<table>
<thead>
<tr>
<th>Title</th>
<th>Monte Carlo simulation of light transport in turbid medium with embedded object: spherical, cylindrical, ellipsoidal, or cuboidal objects embedded within multilayered tissues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Periyasamy, Vijitha; Pramanik, Manojit</td>
</tr>
<tr>
<td>Citation</td>
<td>Periyasamy, V., & Pramanik, M. (2014). Monte Carlo simulation of light transport in turbid medium with embedded object—spherical, cylindrical, ellipsoidal, or cuboidal objects embedded within multilayered tissues. Journal of Biomedical Optics, 19(4), 045003-</td>
</tr>
<tr>
<td>Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/19269</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2014 Society of Photo-Optical Instrumentation Engineers. This paper was published in Journal of Biomedical Optics and is made available as an electronic reprint (preprint) with permission of SPIE. The paper can be found at the following official DOI: [http://dx.doi.org/10.1117/1.JBO.19.4.045003]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.</td>
</tr>
</tbody>
</table>
Monte Carlo simulation of light transport in turbid medium with embedded object—spherical, cylindrical, ellipsoidal, or cuboidal objects embedded within multilayered tissues

Vijitha Periyasamy
Manojit Pramanik
Monte Carlo simulation of light transport in turbid medium with embedded object—spherical, cylindrical, ellipsoidal, or cuboidal objects embedded within multilayered tissues

Vijitha Periyasamy and Manojit Pramanik

Abstract. Monte Carlo modeling of light transport in multilayered tissue (MCML) is modified to incorporate objects of various shapes (sphere, ellipsoid, cylinder, or cuboid) with a refractive-index mismatched boundary. These geometries would be useful for modeling lymph nodes, tumors, blood vessels, capillaries, bones, the head, and other body parts. Mesh-based Monte Carlo (MMC) has also been used to compare the results from the MCML with embedded objects (MCML-EO). Our simulation assumes a realistic tissue model and can also handle the transmission/reflection at the object-tissue boundary due to the mismatch of the refractive index. Simulation of MCML-EO takes a few seconds, whereas MMC takes nearly an hour for the same geometry and optical properties. Contour plots of fluence distribution from MCML-EO and MMC correlate well. This study assists one to decide on the tool to use for modeling light propagation in biological tissue with objects of regular shapes embedded in it. For irregular inhomogeneity in the model (tissue), MMC has to be used. If the embedded objects (inhomogeneity) are of regular geometry (shapes), then MCML-EO is a better option, as simulations like Raman scattering, fluorescent imaging, and optical coherence tomography are currently possible only with MCML.

Keywords: Monte Carlo simulation; mesh-based Monte Carlo; Monte Carlo modeling; light transport; multilayered tissues; embedded objects.

1 Introduction

Knowing the light fluence distribution or the amount of light absorbed inside biological tissue is useful in many applications, such as photoacoustic (PA) imaging, diffused optical tomography, Raman scattering, and fluorescence imaging. Monte Carlo (MC) simulation for light propagation in biological medium solves the radiative transfer equation numerically. Therefore, it is considered to be the gold standard for predicting the fluence distribution in biological tissue for many optical imaging modalities. MC for light propagation in biological medium was introduced by Wilson. It was modified by many others for usability. MC modeling of light transport in multilayered tissues (MCML) coded in standard C, brought to public domain by Wang et al., has been extensively used for various studies. Error percentages are higher in MATLAB® ported MCML, but the graphical outputs are easier to obtain. Initially, the drawback of MCML was the long time taken for each simulation. As mentioned by Zhu and Liu, with high-end computation facilities available these days, computation time has reduced from many hours to a few minutes. Multicanonical MC has been introduced, which is a speeded-up form of classical MCML. Moreover, variations of MCML simulations for fluorescence propagation and Raman generation were also reported, which are computationally time demanding.

Another drawback of MCML was its inability to model geometries other than layers. Tissue models with embedded objects have been published for various applications. Currently, hybrid models are used for simple geometries, such as skin tumor, where the tumor is considered to be cuboidal. Another hybrid, MC and diffusion theory, was developed by Golshan et al. for the study of light propagation in skin. MC simulations for photodynamic therapy for tumor assume the embedded object to be of spherical shape. For modeling of illumination configuration for light focusing in tissue with blood vessels and capillaries, the embedded object is modeled as cylindrical in shape. In the above cases, the refractive index of the embedded object is matched with that of the surrounding tissue. In our previous work, the refractive index mismatch was taken into consideration for an embedded sphere for simulation of light delivery configuration of PA imaging of sentinel lymph nodes. Modeling of light propagation in a cylinder with embedded cylinder depicting blood vessel and sphere within a sphere depicting head has also been reported, which are specific to applications. MCML was also modified to specify optical properties for each grid instead of an entire layer to model skin. Mesh-based MC (MMC) and GPU-based MC by Fang et al. has been used to study light propagation in a rat model and adult/neonatal brain, where the inhomogeneity is of irregular geometry. Input to MMC is meshes generated either from images.

*Address all correspondence to: Manojit Pramanik, E-mail: manojit@ntu.edu.sg
cylindrical geometry embedded in tissue. For the completeness, modeled close to sphere or ellipsoid. Red blood cells are ellipsoid handled in this simulation. Tumors and lymph nodes can be ered surrounding tissue; we refer to this as MMCL with (sphere, ellipsoid, cylinder, or cuboid) was embedded in the lay-
tissue with embedded objects. The hybrid models are easier to model than MMC, but they reduce accuracy.

In this work, MCML with object of regular geometry (sphere, ellipsoid, cylinder, or cuboid) was embedded in the lay-
ered surrounding tissue; we refer to this as MMCL with embedded objects (MCML-E0). The refractive index mismatch between the embedded object and the surrounding tissue is also handled in this simulation. Tumors and lymph nodes can be modeled close to sphere or ellipsoid. Red blood cells are ellip-
oidal in shape. Simulation of blood vessels and bone need cylindrical geometry embedded in tissue. For the completeness, modeling of cuboidal geometry is also discussed. The MMC is also run with embedded objects with similar optical properties and dimensions for comparisons.

2 Simulation Setup

In MCML, photons are traced in the medium with known optical properties, such as absorption coefficient (μa), scattering coefficient (μs), scattering anisotropy (g), and refractive index (n) of the medium. Figure 1 depicts the flow chart of MCML modified for embedded object. Launched photon in MCML takes a random step-size and checks if the layer boundary is hit with this step-size based on the z direction cosine (u_z) of the photon. If u_z is negative, then the boundary check is for the layer above the photon’s current layer. If u_z is positive, then the boundary check is for the layer below the photon’s current layer. If there is no boundary hit, then the photon hops to the next scattering site with the step-size and drops weight based on absorption coefficient of the medium. When the photon hits the boundary, the step-size is recomputed to find the distance between photon’s current location and the boundary. Photon after taking the recomputed step-size moves to the boundary and checks if it has to cross the boundary (transmit) or not (reflection). The decision is governed by Snell’s law based on the refractive indices of the layers across the boundary. The direction cosines of the photon either on reflection or on transmission are updated based on Fresnel formula. Photon’s direction cosines remain unchanged under matched boundary conditions. The photon moves the remaining part of the step-size either in the same layer or in the transmitted layer based on whether the photon is reflected or transmitted. The photons are tracked till they die. A photon’s tracking is terminated when its weight is <10^-6 (variable) using Russian roulette or when it escapes from the simulation geometry into the outer medium (launch surface or transmission surface, typically air or water).

For embedded objects there are two challenges: one is computing the distance of the photon from the scattering site to the object boundary and the other is determining the direction cosine of the photon after it is reflected/transmitted at the object boundary. Both the problems arise due to the curved nature of the sphere, cylinder, and ellipsoid object. In case of cuboid, the calculation of the distance to the boundary is much simpler, and it is explained in the original MCML for layers. We used the same method here as well for the embedded cuboid. The rest of the section explains how to find out the distance between the photon’s current position and the boundary of the object (sphere, ellipsoid, and cylinder), and whether the photon is going to hit the boundary with the step-size it needs to travel.

Equation of an origin-shifted sphere centered at \(C(C_x, C_y, C_z)\) with radius \(r\) is

\[
(x - C_x)^2 + (y - C_y)^2 + (z - C_z)^2 = r^2. \tag{1}
\]

Equation of an origin-shifted cylinder aligned along the axis vector \((1, 0, 0)\), centered at \(C(C_x, C_y, C_z)\) with radius \(r\) is

\[
(y - C_y)^2 + (z - C_z)^2 = r^2. \tag{2}
\]

Equation of an origin-shifted ellipsoid centered at \(C(C_x, C_y, C_z)\) with radius along \(x\), \(y\), and \(z\) axis as \((r_x, r_y, r_z)\) is

\[
\frac{(x - C_x)^2}{r_x^2} + \frac{(y - C_y)^2}{r_y^2} + \frac{(z - C_z)^2}{r_z^2} = 1. \tag{3}
\]

A ray of origin \((O_x, O_y, O_z)\) with direction cosines \((d_x, d_y, d_z)\) parameterized by distance \(t\) is represented by the equation \((O + t \cdot d)\), where “*” implies multiplication of scalar \(t\) with every element in vector \(d\). Any point on the ray at distance \(t\) from origin of ray is given by \([O_x + t \cdot d_x, O_y + t \cdot d_y, O_z + t \cdot d_z]\). The intersection point between the ray and the curve object has to satisfy the equation of ray and the equation of curved object. Conversely, the ray would intersect with a curved object, if the solution to the quad-ratic equation in \(t\) [Eq. (4)] is real. The quadratic equation is obtained by substituting the ray equation \((O + t \cdot d)\) in the equation of sphere, cylinder, and ellipsoid, which are quadratic equations themselves [as seen in Eqs. (1) to (3)]. In Eq. (4), \(t\) is the distance the ray has to travel to hit the curved object. Numerical values \(I\), \(J\), and \(K\) are the coefficients of the equation, which vary for the three geometries. Equation (4) is given as

\[
I \cdot t^2 + J \cdot t + K = 0, \tag{4}
\]

where (,) is the multiplication of numerical values with variable \(t\) to solve the quadratic equation.

In case of a sphere

\[
I = d_x^2 + d_y^2 + d_z^2, \tag{5a}
\]

\[
J = 2 \cdot (d_x \cdot d_x + d_y \cdot d_y + d_z \cdot d_z), \tag{6}
\]

\[
K = d_x^2 + d_y^2 + d_z^2 - r^2. \tag{7}
\]
where $\text{del}_x = (O_x - C_x)$, $\text{del}_y = (O_y - C_y)$, and $\text{del}_z = (O_z - C_z)$.

In case of a cylinder aligned along axis $\upsilon(v_x, v_y, v_z) = (1, 0, 0)$ (in our case)

$$
\text{let } dc = d_x * v_x + d_y * v_y + d_z * v_z, \quad \text{del}_x = (O_x - C_x), \quad \text{del}_y = (O_y - C_y), \quad \text{del}_z = (O_z - C_z) \quad (10)
$$

$$
f = \text{del}_x * v_x + \text{del}_y * v_y + \text{del}_z * v_z \quad (11)
$$

$$
\text{let } e_x = dc * v_x, \quad e_y = dc * v_y, \quad \text{and } e_z = dc * v_z \quad (9)
$$

$$
g_x = (\text{del}_x - f * v_x), \quad g_y = (\text{del}_y - f * v_y), \quad \text{and } g_z = (\text{del}_z - f * v_z) \quad (12)
$$
\[
I = e_x^2 + e_y^2 + e_z^2, \quad (13)
\]
\[
J = 2 * (e_x * g_x + e_y * g_y + e_z * g_z), \quad (14)
\]
\[
K = g_x^2 + g_y^2 + g_z^2 - r^2. \quad (15)
\]

In case of an ellipsoid
\[
\text{del}_x = (O_x - C_x), \quad \text{del}_y = (O_y - C_y), \quad \text{del}_z = (O_z - C_z)
\]

\[
I = \left(\frac{d_x}{r_x}\right)^2 + \left(\frac{d_y}{r_y}\right)^2 + \left(\frac{d_z}{r_z}\right)^2, \quad (16)
\]
\[
J = \frac{(2 * \text{del}_x * d_x)}{r_x^2} + \frac{(2 * \text{del}_y * d_y)}{r_y^2} + \frac{(2 * \text{del}_z * d_z)}{r_z^2}. \quad (17)
\]
\[
K = \left(\frac{\text{del}_x}{r_x}\right)^2 + \left(\frac{\text{del}_y}{r_y}\right)^2 + \left(\frac{\text{del}_z}{r_z}\right)^2 - 1. \quad (18)
\]

In all the equations (\ast) denotes the multiplication of two numbers. If \((J^2 - 4 * I + K) > 0\), then the ray does not intersect the curved object. In that case, there is no hit. Since there are two solutions to the quadratic equation, there are two points of intersection. The distance between the points of intersection \(O + t * d\) and origin of ray \(O\) is computed. If the distance is greater than step-size, there is a boundary hit.

Once the photon reaches the boundary, it will undergo either reflection or transmission. For layer interface it is easier to find the normal to the tangential plane. In case of layer, the normal to tangent plane coincides with the global z axis. However, in case of curved geometry, the normal to tangent plane (normal to the incident plane in case of cuboid) does not coincide with the global coordinate z axis; therefore, it needs to be transformed into a local coordinate system whose z axis matches with the normal to tangent. Hence, reflection/transmission is done in local coordinate system and then converted back to the global coordinate just as it is done for spinning of photon in MCML.

For a photon of polar and azimuthal angles \((\theta_0, \phi_0)\), the steps involved in conversion of global coordinate system \((u_x, u_y, u_z)\) to local system \((u'_x, u'_y, u'_z)\) are as follows:

1. Rotate \((u_x, u_y, u_z)\) about z for \(\phi_0\) to get intermediate coordinates \((u'_x, u'_y, u'_z)\).
2. Rotate \((u'_x, u'_y, u'_z)\) about \(u'_x\) for \(\theta_0\) to get \((u'_x, u'_y, u'_z)\).

The formula for the above concept is
\[
u'_x = \sin \phi_0 * \frac{u_x * u_z * \cos \phi_0 - u_y * \sin \phi_0 + u_z * \cos \theta_0}{\sqrt{1 - u_z^2}}, \quad (19)
\]
\[
u'_y = \sin \phi_0 * \frac{u_y * u_z * \cos \phi_0 - u_x * \sin \phi_0 + u_z * \cos \theta_0}{\sqrt{1 - u_z^2}}, \quad (20)
\]
\[
u'_z = \sin \theta_0 * \frac{u_x * \sin \phi_0 + u_z * \cos \phi_0 + u_z * \cos \theta_0}{\sqrt{1 - u_z^2}}.
\]

If \(u_z \rightarrow 1\), then \(u'_z = \sin \theta_0 * \cos \phi_0 + u_z * \cos \theta_0,\) and \(u'_z = \sin \phi_0,\) where
\[
\text{sgn}(u_z) = \begin{cases}
1, & \text{if } u_z \geq 0 \\
-1, & \text{otherwise}
\end{cases}
\]

The normal to the tangential plane is needed for Fresnel computations. Angle of incidence \((\alpha_i)\) is \(\cos^{-1}|u_z|\). When there is a refractive index match, angle of transmittance \((\alpha_t)\) is equal to \((\alpha_i)\). In case of refractive index mismatch, Snell’s law [Eq. (9)] is used to compute \((\alpha_t)\).

\[
i_1 * \sin \alpha_i = n_1 * \sin \alpha_t, \quad (22)
\]

where \(n_1\) and \(n_t\) are the refractive indices of the medium of incidence and medium of transmittance. If \(n_t > n_1\) and \(\alpha_i\), greater than the critical angle \(\sin^{-1}(n_1/n_t)\), probability of reflection \(R_t(\alpha_t)\) is unity. Otherwise, Fresnel’s formula [Eq. (10)] for unpolarized light determines the percentage of photon being reflected and the rest is transmitted.

\[
R_t(\alpha_t) = \frac{\sin^2(\alpha_t - \alpha_i)}{\sin^2(\alpha_t + \alpha_i) + \tan^2(\alpha_i + \alpha_t).} \quad (23)
\]

During transmission, the direction cosines of the photon are updated to \([u_x, n_t/n_r, u_z, n_t/n_r, \text{sgn}(u_z) * \cos \alpha_t]\). For reflection, only \(u_z\) of the photon is negated.

Figures 2(a) and 2(b) give a few examples of ray interaction at layer boundaries; line MN is the normal to the plane of incidence PQ. MN is parallel to z axis since plane of incidence is perpendicular to it.

1. When the photon is incident on surrounding tissue from launch medium \((1.0 < 1.4)\) at an angle of 30 deg (ray AB), the whole photon is transmitted into the tissue at 20.9 deg (ray BC) based on Snell’s law [Eq. (9)].
2. When the photon is incident on the transmission medium at 30 deg (ray DE), 3.6% of the photon is reflected (ray EF) and 96.4% is transmitted (ray EG) based on Fresnel formula [Eq. (10)].
3. Since the critical angle \(\sin^{-1}(1.0/1.4)\) at transmission boundary is 45.427 when the incident angle is 60 deg (ray HI), the photon is totally internally reflected (ray IJ) as \(R_t\) is unity.
4. For a matched boundary scenario, the angle of transmittance (LCBM) is equal to angle of incidence (LABM).

This section will explain how the normal to the tangential plane is computed in case of curved objects (sphere, ellipsoid, and cylinder) as this is the reference to compute critical angle and transmittance angle. In case of sphere, the line joining the center of the sphere to the point of tangency \(P(P_x, P_y, P_z)\) on the surface \([P_x - C_x], (P_y - C_y), (P_z - C_z)\) is the line normal to the tangential plane. This is pictorially represented in Fig. 3(a).

A local Cartesian coordinate system is created with the normal line (line perpendicular to the tangential plane) as z axis. The
For an origin-shifted ellipsoid [Fig. 3(c)], the normal to the surface is computed and again converted back to global coordinate system. For an aligned cylinder, the normal line to a tangent at a point is calculated with respect to the direction cosines of the photon.

The six planes are defined as follows:

- Plane on negative X axis: $-x/2 + C_x$
- Plane on negative Y axis: $-y/2 + C_y$
- Plane on Z axis (above center): $-z/2 + C_z$
- Plane on positive X axis: $x/2 + C_x$
- Plane on positive Y axis: $y/2 + C_y$
- Plane on Z axis (below center): $z/2 + C_z$

When u_x is positive, the plane below the center of cuboid is checked. When u_x is negative, distance computation is with respect to the plane above the center. Sign of u_x and u_y decide if the distance check should be for the plane on positive axis or negative axis. Reflectance angle and transmittance angle are calculated with respect to the x, y, and z axes.

Table 1 Dimensions, location, and optical properties of the embedded objects for Monte Carlo modeling of light transport in multi-layered tissue with embedded objects (MCML-EO) and mesh-based Monte Carlo (MMC).

<table>
<thead>
<tr>
<th>Embedded object</th>
<th>Depth (cm)</th>
<th>Dimension required as input parameter</th>
<th>Dimension (cm)</th>
<th>Contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>1.2</td>
<td>Radius</td>
<td>0.5</td>
<td>Methylene blue</td>
</tr>
<tr>
<td>Cylinder</td>
<td>1.2</td>
<td>Radius, axis</td>
<td>0.25 [1 0 0]</td>
<td>Blood</td>
</tr>
<tr>
<td>Ellipsoid</td>
<td>1.2</td>
<td>Radius in three axis</td>
<td>[1.0 0.8 0.5]</td>
<td>Methylene blue</td>
</tr>
<tr>
<td>Cuboid</td>
<td>1.2</td>
<td>[length width height]</td>
<td>[1.4 1.2 1.0]</td>
<td>Methylene blue</td>
</tr>
</tbody>
</table>
coefficient. Number of grids in each axis is 301 and the size of the grid was 0.02 cm. The volume spanned is -3 to $+3$ cm in x and y axis. Grid covers 0 to 6 cm in z axis. For display (either absorbance map or fluence map) $y = 0$ plane is presented. Contour plot of the fluence (averaged over five grids) is for 5-dB spacing. The geometries with same optical properties and dimensions (approximately) are modeled using MMC for comparison.

MMC mex files along with preprocessing and postprocessing MATLAB® functions were downloaded and compiled from website. Ray tracing using Plücker co-ordinate system was implemented to trace photons in nonhomogeneous medium. In MCML-EO the surrounding medium was infinite along x and y axis. Simulating infinite medium in MMC is not possible; thus, in MMC, the objects were embedded into a relatively large box of dimension $20 \times 20 \times 6$ cm (which can be assumed approximately infinite compared to the inclusion dimension). All inputs are in millimeters in MMC. The maximum volume for a single mesh was 0.020 cm3. The incident light beam is a point source (pencil beam) illuminating at $(0.1, 0.1, 0)$ with the incident direction cosine $(0, 0, 1)$. Optical properties of the surrounding tissue (box) is $\mu_a = 0.2525$ cm$^{-1}$, $\mu_s = 254$ cm$^{-1}$, and $n = 1.3$ at 664-nm wavelength. The optical properties of whole blood are $\mu_a = 2.10$ cm$^{-1}$, $\mu_s = 773$ cm$^{-1}$, and $n = 1.4$. All simulations were run for 10^9 photons on a desktop with Intel i7 64-bit processor and 8 Gb RAM. Plane $y = 100$ is imaged and contoured with 10-dB spacing.

Table 2 Optical properties of various layers used in the MCML-EO and MMC simulation model at 664-nm wavelength.

<table>
<thead>
<tr>
<th>Optical properties of medium</th>
<th>Refractive index (n)</th>
<th>Absorption coefficient of medium (μ_a cm$^{-1}$)</th>
<th>Scattering coefficient of medium (μ_s cm$^{-1}$)</th>
<th>Scattering anisotropy (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surrounded tissue</td>
<td>1.4</td>
<td>0.2525</td>
<td>254</td>
<td>0.9</td>
</tr>
<tr>
<td>Methylene blue (concentration 10 μM)</td>
<td>1.3</td>
<td>1.7049</td>
<td>180</td>
<td>0.9</td>
</tr>
<tr>
<td>Blood</td>
<td>1.35</td>
<td>2.10</td>
<td>773</td>
<td>0.9</td>
</tr>
<tr>
<td>Air</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 3 Absorbance within the embedded object under matched and mismatched boundary conditions.

<table>
<thead>
<tr>
<th>Embedded object</th>
<th>Absorption inside the object</th>
<th>Matched boundary</th>
<th>Mismatched boundary</th>
<th>Percentage of error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>0.009969</td>
<td>0.009426</td>
<td>5.76</td>
<td></td>
</tr>
<tr>
<td>Cylinder</td>
<td>0.008141</td>
<td>0.00782</td>
<td>4.10</td>
<td></td>
</tr>
<tr>
<td>Ellipsoid</td>
<td>0.01731</td>
<td>0.01638</td>
<td>5.68</td>
<td></td>
</tr>
<tr>
<td>Cuboid</td>
<td>0.03400</td>
<td>0.03578</td>
<td>5.23</td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 4 Schematic diagram of the simulation geometry. Skin of semi-infinite depth with $n = 1.4$, $\mu_a = 0.2525$ cm$^{-1}$, and $\mu_s = 254$ cm$^{-1}$](image-url)
3 Results and Discussion

The major drawback of MCML of not being able to handle boundaries other than layers is addressed to increase the flexibility of the simulation tool. The contribution of the work is consolidation of distance calculation to the curved boundaries of sphere, cylinder, and ellipsoid and computation of tangential plane and its normal for execution of Fresnel formula. MCML modified for embedded objects is compared with MMC in terms of fluence map. First, MCML-EO simulations were run for all four types of embedded objects, considering both boundary refractive-index matched and mismatched conditions between the embedded object and the surrounding tissue. Table 3 shows the absorption inside the embedded object for four cases. As observed, the difference in absorbance (error) within the object ranges from 4 to 6% between refractive-index matched and mismatched cases. Absorbance within the embedded object ranges from 0.03 to 0.007. Note that the absorption is more when there is refractive-index matched boundary (which is not a practical scenario) compared with mismatched boundary condition. Absorption of light within embedded object is of interest in many applications; for example, in case of sentinel lymph node detection, one needs to optimize the total absorbance inside the node to achieve high signal-to-noise ratio.16

Figure 5 shows the absorbance map (in log scale) of the four MCML-EO simulations. The dotted black lines represent the boundaries of the embedded object.

Fig. 5 Absorption map from Monte Carlo for turbid medium with embedded object along $y = 0$ plane. (a) to (d) Sphere, cylinder, ellipsoid, and cuboid. Black dotted lines are boundaries of the embedded object.

Figure 6 shows the absorbance map (in log scale) of the four MCML-EO simulations. The dotted black lines represent the boundaries of the embedded object.

Fig. 6 Fluence map of MCML-EO ($y = 0$ plane) and MMC ($y = 100$ plane) along with contours. (a) to (d) Fluence map of sphere, cylinder, ellipsoid, and cuboid from MCML-EO. (e) to (h) Fluence map of sphere, cylinder, ellipsoid, and cuboid from MMC. (i) to (l) Contours of fluence distribution of sphere, cylinder, ellipsoid, and cuboid from MCML-EO (5 dB line spacing) and MMC (10 dB line spacing).
boundary of the embedded object. Figures 5(a) to 5(d) show absorbance along $y = 0$ plane in case of sphere, cylinder, ellipsoid, and cuboid, respectively. Number of pixels (grids) along x and z axis are 300 each. Absorption map is important to study effects of illumination during phototherapy.\footnote{16} Once again, one can play with the light delivery configuration, optical properties, and various object sizes to see what kind of absorption map one wants to achieve. This makes MCML-E0 a very flexible tool for various clinical uses.

Figure 6 shows the log of fluence map from MCML-E0 and MMC. Figures 6(a) to 6(d) show the fluence map from MCML-EO, where each pixel is 0.2 mm and the number of pixels is 300×300. Figures 6(e) to 6(h) are the fluence maps from MMC, which cover the meshes from 7 to 13 cm. Log of fluence distribution is represented in the color bar. The contours of the fluence distribution from MMC and MCML-E0 are shown in Figs. 6(i) to 6(l). MCML-E0 contours are smoother compared to that of MMC, probably due to the much finer grids in MCML-EO compared to the meshes in MMC. Again, the dotted black lines are the boundaries for the object embedded. We can see agreement between MMC and MCML-E0. The simulation parameters do not exactly match in both MMC and MCML-E0 as mentioned earlier. MCML-E0 is for semi-infinite medium, whereas MMC is done for bounded medium (large compared to the embedded object size). But for qualitative comparison, it is acceptable.

Average runtime for MCML-E0 is 4 min per geometry. Average runtime for MMC per geometry is ~ 15 min. There are a few seconds (40 s) spent in mesh generation in case of MMC, but MCML-E0 needs no preprocessing. In applications where the interest is to know total absorbance in the embedded object (as is the case in illumination configuration for PA imaging of sentinel lymph node\footnote{16}), there is no postprocessing involved for MCML-E0 as the weight dropped in the embedded object is accumulated and printed in the output file. But MMC requires postprocessing to track the weights dropped in the meshes contributing to the embedded object. For the fluence or absorption maps seen in Figs. 5 and 6(a) to 6(d), the post-processing time goes up to 15 min in MCML-E0, but it takes only few seconds (45 s) in the case of MMC. With the increase in the volume of interest, the mesh generation time also increases. With increased mesh counts, the computation requires higher memory and increased CPU speed. The flexibility of MMC is that the number of meshes can be more for the embedded object and sparse in the tissue.

In case of finer inhomogeneity, such as brain modeling, one has to proceed with MMC, where the simulation geometry is given as volumetric data in the form of images. MCML-E0 is ~ 200 times faster than MMC with respect to run time; however, embedding complex geometries will be a challenge in MCML. Optical properties can be assigned on nodal basis, which increases accuracy of modeling in the case of MMC. But for simpler modeling, such as blood vessels (cylinder), lymph nodes (ellipsoid), tumor (sphere), bone, and capillaries, one can use the MCML-E0.

4 Conclusion

MCML-E0 of geometries like sphere, cylinder, ellipsoid, and cuboid increases the flexibility of MCML for simulating more realistic structures of biological systems. Raman modeling, effect of photon reflectors, and distributed illumination sources can be easily studied for geometries other than layers. Total computation times for both MCML-E0 and MMC are approximately the same. However, larger geometries need more memory for generating meshes in the case of MMC. From the programming language point of view, MMC requires knowledge of MATLAB/Octave (for three-dimensional pre- and postprocessing). In MCML-E0 outputs are either matrices (diffused reflectance, transmittance, and absorbance) or variable (absorption within embedded object). Standard C version of MCML code is available online, so remodeling it is easier compared to MMC, where preprocessing and postprocessing files are in MATLAB® and only mex files of MC are available. In this work we have considered refractive index mismatch between the embedded object and the surrounding medium. Both MCML-E0 and MMC are capable of producing similar fluence map and absorption map. It is also seen that if boundary refractive index mismatch is ignored, 4 to 6% error is recorded in the total absorption within the embedded object. Future work is to combine MCML for all regular geometries, which would make it a more user-friendly tool, such as Online Monte Carlo, GNEAT.\footnote{33,34} Having discussed MCML-E0 and MMC, the users can choose the tool that best suits their requirement. If one is interested in irregular geometry, then MMC should be the choice. Embedded object of defined geometry within a bounded medium can be simulated using MMC and MCML-E0. If the application requires nonconventional photon tracking, such as reflector design, Raman propagation, and fluorescence, then MCML-E0 would be an apt choice.

Acknowledgments

The author would like to thank Dr. Qianqian Fang, assistant professor in radiology, of Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, for his help in understanding and implementing mesh-based Monte Carlo.

References

Vijitha Periyasamy is junior research fellow in electrical engineering at the Indian Institute of Science, Bangalore, India. She has a bachelor’s degree in medical electronics from Visvesvaraya Technological University. Her research interests include biomedical image processing for clinical evaluation, development of multimodal imaging systems, Monte Carlo simulation for light transport in biological tissue, and application of bioengineering for different medical practice systems.

Manojit Pramanik is an assistant professor of bioengineering at Nanyang Technological University, Singapore. He received his PhD in biomedical engineering from Washington University in St. Louis. His research interests include development of photoacoustic/thermoacoustic imaging systems, image reconstruction method, clinical application areas such as breast cancer imaging, molecular imaging, contrast agent development, light transport through biological tissue, Monte-Carlo simulation of light propagation in biological tissue, and Monte-Carlo simulation of Raman scattering.