<table>
<thead>
<tr>
<th><strong>Title</strong></th>
<th>Study of a 1eV GaNAsSb photovoltaic cell grown on a silicon substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author(s)</strong></td>
<td>Tan, K. H.; Loke, W. K.; Wicaksono, S.; Li, D.; Leong, Y. R.; Yoon, S. F.; Sharma, P.; Milakovich, T.; Bulsara, M. T.; Fitzgerald, E. A.</td>
</tr>
<tr>
<td><strong>Date</strong></td>
<td>2014</td>
</tr>
<tr>
<td><strong>URL</strong></td>
<td><a href="http://hdl.handle.net/10220/19145">http://hdl.handle.net/10220/19145</a></td>
</tr>
</tbody>
</table>

© 2014 AIP Publishing LLC. This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of AIP Publishing LLC. The paper can be found at the following official DOI: [http://dx.doi.org/10.1063/1.4867082]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Study of a 1eV GaNAsSb photovoltaic cell grown on a silicon substrate

View online: http://dx.doi.org/10.1063/1.4867082
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/10?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Low temperature grown GaNAsSb: A promising material for photoconductive switch application

High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap

Molecular-beam epitaxy growth of device-compatible GaAs on silicon substrates with thin (80 nm) Si$_{1-x}$Ge$_x$ step-graded buffer layers for high-III-V metal-oxide-semiconductor field effect transistor applications

High-speed picosecond pulse response GaNAsSb $p$-$i$-$n$ photodetectors grown by rf plasma-assisted nitrogen molecular beam epitaxy

Nonstoichiometric growth and cluster formation in low temperature grown GaAsSb for terahertz-applications
J. Vac. Sci. Technol. B 24, 1556 (2006); 10.1116/1.2190677
Study of a 1 eV GaNAsSb photovoltaic cell grown on a silicon substrate

K. H. Tan,1 W. K. Loke,1 S. Wicaksono,1 D. Li,1 Y. R. Leong,1 S. F. Yoon,1 P. Sharma,2 T. Milakovich,2 M. T. Bulsara,2 and E. A. Fitzgerald2

1School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore
2Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA

(Received 21 January 2014; accepted 16 February 2014; published online 12 March 2014)

We report the performance of a 1 eV GaNAsSb photovoltaic cell grown on a Si substrate with a SiGe graded buffer grown using molecular beam epitaxy. For comparison, the performance of a similar 1 eV GaN0.018As0.897Sb0.085 photovoltaic cell grown on a GaAs substrate was also reported. Both devices were in situ annealed at 700 °C for 5 min, and a significant performance improvement over our previous result was observed. The device on the GaAs substrate showed a low open circuit voltage (VOC) of 0.42 V and a short circuit current density (JSC) of 23.4 mA/cm² while the device on the Si substrate showed a VOC of 0.39 V and a JSC of 21.3 mA/cm². Both devices delivered a quantum efficiency of 50%–55% without any anti-reflection coating.

We have also previously reported the application of GaNAsSb material in the PV cell. Compared to indium containing dilute nitride, the amount of nitrogen-related defects in GaNAsSb can be reduced because of the presence of antimony atoms and the absence of indium atoms during its growth. Antimony atoms act as a surfactant to allow a more efficient incorporation of substitutional nitrogen atoms and to suppress the formation of nitrogen-related defects.

In this Letter, we report the performance of a GaN0.018As0.897Sb0.085 1 eV PV cell grown on a Si substrate. Compared to our previous report, the GaNAsSb PV structure in this report was grown on a Si substrate instead of on a GaAs substrate using molecular beam epitaxy (MBE). Growth on a Si substrate offers the advantage of a lower substrate cost. The Ge or GaAs substrate cost constitutes ~30%–50% of the PV cell cost in the current technology. By using a Si substrate, the substrate cost can be significantly reduced. This leads to tremendous saving in the production cost of PV cells. Furthermore, the availability of a larger Si substrate size (12 in.) could reduce the per cm² cost in the PV cell fabrication process, leading to a further reduction in cost. Another advantage of the PV cell on the Si substrate is the lighter weight of the Si-based PV cell compared to PV cells grown on Ge or GaAs substrates. The densities of Si, Ge, and GaAs are 2.329 g cm⁻³, 5.3234 g cm⁻³, and 5.32 g cm⁻³, respectively. Hence, Si has a significantly lower density compared to GaAs and Ge. Lighter weight PV cells offer a significant advantage in outer space applications.

Prior to the growth of the PV cell structure using MBE, Ge-on-Si virtual substrates were fabricated using compositionally graded Ge1−xSix buffer layers. The epitaxial films were grown on (100) Si wafers with offset 6° to the in-plane ⟨110⟩ by an ultra high vacuum chemical vapor deposition (UHVCD) system. The details of the growth can be found elsewhere. The Ge-on-Si virtual substrate was capped with a 100 nm n⁺ GaAs layer grown by metal organic chemical vapor deposition (MOCVD). The GaAs capped Ge-on-Si virtual substrate was the foundation for subsequent MBE growth of the PV cell. In an MBE system, a GaNAsSb 1 eV
GaNAsSb growth was performed by Ti(50 nm)/Au(200 nm) and Ti(5 nm)/Ge(25 nm)/Au(100 nm)/Ni(20 nm)/Au(100 nm) metallization, respectively. Furthermore, the n-contact was annealed at 380 °C for 60 s. Finally, no anti-reflection coatings (ARC) on the devices are used in this study.

To investigate the material quality of the GaNAsSb PV cell grown on a Si substrate, the cell structure was examined using transmission electron microscopy (TEM). The TEM image of the cell cross-section (see Fig. 2) reveals that most of the defects induced by the lattice mismatch were contained at the SiGe graded buffer. There are no visible defects, such as threading dislocation at the base and emitter region of the PV cell. However, it has to be noted that cross-section TEM is not an effective tool to capture threading dislocation at density <1 × 10^7 cm⁻³.

Light current-voltage (I-V) photovoltaic measurements were performed under AM1.5 global solar conditions. The solar simulator was properly tested and calibrated. The test was performed by measuring the spectral coincidence between standard solar radiation and the simulator. From the spectral coincidence result, the solar simulator used in this study is classed under JIS class A. The measured light current-voltage results are shown in Fig. 3. The GaNAsSb cell grown on the GaAs substrate showed a Voc of 0.42 V and a Jsc of 23.4 mA/cm². This values of Voc and Jsc are slightly better compared to the recent reported best results of the GaInNAs(Sb) PV cell, which exhibited a Voc of 0.42 V and a Jsc of 21.3–22.5 mA/cm². Compared to our previous results, the current results exhibit a significant improvement in the Voc from 0.29 V to 0.42 V. On the other hand, the Jsc value in this report (after adjusting for the absence of the ARC layer) is comparable to the corresponding value in our previous report. The improvement of the Voc in this study can be mostly attributed to the incorporation of the in

50nm GaAs & AlGaAs contact layer

850nm GaNAsSb emitter and base

400nm GaAs buffer layer

300nm Ge layer

SiGe graded buffer

FIG. 1. Schematic diagram of a GaNAsSb PV cell grown on a Si substrate with a SiGe graded buffer.

FIG. 2. Cross-section TEM image of a GaNAsSb PV cell grown on a Si substrate.
The GaNAsSb cell grown on the Si substrate showed a Voc of 0.39 V and a Jsc of 21.3 mA/cm². These values of Voc and Jsc are ~10% smaller compared to corresponding values of the devices grown on GaAs substrates. This is likely due to the incorporation of certain defects into the GaNAsSb cell grown on the Si substrate. This observation is discussed further later.

The quantum efficiency (QE) measurements were carried out using a quartz tungsten halogen lamp as the light source in conjunction with a monochromator. Calibration of the light source was done using a commercial Si photodetector. The measured external QE levels of the GaNAsSb cells are shown in Fig. 4. The figure illustrates that the QE curve of the GaNAsSb PV cell grown on the GaAs substrate stayed flat at ~55% until the wavelength of 1050 nm and had a cut-off wavelength at 1200 nm. This indicated a bandgap energy level of 1.03 eV in the GaNAsSb material. On the other hand, the GaNAsSb PV cell grown on the Si substrate showed a maximum QE value of 50% at wavelength <900 nm. At wavelength >900 nm, the QE curve gradually decreased to 40% at 1100 nm and had a cut-off wavelength at 1240 nm, indicating a bandgap energy of 1.00 eV for the GaNAsSb material. The Sb composition of both samples is 8.5%. The difference in the bandgap energy of the GaNAsSb material between both devices is likely due to the run-to-run variation in the growth process, which is related to drifting in nitrogen plasma conditions at different runs. It is estimated that the N composition of cell on GaAs substrate and Si substrate are ~1.7% and 2.0%, respectively. The gradual slope in the QE curve of the PV cell grown on the Si substrate indicated a poorer carrier lifetime in the GaNAsSb layer grown on the Si substrate compared to the same layer grown on the GaAs substrate. This is consistent with the observation of the Voc results shown earlier.

There are two possible explanations for the poor carrier lifetime in the cell grown on the Si substrate. First, threading dislocation exists in the material grown on the Si substrate due to the large lattice mismatch between GaAs and Si. The threading dislocation density is ~1x10^7 cm⁻³ and these threading dislocations acted as an effective carrier recombination center. Second, the wafer transfer between the UHVCVD chamber and the MBE chamber exposed the wafer surface to the atmosphere for a long period (>1 months) without any protective layer on top of the wafer. This could possibly contaminate the wafer surface for the subsequent MBE growth and it generated extra carrier recombination centers.

To simulate the performance of GaNAsSb under the stack of GaInP and GaAs tandem cells, we used QE data to calculate the Jsc of the GaNAsSb PV cell generated by the solar spectrum with a wavelength longer than 870 nm: Jsc(<870nm). The calculated Jsc(<870nm) of the GaNAsSb PV cell grown on the GaAs substrate and the Si substrate are 6.9 mA/cm² and 6.2 mA/cm², respectively. These values are higher compared to the reported values of the GaInAsSb PV cells (4.6–5.1 mA/cm²). The Jsc(<870nm) of the GaNAsSb PV cell could likely be increased to ~8.6–9.6 mA/cm² if an ARC layer is deposited at the top of the device to eliminate the surface reflection of incident light.

Two carrier generation regions exist in a PV cell: (1) the depletion region and (2) the quasi-neutral region. Photocarriers generated in the depletion region were quickly swept away under the electric field. The carrier collection efficiency in the depletion is always assumed to be close to 100%. On the other hand, the photo-carriers generated in the quasi-neutral region have to diffuse at a slower speed towards the pn junction. The carrier collection efficiency in the quasi-neutral region depends on the width of the quasi-neutral region (w) and the carrier diffusion length of the material (L). If L > w, the collection efficiency will be close to 100%. On the contrary, if w > L, there will be a loss in carrier collection. It is extremely important to know the carrier diffusion length in the base layer when designing a highly efficient PV cell.

We estimated the “effective” carrier diffusion length in the GaNAsSb base layer by measuring the photo-current.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 155.69.2.10
On: Mon, 31 Mar 2014 04:37:20

Si substrate has a peak QE of 50% at wavelength 1196 nm, 1198 nm, and 1200 nm.

This study showed that the GaNAsSb PV cell grown on the Si substrate showed a VOC of 0.42 V and a JSC of 23.4 mA/cm². On the other hand, a 1 eV GaNAsSb PV cell grown on a GaAs substrate showed a VOC of 0.42 V and a JSC of 23.4 mA/cm². This study showed that the GaNAsSb PV cell grown on the Si substrate has a peak QE of 50% at wavelength <900 nm.

Using the photo-current measurement at different reverse bias voltages, the “effective” hole minority diffusion length of the GaNAsSb PV cell is estimated to be ~400 nm. This short diffusion length could be likely be the main contributor to the non-unity QE found in the GaNAsSb PV cells.

In conclusion, we have reported the performance of a 1 eV GaNAsSb PV cell grown on a Si substrate. The cell showed a VOC of 0.39 V and a JSC of 21.3 mA/cm². The photo-current of the device increased with the increase in the width of the quasi neutral region and decrease in the width of the depletion region. The increase in the photo-current is saturated at the width of the quasi neutral region approaches the “effective carrier diffusion length” as unity carrier collection efficiency is achieved. To ensure the uniformity of carrier generation across the entire base layer, the photo-current measurement was performed using an incident light with a wavelength close to the band edge of the material. Due to the negligible light absorption at these wavelengths, the variation of incident light intensity is small across the base layer. Incident lights with wavelengths of 1196 nm, 1198 nm, and 1200 nm were used in our measurement. The results of the measurement are shown in Fig. 5. The quasi-neutral region width is defined as the total base thickness minus the width of the depletion region. It can be seen that the “effective” hole minority carrier diffusion length in the GaNAsSb base is ~400 nm. Thus, a GaNAsSb cell with a quasi-neutral region wider than 400 nm will result in lower carrier collection efficiency of the GaNAsSb cell.

FIG. 5. Normalized photo-current vs. width of the quasi-neutral region in the GaNAsSb PV cell grown on a Si substrate under the illumination of light with wavelengths of 1196 nm, 1198 nm, and 1200 nm.

This work was supported by Singapore-MIT Alliance Research and Technology under Grant No: SMART Subaward Agreement No. 03-LEES IRG (“Integrated III/V solar”).


