore, the problems due to blending elements, namely the violation of the PU condition and the unwanted strain terms appearing in blend elements [38] are eliminated in the rotation displacement approximation field [36].

The enrichment function F for the deflection displacement approximation field used in the present formulation is of the form

$$F(\phi) = \begin{cases} 1.0 - \frac{8}{l_{ns}^2} \phi^2 + \frac{16}{l_{ns}^4} \phi^4 & |\phi| < 0.5l_{ns} \\ 0 & \text{otherwise} \end{cases}$$

(13)

A plot of $F(\phi)$ and its first derivative with respect to the global coordinates corresponding to the particular case of $\phi = 3x - 2y + 8 = 0$ and $l_{ns} = 1.5$ is shown in Fig. 5. It can be seen that the $F(\phi)$ is already suppressed to zero outside the high gradient zone. Therefore, it is unnecessary to apply shift technique for the enrichment function $F(\phi)$.

Different from the enrichment functions presented in [20], the enrichment functions in this study are constructed based on the global coordinates and independent of the standard finite element shape functions. This approach results in the advantage that the present enrichment functions are invariant under different mesh schemes. As a result, the enrichment functions can be used in a distorted mesh scheme. A disadvantage of the present enrichment function is that the result from the present XFEM formulation depends on the size of enriched elements, which is also reported in [39]. The source of the dependence is shown in Section 4.2.

As the high gradient zone forms gradually during the yielding process, it is hard to identify when the HGZ comes into existence in an elasto-plastic analysis. In the present formulation, the enrichment is added into the formulation at the beginning of the analysis. Since the addition of regularized enrichment is equivalent to enlarge the Ritz space of the numerical solution, the enrichment will be activated according to the necessity of the analysis automatically [20, 21].

4 Formulations for the XFEM plate elements
4.1 The degrees of freedom and displacement approximation field

It is assumed that the plate element is initially flat and placed in the x-y plane. For an enriched element, there are six degrees of freedom (DOF) per node, which is denoted as $\mathbf{u}_{\text{enr}} = (w_i, \theta_{xi}, \theta_{yi}, a_{xi}, a_{yi}, b_i)^T, (i = 1, 2, \ldots, 6)$. As shown in Fig. 6, w_i is the out-of-plane deflection at node i and θ_{xi} and θ_{yi} are the rotational angle with respect to x- and y-axis, respectively. The variables a_{xi} and a_{yi} are the enriched (non-smooth) rotation DOF with respective to the x- and y-axis whereas b_i is the enriched (non-smooth) deflection DOF.

The deflection field w_h and rotation field θ_{sh} and θ_{yh} are approximated by the sum of the smooth part and the non-smooth part:

\[
\begin{bmatrix}
 w_h \\
 \theta_{sh} \\
 \theta_{yh}
\end{bmatrix} = \sum_{i=1}^{6} N_i \begin{bmatrix}
 w_i \\
 \theta_{xi} \\
 \theta_{yi}
\end{bmatrix} + \sum_{i=1}^{6} N_i \begin{bmatrix}
 Fb_i \\
 S_{a_{xi}} \\
 S_{a_{yi}}
\end{bmatrix}
\]

(14)

where F (Eqn. (10)) and S_i (Eqn. (13)) are the enrichments for the non-smooth deflection and rotation displacement, respectively. In a small deformation analysis, the rotation DOF can be regarded as a vector as the translational DOF [40] so that the rotation DOF θ_{xi}, θ_{yi} and the additional DOF, a_{xi} and a_{yi}, can be added together.

4.2 The kinematic equation

A layered model, as shown in Fig. 7, is adopted in the present XFEM plate element so that the elasto-plastic behavior of a plate structure can be traced. The middle surface of an element is selected as the reference surface. The bending strain of the j^{th} layer ε_{bj} can be expressed as

\[
\varepsilon_{bj} = -z_j \chi
\]

(15)

where z_j is the distance between the reference surface and the middle surface of the j^{th} layer. χ is the curvature:
\[\chi = \left(\begin{array}{c} \sum_{i=1}^{6} \frac{\partial N_i}{\partial x} \beta_{xi} \\ \sum_{i=1}^{6} \frac{\partial N_i}{\partial y} \beta_{yi} \\ \sum_{i=1}^{6} \frac{\partial N_i}{\partial x} \alpha_{xi} + \sum_{i=1}^{6} \frac{\partial N_i}{\partial y} \beta_{yi} \\ \sum_{i=1}^{6} \frac{\partial N_i}{\partial x} \alpha_{yi} \end{array} \right) + \left(\begin{array}{c} \sum_{i=1}^{6} \frac{\partial (N_i S_i)}{\partial x} \alpha_{xi} \\ \sum_{i=1}^{6} \frac{\partial (N_i S_i)}{\partial y} \alpha_{yi} \\ \sum_{i=1}^{6} \frac{\partial (N_i S_i)}{\partial x} \alpha_{yi} + \sum_{i=1}^{6} \frac{\partial (N_i S_i)}{\partial y} \alpha_{xi} \end{array} \right) \]

(16)

where \(\alpha_x \) and \(\alpha_y \) are the non-smooth rotation angles of the lines normal to the undeformed neutral surface in the x-z and y-z planes. \(\beta_x \) and \(\beta_y \) are the smooth rotation angles of the lines normal to the undeformed neutral surface in the x-z and y-z planes.

The assumed transverse shear strain can be expressed as

\[\tilde{\varepsilon} = \left(\begin{array}{c} \tilde{\varepsilon}_{rt} \\ \tilde{\varepsilon}_{rs} \end{array} \right) = \left(\begin{array}{c} -h_{rtri}\beta_{ri} - h_{rsri}\alpha_{ri} - h_{rtsi}\beta_{si} - h_{rsdi}\alpha_{si} + h_{rtwi}w_i + h_{rbi}b_i \\ -h_{rsrt}\beta_{ti} - h_{rsdi}\alpha_{ri} - h_{rsri}\beta_{si} - h_{rsdi}\alpha_{si} + h_{rswi}w_i + h_{sbib}b_i \end{array} \right) \]

(17)

where the interpolation functions \(h_{rtri}, h_{rtri}, h_{rtwi}, h_{rsdi}, h_{sdi} \) and \(h_{swi} \) are expressed in Eqns. (5) – (9), respectively. Note that the assumed shear strains are also employed for the enriched part. \(h_{ebi} \) and \(h_{ebr} \) are the interpolation functions corresponding to \(b_i \) and they can be expressed explicitly as

\[h_{rbi} = \frac{\partial N_i}{\partial r} F + N_i \frac{\partial F}{\partial r} \]

(18)

\[h_{sbi} = \frac{\partial N_i}{\partial s} F + N_i \frac{\partial F}{\partial s} \]

(19)

In Eqn. (17), \(\beta_r \) and \(\beta_s \), as shown in Fig. 6, are the rotation angles of the lines normal to the undeformed neutral surface in the \(r-t \) and \(s-t \) planes, respectively, which can be written in matrix form as [41]

\[\begin{pmatrix} \beta_r \\ \beta_s \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \theta_r \\ \theta_s \end{pmatrix} \]

(20)

\(\alpha_r \) and \(\alpha_s \), as shown in Fig. 6 again, are the rotation angles of the lines normal to the undeformed reference surface in the \(r-t \) and \(s-t \) plane due to the non-smooth rotation:

\[\begin{pmatrix} \alpha_r \\ \alpha_s \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha_r \\ \alpha_s \end{pmatrix} \]

(21)
In Eqns. (16), (18) and (19), the first derivative of the enrichments, S_i and F, with respect to the natural coordinates r and s is of the form

$$\frac{\partial S_i}{\partial r^T} = \frac{\partial x}{\partial r^T} \frac{\partial \phi}{\partial r} \frac{\partial R}{\partial r} \left| \frac{\partial \phi}{\partial x} \right|$$

(22)

$$\frac{\partial F}{\partial r^T} = \frac{\partial x}{\partial r^T} \frac{\partial \phi}{\partial r} \frac{\partial F}{\partial r} \left| \frac{\partial \phi}{\partial x} \right|$$

(23)

where $\frac{\partial \phi}{\partial x^T}$ is the direction vector of ϕ, $x=(x, y)^T$ and $\frac{\partial}{\partial r^T}=(\partial/\partial r, \partial/\partial s)^T$. As the value of $\frac{\partial S_i}{\partial r^T}$ and $\frac{\partial F}{\partial r^T}$ depends on $\frac{\partial x}{\partial r^T}$, the entries in the stiffness matrix corresponding to the additional DOF are mesh size sensitive.

In order to show the necessity of the application of the MITC technique in shear strain corresponding to the smooth and the non-smooth displacement field, the following two schemes are also used in this paper, which are expressed as

$$\gamma_{S_{cfa}} = \begin{pmatrix} -N_i \beta_i - h_{a_{ia}} S \alpha_i - h_{a_{ia}} S \alpha_i + h_{a_{ia}} w_i + h_{b_{ia}} b_i \\ -N_i \beta_i - h_{a_{ia}} S \alpha_i - h_{a_{ia}} S \alpha_i + h_{a_{ia}} w_i + h_{b_{ia}} b_i \end{pmatrix}$$

(24)

and

$$\gamma_{S_{aEc}} = \begin{pmatrix} -h_{a_{ia}} \beta_i + N_i S \alpha_i - h_{a_{ia}} \beta_i + h_{a_{ia}} w_i + h_{b_{ia}} b_i \\ -h_{a_{ia}} \beta_i + N_i S \alpha_i - h_{a_{ia}} \beta_i + h_{a_{ia}} w_i + h_{b_{ia}} b_i \end{pmatrix}$$

(25)

On the left hand side of Eqns. (24) and (25), the subscript ‘S’ refers to the shear strain corresponding to the standard displacement field, ‘E’ refers to the shear strain corresponding to the enriched field, ‘c’ refers to ‘compatible’ and ‘a’ refers to ‘assumed’. Therefore, Eqn. (24) expresses a shear strain field with the MITC technique applied on the standard enriched? displacement only, while (25) provides a shear strain field with the MITC technique applied on the enriched-standared? displacement only. {XJ: It seems that you mixed up Eqns. 24 and 25? Check!}

The von-Mises yield criterion for plane stress is employed in the present element. A backward Euler return algorithm [42] is adopted to ‘pull’ a stress state back onto the yield surface. As the yield criterion is applied at the target stress state, a nonlinear equation is established in which plastic multiplier is the only unknown variable. In order to solve the nonlinear equation, Newton iteration is conducted.
4.3 The partition of enriched element

As shown in Fig. 8, a high gradient zone could cut through an enriched element in several different possibilities in the present formulation. In Fig. 8, ‘TR’, ‘QU’ and ‘PE’ refer to a triangular, a quadrilateral and a pentagon area, while ‘H’ refers to a high gradient zone (the shaded area) and ‘nH’ refers to a non-high gradient zone (the blank area). When a pentagon area appears in the partition (Fig. 8e), it is further divided into two quadrilateral areas.

The 6×6 Gaussian integration scheme is employed in each area. As the order of strain term is up to 5, therefore the 6×6 Gaussian integration scheme is sufficient to integrate terms appear in stiffness matrix accurately. On the other hand, there are 36 (6×6) DOFs in an enriched element, and the 6×6 Gaussian integration scheme is able to provide 180 ($6 \times 6 \times 5$) independent relationships for the stiffness matrix of an enriched element. Hence, the singularity of the stiffness matrix can be prevented even if the entire element is occupied by a high gradient zone (Fig. 8d).

5 Numerical examples

In this section, four examples are presented to illustrate the robustness of the application of the MITC technique in the proposed XFEM formulation as well as the effectiveness of the XFEM formulation in capturing the behavior of plate structures in yield line analyses. In order to show the necessity of the employment of the MITC technique in the XFEM formulation, analysis with the compatible XFEM formulation is also carried out for each example. In each plate bending example, several cases with different thickness of the plates are tested. The yield strength and the external loading are adjusted accordingly to the plate thickness so that the ultimate loading levels are the same for each case. Since the main objective to formulate the XFEM plate element is to capture the behavior of the plate structure with as few elements as possible, in all the examples, only very coarse meshes with a few XFEM elements are used and no refinement study is carried out. Furthermore, since the enrichment is constructed at the structure level, the mesh size could influence the partial derivative of the enrichment function (Eqns. (22) and (23)). Therefore, the numerical result is influenced by mesh size of a numerical simulation. It is noted that the purpose of the present XFEM MITC plate element is to reproduce the locally non-smooth displacement by very few
elements. On the other hand, the locally non-smooth displacement can be reproduced by the FEM MITC formulation with a fine mesh without introducing enrichment. Hence, the usual concept of convergence in the standard FEM analysis is not applicable for the present XFEM MITC plate element.

In the meantime, in order to show the efficiency of the present XFEM formulation, comparisons on the computational costs for the three different types of analyses are listed in each example. The three types of analyses are: (i) the XFEM analyses with a coarse mesh, (ii) the standard FEM analyses with MITC6 triangular plate elements in a coarse mesh and (iii) the standard FEM analyses with a fine mesh. The computational cost includes the CPU time (t_{CPU}), the total number of DOF (n_{DOF}), the number of integration points (n_{IP}) and the times of stiffness matrix assemblage (n_s). All the analyses are conducted on a desktop with an Intel(R) Core(TM)2 Quad CPU Q9650 @3.00GHz. The generalized displacement control method [43] is employed as the solution technique in the numerical analyses and n_s is calculated based on the summation of the total incremental steps and the total iteration steps.

5.1 A flat plate with two fully fixed ends

A flat rectangular plate is tested in this example, as shown in Fig. 9. The length of the plate is $L=5.0$ and the width is $b=1.0$. The plate is fully fixed on the two short edges and free on the two long edges. The Young’s modulus is $E=1\times10^6$, while the Poisson’s ratio is $\nu=0.0$. A coarse mesh which consists of 5 undistorted elements is used and the location of the three possible HGZs are shown in Fig. 10. In Fig. 10, the enriched nodes are indicated by the red dots and the green squares are the standard nodes. Five layers are used for each element in the thickness direction. In order to show the effectiveness of the MITC technique in the XFEM formulation, five cases with different thickness are tested. The yield strength of the material and the reference loading vary according to the thickness, as listed in Table 1, so that the ultimate loading factor λ_u are the same for all the five cases ($\lambda_u = 0.625$). The deflection of point A in Fig. 9 is investigated.

Firstly, an analysis on the XFEM formulation without the MITC technique in enriched elements is carried out in order to show the effects of shear locking in the XFEM plate elements. The analysis is based on a uniform coarse mesh, as shown in Fig. 10. In the analysis, the MITC technique is only applied to the standard elements, elements 3, 4, 7 and 8,
while the remaining elements, which are enriched elements, are compatible elements. The results from the XFEM analyses with thickness T1, T3 and T5 are shown in Fig. 11, together with the result from the MITC FEM analysis. It can be seen from Fig. 11 that the XFEM model is stiffer than the FEM model and the predicted ultimate loading from the XFEM formulation is even higher than that from the FEM formulation, which implies that shear locking appears in the enriched elements. Therefore, it is necessary to control shear locking in the XFEM plate elements. In the following analyses, the MITC technique is applied in both enriched and standard elements.

Secondly, an analysis with the MITC XFEM plate elements is conducted. The results obtained from a coarse (1 × 5 × 2 elements, the same as that for XFEM analysis) and a fine mesh (10 × 50 × 2 elements as shown in Fig. 12) are shown in Fig. 13, together with the result from the MITC XFEM elements. They are compared with the result from yield line pattern analysis [44] which gives an upper bound of the solution. It can be found in Fig. 13 that the XFEM formulation is able to capture the behavior of the flat plate in elasto-plastic analysis. The predicted ultimate loading factor λ_u obtained from XFEM formulation is close to that from the standard FEM with MITC6 triangular plate elements by using a fine mesh, which could be regarded as the limit of the Reissner-Mindlin plate theory. It can be seen from Fig. 13 that with the thickness decreases, the predicted ultimate loading factor does not shift a lot. This shows that the MITC6 scheme works well in shear locking mitigation in the present XFEM formulation in this example.

In addition, the effectiveness of the XFEM formulation in a distorted mesh is also shown in this example. The distorted mesh is shown in Fig. 14, from which it can be found that all the nodes are enriched. The result from the XFEM analysis with distorted mesh is shown in Fig. 15, comparing with the results from the uniform mesh XFEM analysis, the distorted and the uniform mesh FEM analyses.

The comparison on the total number of DOF and integration points is listed in Table 2. The initial load increment is $\lambda_0=0.3$ for all the three analyses. It could be seen that in the XFEM analysis with the uniform and the distorted mesh, much less DOF and integration points are used compared with the standard FEM analysis with the fine mesh.

5.2 An L-shape plate with two fully fixed ends
In this example, an L-shape plate with two fully fixed ends is tested (Fig. 16). Four cases with different thickness are tested to show the effectiveness of the MITC method in the shear locking control. The mesh scheme and the locations of three possible HGZs are shown in Fig. 17, in which the red dots represent the enriched nodes, the green square are the standard nodes and the blue triangles are the nodes enriched by two sets of additional DOF. The geometrical property is shown in Fig. 16. The Young’s modulus is \(E = 1.0 \times 10^6 \), while the Poisson’s ratio is \(\nu = 0.3 \). Again, the yield strength and the reference load are adjusted according to thickness (Table 3) so that the ultimate loadings for the four cases are the same \((\lambda_u = 3.0) \). Five layers are used for each element in the thickness direction. In this analysis, mesh pattern 1 is employed. The width of the HGZs in this example is chosen as \(l_{ns1} = l_{ns2} = 0.2 \) and \(l_{ns3} = 0.6 \). The deflection of the corner point (point A in Fig. 16) is investigated.

Firstly, the analysis by the XFEM formulation without the MITC technique is conducted. The result is shown in Fig. 18 with the results from the XFEM MITC formulation and the standard FEM analysis by a coarse mesh. It can be seen from Fig. 18 that the XFEM formulation without the MITC technique locks seriously and the corresponding ultimate loading level is even higher than that from FEM analysis.

The results from the present XFEM MITC formulation are shown in Fig. 19 together with the result from the standard FEM by a coarse mesh (as shown in Fig. 17a) and by a fine mesh (1000 elements as shown in Fig. 17c). Besides, the result from a yield line pattern analysis is also shown in Fig. 19. It can be found from Fig. 19 that the MITC technique again performs well in shear locking control in the present XFEM in this example.

In order to test the mesh-invariant of the present XFEM frame, mesh pattern 2 (Fig. 17b) is utilized in which the hypotenuses of the elements at the corner are perpendicular to the non-smoothness zone 3. The results from the standard FEM and the present XFEM formulation in pattern 2 with T1 case, together with the results from mesh pattern 1, are shown in Fig. 20. It can be seen that the results from the XFEM formulation in both mesh patterns are very close to each other, which implies that the present XFEM frame is mesh invariant.

The computational time of the four analyses, including the standard FEM analyses with the both coarse and fine meshes and the XFEM analyses with mesh pattern 1 and 2 are listed in Table 4. The initial loading factor \(\lambda_0 \) is 1.0 for all the four analyses. It can be seen from Table 4 that the computational time used in the XFEM analysis is much less than that of the fine meshed FEM analysis.
5.3 An L-shape cantilever plate

In this example, an L-shape cantilever plate is tested. The L-shape plate is fully fixed at one short edge and applied by a line load along the other short edge, as shown in Fig. 21. In order to verify the effectiveness of the MITC technique in controlling shear locking in the present XFEM formulation, a total of four cases with different thickness are tested. The geometrical property is shown in Fig. 21. The Young’s modulus is $E=1.0 \times 10^6$, while the Poisson’s ratio is $\nu=0.3$. As listed in Table 5, the yield strength of the material and the reference loading are normalized according to the thickness so that the ultimate loading factors from the four cases are the same ($\lambda_u=0.9375$). The mesh scheme, the locations and the width of the HGZ are shown in Fig. 22. The deflection of point A in Fig. 21 is investigated. The initial loading factor λ_0 is set as 0.3 for all the three types of analyses. The results from the present XFEM formulation are shown in Fig. 23 together with the results from the standard FEM by a coarse mesh (as shown in Fig. 22) and by a fine mesh (with 1000 MITC6 triangular plate elements as shown in Fig. 17c). The result obtained from the yield line pattern analysis [44] are also shown in Fig. 23 as reference.

It can be seen that the present XFEM formulation is able to capture the behavior of the L-shape plate in yield line analysis as good as the standard FEM analysis when the fine mesh is used. With the thickness decreases, the ultimate loading factor λ_u prediction remains virtually the same and the MITC technique again can mitigate shear locking in this example.

It can be seen that from Table 6, similar to the previous two examples, the total number of DOF and integration points used in this example are much less than those used in the standard FEM analysis with the fine mesh, while the total times of the stiffness matrix assemblage (n_s) for the three analyses are quite close to each other. In addition, the CPU time needed for the XFEM analysis is less than that for the FEM analysis with the fine mesh.

5.4 A square plate fixed at one edge

A square plate, with one edge fully fixed and a line load applied on the opposite edge, is tested in this example (in Fig. 24). The geometrical property is shown in Fig. 24. The Young’s modulus is $E = 1.0 \times 10^{10}$. The Poisson’s ratio is $\nu=0.2$. The yield strength of the
material and the reference loading vary according to the thickness (Table 7) so that the ultimate loading factors from the four cases are the same ($\lambda_u=0.25$). For the coarse mesh, only 2 elements are used. The deflection of point A is investigated. The initial loading factor is $\lambda_0=0.1$ for all three types of analyses.

Firstly, the effectiveness of the MITC technique in circumventing shear locking in XFEM plate elements is demonstrated. With width of the HGZ is $l_{ns}=4.0$, the results from the present XFEM formulation are shown in Fig. 25. The results from the standard FEM by a coarse mesh (2 elements as the XFEM analysis) and by a fine mesh ($20 \times 20 \times 2$ MITC6 triangular plate elements) and from the yield line pattern analysis [44] are also shown in Fig. 25 for comparison. From Fig. 25, it can be easily seen that the XFEM formulation improves the accuracy of the ultimate loading prediction a lot when comparing with the standard FEM analysis with the same mesh. Again, the MITC technique performs well in this example. It can be seen from Fig. 26 that the XFEM formulation locks if the MITC technique is not applied on the enriched displacement field.

Secondly, an analysis is carried out to study the influence from the width of non-smoothness zone l_{ns} on the numerical results. The value l_{ns} is taken as 1.0, 2.0, 4.0, 6.0 and 8.0. The results are shown in Fig. 27. It can be seen from Fig. 27 that the predicted ultimate loading level λ_u from $l_{ns}=1.0$, 2.0 and 4.0 are quite close to each other, while the ultimate loading level is higher with a wider width of the non-smoothness zone when l_{ns} is greater than 4.0. This phenomenon can be explained as the following: when the width l_{ns} is large, the gradient of the non-smooth part in the enrichment function is reduced and the XFEM formulation fails to capture the locally non-smooth displacement.

The comparison on the computational effort of the three types of analyses is listed in Table 8. Obviously, the DOF and integration points used in the XFEM analysis are much less than those employed in the standard FEM analysis with the fine mesh. As a result, the computational time of the XFEM analysis is less than that of the fine meshed FEM analysis. However, the numerical results from the two analyses are quite close to each other.

In this example, the important of using the MITC scheme in the XFEM formulation is studied. Four cases are conducted: the XFEM MITC formulation (i.e. the XFEM with SaEa formulation, Eqn (17)), the XFEM with ScEa formulation (Eqn (24)), the XFEM with SaEc formulation (Eqn (25)) and the XFEM formulation with compatible shear strain field (i.e. the XFEM with ScEc formulation or totally no shear locking control). The results are shown in
Fig. 28. It can be seen that when the shear strain corresponding to the standard displacement field is compatible, the XFEM formulations (the XFEM with ScEa formulation and the XFEM with ScEc formulation) fail to improve the prediction of the ultimate loading and the results are even worse than that from the FEM MITC elements. When the MITC technique is applied on the standard displacement field, the XFEM formulation is able to improve the numerical results. Furthermore, a much better result can be obtained by applying the MITC technique in both standard and enriched fields.

6 Conclusions

In this paper, a 6-node triangular XFEM plate element with MITC technique is presented. The enrichment used in the XFEM plate element is able to model a high gradient zone in displacement fields resulted from yield lines. The enrichments are constructed on the structure level so that they are independent of the physical shape of the enriched element. Regularized enrichments are used for both rotation and deflection displacement approximation fields so that the enrichment can be activated automatically. As the relationship between the appearance of the non-smooth displacement and the appearance of a yield line is not clear, the employment of the regularized enrichment makes it easy to use the XFEM formulation in yield line analyses. The MITC technique is adopted to circumvent shear locking in both smooth and non-smooth transverse shear strain field. An alternative expression of the MITC6 scheme which directly relates the assumed shear strain components with the nodal displacement variables is derived. The alternative expression, which is equivalent to the original form, could be easily used in conjunction with the present XFEM formulation. It is shown in the numerical examples that shear locking appears in both standard and enriched displacement field and the MITC6 scheme is able to control shear locking effectively in enriched elements.

Although the present XFEM formulation shows its effectiveness in capture the behavior of plate structures in elasto-plastic analyses, it is premature to state that the enrichment function presented in this article is the best choice for the high gradient zone resulted from yield lines. Since the shape and the area of a high gradient zone depends on a few factors such as the cross-sectional shape of the plate, the loading and support boundary conditions, a further study on choosing more optimal enrichment functions could be a research topic in future.
Besides, the application of the present XFEM formulation in large deformation analysis could be studied in future research.

Reference

Totally, 29 figures and 8 tables.
(a) locations of the tying points in the MITC6 scheme

(b) compatible shear strain components used in the tying points

Fig. 1 The tying points in the MITC6 scheme
Fig. 2 The local coordinate system for the plate elements

Fig. 3 An example of HGZ
(a) 3D plot of R

(b) 3D plot of $\partial R/\partial x$
Fig. 4 Plots of R and its first derivative with respect to the global coordinates.
Fig. 5 Plots of F and its first derivative with respect to the global coordinates
Fig. 6 DOF and natural coordinate system of an enriched element

Fig. 7 The layered model
(a) $1 \text{ QU}_H + 1 \text{ QU}_nH + 1 \text{ TR}_nH$

(b) $1 \text{ TR}_H + 1 \text{ QU}_nH$

(c) $1 \text{ QU}_H + 1 \text{ TR}_nH$
Fig. 8 Possible partitions of an enriched element

(d) 1 QU_H + 1 TR_nH

(e) 1 TR_H

(f) 1 PE_H + 2 TR_nH
Fig. 9 A flat strip with two fully fixed ends

Fig. 10 The uniform mesh used for the flat strip problem (red dots: enriched nodes; green squares: standard nodes)
Fig. 11 The equilibrium paths of the flat strip problem without the MITC scheme in enriched element

Fig. 12 The fine mesh for FEM analysis for the flat strip problem.

Fig. 13 The equilibrium paths of the flat strip problem with uniform mesh
$l_{n1} = 0.2$ $l_{n2} = 0.2$ $l_{n3} = 0.2$

Fig. 14 The distorted mesh for the flat strip problem (all nodes are enriched)

Fig. 15 The comparison of results obtained from uniform mesh and distorted mesh for the flat strip problem
Fig. 16 An L-shape plate fixed on the two short edges
Fig. 17 The mesh schemes of the L-shape plate problem (red dots: enriched nodes; green squares: standard nodes and blue triangles: nodes enriched by two sets of additional DOF)
Fig. 18 The equilibrium paths for the L-shape plate problem with shear locking in XFEM formulation

Fig. 19 The equilibrium paths of the L-shape plate problem (different thickness)
Fig. 20 The equilibrium paths of the L-shape plate problem (different mesh patterns)

Fig. 21 An L-shape cantilever plate
Fig. 22 The mesh pattern of the L-shape cantilever plate problem (red dots: enriched nodes and green squares: standard nodes)

Fig. 23 The equilibrium paths of the L-shape cantilever plate problem
Fig. 24 A square plate fixed at one edge and applied by a line load at the opposite edge

(a) loading, boundary conditions and the coarse mesh

(b) fine FEM mesh

Fig. 24 A square plate fixed at one edge and applied by a line load at the opposite edge
Fig. 25 The equilibrium paths of the square plate problem

Fig. 26 The equilibrium paths of the square plate problem with shear locking
Fig. 27 The equilibrium paths of the square plate problem with different l_{ins}

Fig. 28 The equilibrium paths of the square plate problem from the analyses with different assumed strain interpolation
Table 1 A flat strip with five different plate thicknesses

<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>(\sigma_y)</th>
<th>(q_0)</th>
<th>(t/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.5</td>
<td>0.4</td>
<td>(6.4 \times 10^{-2})</td>
<td>1/10</td>
</tr>
<tr>
<td>T2</td>
<td>0.25</td>
<td>0.2</td>
<td>(8 \times 10^{-3})</td>
<td>1/20</td>
</tr>
<tr>
<td>T3</td>
<td>0.125</td>
<td>0.1</td>
<td>(1 \times 10^{-3})</td>
<td>1/40</td>
</tr>
<tr>
<td>T4</td>
<td>0.05</td>
<td>0.04</td>
<td>(6.4 \times 10^{-5})</td>
<td>1/100</td>
</tr>
<tr>
<td>T5</td>
<td>0.01</td>
<td>0.008</td>
<td>(5.12 \times 10^{-7})</td>
<td>1/500</td>
</tr>
</tbody>
</table>

Table 2 Comparison of the DOF and integration points for the flat strip problem

<table>
<thead>
<tr>
<th></th>
<th>(n_{\text{gen}})</th>
<th>(n_{\text{en}})</th>
<th>(n_{\text{DOF}})</th>
<th>(n_{\text{IP}})</th>
<th>(n_s)</th>
<th>(t_{\text{CPU}}) (second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM coarse mesh</td>
<td>33</td>
<td>0</td>
<td>99</td>
<td>30×5=150</td>
<td>735</td>
<td>50.2</td>
</tr>
<tr>
<td>FEM fine mesh</td>
<td>2121</td>
<td>0</td>
<td>6363</td>
<td>3,000×5=15,000</td>
<td>798</td>
<td>7063.3</td>
</tr>
<tr>
<td>XFEM uniform mesh</td>
<td>6</td>
<td>27</td>
<td>180</td>
<td>516×5=2,580</td>
<td>735</td>
<td>1091</td>
</tr>
</tbody>
</table>

Table 3 An L-shape plate with four different plate thicknesses

<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>(\sigma_y)</th>
<th>(q_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.15</td>
<td>1.0</td>
<td>(-2.12 \times 10^{-3})</td>
</tr>
<tr>
<td>T2</td>
<td>0.1</td>
<td>(6.67 \times 10^{-1})</td>
<td>(-6.29 \times 10^{-4})</td>
</tr>
<tr>
<td>T3</td>
<td>0.03</td>
<td>0.2</td>
<td>(-1.70 \times 10^{-5})</td>
</tr>
<tr>
<td>T4</td>
<td>0.01</td>
<td>(6.67 \times 10^{-2})</td>
<td>(-6.29 \times 10^{-7})</td>
</tr>
</tbody>
</table>

Table 4 Comparison of the DOF and integration points for the L-shape plate problem

<table>
<thead>
<tr>
<th></th>
<th>(n_{\text{gen}})</th>
<th>(n_{\text{en}})</th>
<th>(n_{\text{DOF}})</th>
<th>(n_{\text{IP}})</th>
<th>(n_s)</th>
<th>(t_{\text{CPU}}) (second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM coarse mesh</td>
<td>33</td>
<td>0</td>
<td>99</td>
<td>30×5=150</td>
<td>269</td>
<td>17.3</td>
</tr>
<tr>
<td>FEM fine mesh</td>
<td>2121</td>
<td>0</td>
<td>6363</td>
<td>3,000×5=15,000</td>
<td>286</td>
<td>1965.2</td>
</tr>
<tr>
<td>XFEM mesh pattern 1</td>
<td>6</td>
<td>27</td>
<td>180</td>
<td>582×5=2,910</td>
<td>271</td>
<td>477.2</td>
</tr>
</tbody>
</table>

Table 5 An L-shape cantilever plate with four different plate thicknesses

<table>
<thead>
<tr>
<th></th>
<th>t</th>
<th>(\sigma_y)</th>
<th>(q_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.15</td>
<td>1.0</td>
<td>(2.40 \times 10^{-3})</td>
</tr>
<tr>
<td>T2</td>
<td>0.1</td>
<td>0.667</td>
<td>(7.11 \times 10^{-4})</td>
</tr>
<tr>
<td>T3</td>
<td>0.03</td>
<td>0.2</td>
<td>(1.92 \times 10^{-5})</td>
</tr>
<tr>
<td>T4</td>
<td>0.01</td>
<td>0.06667</td>
<td>(7.11 \times 10^{-7})</td>
</tr>
</tbody>
</table>

Table 6 Comparison of the DOF and integration points for the L-shape cantilever plate problem

<table>
<thead>
<tr>
<th></th>
<th>(n_{\text{gen}})</th>
<th>(n_{\text{en}})</th>
<th>(n_{\text{DOF}})</th>
<th>(n_{\text{IP}})</th>
<th>(n_s)</th>
<th>(t_{\text{CPU}}) (second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM coarse mesh</td>
<td>33</td>
<td>0</td>
<td>99</td>
<td>30×5=150</td>
<td>554</td>
<td>37.1</td>
</tr>
<tr>
<td>FEM fine mesh</td>
<td>2121</td>
<td>0</td>
<td>6363</td>
<td>3,000×5=15,000</td>
<td>515</td>
<td>3593.9</td>
</tr>
<tr>
<td>XFEM</td>
<td>24</td>
<td>9</td>
<td>126</td>
<td>168×5=840</td>
<td>570</td>
<td>273.4</td>
</tr>
</tbody>
</table>
Table 7 A square plate with three different plate thicknesses

<table>
<thead>
<tr>
<th>Thickness t</th>
<th>Yield Strength σ_0</th>
<th>Reference Load q_0</th>
<th>Thickness to Length Ratio t/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>3.0×10^7</td>
<td>3.0×10^5</td>
<td>$1 / 16$</td>
</tr>
<tr>
<td>T2</td>
<td>3.0×10^4</td>
<td>300</td>
<td>$1 / 160$</td>
</tr>
<tr>
<td>T3</td>
<td>3.0×10^3</td>
<td>0.3</td>
<td>$1 / 1600$</td>
</tr>
</tbody>
</table>

Table 8 Comparison of the computational cost for the square plate problem

<table>
<thead>
<tr>
<th>Method</th>
<th>n_{geom}</th>
<th>n_{en}</th>
<th>n_{DOF}</th>
<th>n_{IP}</th>
<th>n_s</th>
<th>t_{CPU} (second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM coarse mesh (1 x 1 x 2)</td>
<td>9</td>
<td>0</td>
<td>27</td>
<td>$6 \times 5 = 30$</td>
<td>133</td>
<td>1.6</td>
</tr>
<tr>
<td>FEM fine mesh (20 x 20 x 2)</td>
<td>1681</td>
<td>0</td>
<td>5043</td>
<td>$2,400 \times 5 = 12,000$</td>
<td>129</td>
<td>672.6</td>
</tr>
<tr>
<td>XFEM (1 x 1 x 2)</td>
<td>0</td>
<td>9</td>
<td>54</td>
<td>$144 \times 5 = 720$</td>
<td>110</td>
<td>42.2</td>
</tr>
</tbody>
</table>